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Abstract—This paper presents techniques and design struc-
tures to reduce the time-multiplexed hardware complexity of a
feed-forward artificial neural network (ANN). After the weights
of ANN are determined in a training phase, in a post-training
stage, initially, the minimum quantization value used to convert
the floating-point weights to integers is found. Then, the integer
weights related to each neuron are tuned to reduce the hardware
complexity in the time-multiplexed design avoiding a loss on
the ANN accuracy in hardware. Also, at each layer of ANN,
the multiplications of integer weights by an input variable at
each time are realized under the shift-adds architecture using
a minimum number of adders and subtractors. It is observed
that the application of the post-training stage yields a significant
reduction in area, latency, and energy consumption on the
time-multiplexed designs including multipliers. Moreover, the
multiplierless design of ANN whose weights are found in the post-
training stage leads to a further reduction in area and energy
consumption, increasing the latency slightly.

I. INTRODUCTION

Artificial neural network (ANN) is a computing system
made up of a number of simple, highly interconnected pro-
cessing elements, which process information by their dynamic
state response to external inputs [1]. ANNs have been applied
to a wide range of problems, such as classification and
pattern recognition, and have been realized in different design
platforms, such as analog, digital, and hybrid very large scale
integrated (VLSI) circuits, field programmable gate-arrays
(FPGAs), and neuro-computers [2].

As illustrated in Fig. 1(a), the fundamental unit of an ANN,
called neuron, sums the multiplication of input variables by
weights, adds the bias value to this summation, and propagates
this result to the activation function which aims to limit the
amplitude of the output of the neuron [3]. In mathematical
terms, the neuron is described as y =

∑n
i=1 wixi and

z = φ(y + b). Fig. 1(b) shows an example on the architecture
of an ANN design, including input, hidden, and output layers,
where each circle denotes a neuron.

Observe from Fig. 1 that the hardware complexity of an
ANN is dominated by the multiplication of weights by input
variables. As the number of neurons increases, the area of the
parallel design increases dramatically, limiting its applications
on design platforms with a limited number of computing
resources, such as FPGAs, and on designs having a strict
area requirement [4]. In order to reduce the design area,
taking into account an increase in latency, the ANN can
be implemented in a time-multiplexed structure re-using the
computing resources. Fig. 2 presents the time-multiplexed
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Fig. 1. (a) Artificial neuron; (b) ANN with two hidden layers.
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Fig. 2. Multiply-accumulate (MAC) block in the neuron computation.

realization of a neuron using a multiply-accumulate (MAC)
block where the multiplication of a weight by an input variable
is realized at a time synchronized by the control block, which
is actually an up-counter, and is added by the accumulated
value stored in the register R. In this figure, the clock and reset
signals are omitted for the sake of clarity. Note that the number
of inputs (or weights) plus 1, i.e., n + 1, clock cycles are
required to compute the neuron output. The design complexity
of the MAC block depends on the size of the counter and
multiplexers, determined by the number of weights and input
variables, on the size of the multiplier, determined by the
maximum bit-widths of the input variables and weights, and on
the size of adder and register, determined by the bit-width of
the inner product of inputs and weights, i.e., y =

∑n
i=1 wixi.

Observe from Fig. 2 that the design complexity in the MAC
block of each neuron, and consequently, the ANN hardware
complexity, can be reduced if small weight values are used,
taking the ANN accuracy into consideration. Hence, in this
paper, we introduce a post-training stage where initially the
minimum quantization value used to convert the floating-point
weights to integers is found, sacrificing a little loss in the
ANN accuracy in hardware. Note that when all the weights
associated with a neuron are multiples of 2k, where k > 0, the
inner product can be realized as y = (

∑n
i=1 cixi) � k, where

ci = wi/2
k and � stands for the left shift operation. Parallel

shifts can be implemented using only wires in hardware
without representing any area cost. Thus, the bit-widths of
constants to be multiplied by the input variables in the MAC
block, and consequently, the sizes of the multiplier, adder, and
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Fig. 3. (a) Constant multiplications of 29x and 43x; their shift-adds
realizations: (b) DBR method [5]; (c) the exact algorithm [6].

register can be reduced. Hence, in the post-training stage, we
also explore all the weights associated with each neuron in
such a way that they can be set to multiples of 2k value, where
k is maximum, without losing any accuracy in hardware and
exceeding the bit-width of the inner product. Moreover, we
introduce the multiplierless realization of the time-multiplexed
ANN design. To do so, in each layer, the multiplications of
weights by an input variable at each time are implemented
using a multiple constant multiplication (MCM) block. Since
the weights are determined beforehand, these constant multi-
plications can be realized using only shift, addition, and/or
subtraction operations under the shift-adds architecture [5].
The multiplierless realization of the MCM block is found
using the exact algorithm of [6] with a minimum number of
adders/subtractors. Results show that the application of the
post-training stage yields a significant reduction in hardware
complexity and the multiplierless design of ANN with the
weights found in the post-training stage reduces the complex-
ity further when compared to designs using multipliers.

