Student Name: Solutions

Instuctor: Mustafa Altun

Student ID:

Date:

EHB 205E: Introduction to Logic Design

Quiz 1

Duration: 30 Minutes
Grading: 1) 20%, 2) 40%, 3) 40%,
Quiz is in closed-notes and closed-books format
For your answers please use the space provided in the exam sheet
GOOD LUCK!

- Answer the following statements with T(true) or F(false) only.
 (do not guess: points are deducted for wrong answers. If you do not know the answer, leave it blank)
 - a) Finite decimal fraction can be always converted to finite binary fraction
 - b) 1 Finite hexadecimal fraction can be always converted to finite binary fraction
- c) \underline{T} (The population of Burundi was below 1 million in 2013) NAND (banana is tastier than apple)
 - d) F A circuit performing a binary addition of two *n*-bit numbers needs *n* outputs.
 - e) \(\int\) A circuit performing a binary multiplication of two *n*-bit numbers needs 2*n* outputs.

2-)

Prime implicants: x2x3
X1x2
X2 X4
X1 X1

3. Obtain a minimal sum-of-products (SOP) expression for f using a Karnaugh map.

$$f = \, \overline{x_1 \, \overline{x_2} \, \overline{x_3} + x_1 \, \overline{x_2} \, \overline{x_4} + \overline{x_1} x_2 x_3 \overline{x_4} + \overline{x_1} x_2 \, \overline{x_3} \, x_4}$$

Truth Table	X1/2 00
X, X2 X3 X4	1 + 1,514
0000	1 00 0
0001	1 01 1
0010	1 10
00 (1	1 10-11
0100	1
0101	0 /2 7-
0110	o /f= x1x2+
0111	1
1000	0
1001	0
1010	0
1011	1
11 00	1
1101	1
1110	1
11 11	1

XXXX	2 00	01	14	10
00	1	(7)	1	0
01	1	0	1	0
14	I	1	1	D
10	1	0	1	0

f= x1x2+ x1x2+ x3x4+ x1x3x4