The rest of this paper is organized as follows: Section II
presents the preliminaries. Section III introduces the time-
multiplexed realization of ANNs. Results are given in Sec-
tion IV and finally, Section V concludes the paper.

II. PRELIMINARIES

A. Multiplierless Design of Multiple Constant Multiplications

Multiplication of constants by variable(s) is a ubiquitous and
crucial operation in many applications, such as digital signal
processing (DSP), cryptography, and compilers [7]. The MCM
operation realizes the multiplication of multiple constants by
an input variable x. A straight-forward shift-adds design tech-
nique, called the digit-based recoding (DBR) [5], can realize
constant multiplications in two steps given as follows: i) define
the constants under a particular number representation, such as
binary or canonical signed digit (CSD) [8]; ii) for the non-zero
digits in the representation of constants, shift the input vari-
able according to digit positions and add/subtract the shifted
variables with respect to digit values. As a simple example,
consider 29x and 43x shown in Fig. 3(a). Fig. 3(b) presents
the solution of the DBR method with a total of 6 adders found
when the constants are defined under the binary representation
as 29x = (11101)binx and 43x = (101011)binx. The number
of adders/subtractors in the MCM block can be further reduced

by maximizing the sharing of common partial products among
the constant multiplications [6], [9], [10]. Returning to our
example, the exact algorithm of [6] finds a solution with a
minimum number of 3 operations as shown in Fig. 3(c).

B. Related Work

Time-multiplexed constant multiplication (TMCM) block
realizes the multiplication of a constant variable selected at
a time by an input variable x. Among alternative realizations,
its implementation using an MCM block and multiplexer is
described in [11], [12].

A delay-efficient MAC structure, which uses accumulators
and carry-save adders, was introduced in [13] to reduce its
high latency. Efficient implementation of ANN designs using
MAC blocks on FPGAs was presented in [4].

For the multiplierless realization of neural networks, in [14],
[15], the weights of ANNs are determined to include a
small number of non-zero digits in training and hence, their
multiplications by input variables can be realized using a small
number of adders and subtractors.

III. TIME-MULTIPLEXED ANN DESIGN

The design procedure has three steps: i) given the ANN
structure, including the number of inputs, outputs, hidden
layers, neurons in the hidden layers, and the type of activation
function of neurons in each layer, train the ANN using state-
of-art techniques and find the weight and bias values; ii) in
a post-training stage, using a validation data set, determine
the minimum quantization value for the weights and biases
taking into account the ANN accuracy in hardware, convert the
floating point weight and bias values to integers, and tune them
such that the hardware complexity of the time-multiplexed
design is reduced while keeping and/or improving the ANN
accuracy in hardware; iii) describe the time-multiplexed ANN
design in hardware and verify the design. Below, these steps
are described in detail.

A. Training

We developed our training tool to determine the weights
and bias values. It includes the conventional and stochastic
gradient descent methods and the Adam optimizer [16] as
an iterative optimization algorithm. It has different weight
initialization techniques, such as Xavier [17], He [18], and a
fully random method. It includes several stopping criteria, e.g.,
the number of iterations, early stopping using validation data
set, and saturation of loss function. It can define a number of
activation functions for neurons in each layer, namely sigmoid,
hyperbolic tangent, hard sigmoid, hard hyperbolic tangent
(hardtanh), linear, rectified linear unit, and softmax [19].

B. Hardware-aware Post-training

Since the floating-point multiplication and addition oper-
ations occupy larger area and are less energy efficient than
its integer counterparts [20], the floating-point weight values
found during training are converted to integers. We aim to
reduce the bit-widths of weights and explore possible weight
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Fig. 4. Realizations of MAC blocks in a layer of an ANN design: (a) using multipliers; (b) using an MCM block.

values which may lead to a decrease in the design area and/or
yield an increase in the ANN accuracy in hardware. To do
so, initially, we generate a validation data set, which is used
to compute the hardware accuracy, by moving 30% of the
training data set to the validation data set randomly. The
minimum quantization value, which is used to convert the
floating-point weight values to integers, is found as follows:

1) Set the quantization value, q, and the related ANN
accuracy in hardware, ha(q), to 0.

2) Increase q value by 1.
3) Convert each floating-point weight value to an integer by

multiplying it by 2q and finding the least integer greater
than or equal to this multiplication result.

4) Compute ha(q) value on the validation data set using
the integer weight values.

5) If ha(q) > 0 and ha(q)−ha(q−1) is greater than 0.1%,
go to Step 2.

6) Otherwise, return q as the minimum quantization value.
Observe that we sacrifice maximum 0.1% loss in the ANN

accuracy in hardware computed on the validation data set in
order to use small size weights. After the weight values are
converted to integers using the minimum quantization value
q, for each neuron, we aim to maximize the smallest left shift
value among all its weights, denoted as sls, while avoiding
a decrease in the ANN accuracy in hardware. As a simple
example, the sls value for the integer values 12 = 3 � 2,
14 = 7 � 1, and 16 = 1 � 4, is computed as 1. The tuning
procedure is described as follows:

1) Set ha(q) computed in finding the minimum quantiza-
tion value to the best ANN accuracy in hardware, bha.

2) For each neuron in the ANN design, ni, compute the
sls value for its weights.

a) For each weight associated with ni, wnij , find its
largest left shift value, lls.

b) If lls is equal to sls, determine the first possible
weight as pw1 = wnij−(wnij mod 2lls+1). If the
bit-width of pw1 is not greater than the maximum
bit-width of weights associated with ni, compute
the ANN accuracy in hardware, ha1, when wnij

is replaced by pw1. Determine the second possible
weight as pw2 = pw1 + 2lls+1 and compute the
ANN accuracy in hardware, ha2, similarly.

c) If the maximum of ha1 and ha2 is equal to or
greater than bha, then replace wnij by the possible
weight that leads to the maximum ANN accuracy
in hardware and update bha.

d) Otherwise, assuming that wnij is replaced by the
possible weight that leads to the maximum ANN
accuracy in hardware, change the bias value of
the neuron, bni , in between [bni − 4, bni + 4] and
compute the ANN accuracy in hardware. If the
ANN accuracy in hardware in one of these cases
is equal to or better than bha, update the values of
wnij , bni

, and bha accordingly.
3) If sls value of any neuron is improved, go to Step 2.
4) Otherwise, return the weight and bias values.

C. Hardware Design and Multiplierless Design Optimization

After the integer weight and bias values are determined, the
ANN design is built taking into account the ANN structure
given to the training tool. In addition, the bit-widths of inputs
and outputs of the ANN design are specified. In the time-
multiplexed design, the MAC block can be realized with
multipliers and also, with an MCM block. The realization of
MAC blocks in a layer of an ANN design with n inputs and m
outputs is illustrated in Fig. 4(a). In the multiplierless design,
all the weight multiplications are computed in the MCM
block and they are diverted to the corresponding adders using
multiplexers as shown in Fig. 4(b). Rather than using an MCM
block for each neuron, a single MCM block, which realizes the
multiplication of all the weights in a layer by an input variable,
is used to increase the sharing of partial products, and thus, to
reduce the required number of adders/subtractors. The exact
algorithm of [6] is used to find the shift-adds realization of the
MCM block using a minimum number of adders/subtractors.

IV. EXPERIMENTAL RESULTS

The pen-based handwritten digit recognition problem [21]
was used as an application. In the convolutional neural net-
work design of this application, we implemented 5 feedfor-
ward ANN structures with different number of hidden layers
and number of neurons in the hidden layers, denoted as
pi–ph1

– . . . –phn
–po, where pi and po stand for the number

of inputs and outputs, respectively and phj
, where 1 ≤ j ≤ n,



TABLE I
SUMMARY OF RESULTS OF ANN DESIGNS WITHOUT POST-TRAINING.

Structure Training Details PARALLEL TM-MUL TM-MCM
sta hta A L P E A L P E add A L P E

16-10 84.6 83.3 19779 3.3 8.6 28.4 6098 55.0 0.6 35.4 110 9222 63.5 0.9 57.7
16-10-10 94.1 92.9 30765 6.2 15.8 98.4 11682 96.7 1.2 113.9 169 15854 110.7 1.2 128.4
16-16-10 96.0 94.7 42464 6.5 24.0 155.7 14301 127.3 1.5 186.3 212 18941 148.4 1.4 213.4
16-10-10-10 94.7 91.9 39952 9.0 26.1 235.2 16697 145.3 1.6 226.8 216 19909 153.4 1.1 172.1
16-16-10-10 96.6 94.6 50737 7.3 28.7 209.3 19100 168.3 1.7 293.1 232 23001 183.3 1.2 228.4
Average 93.2 91.5 36739.4 6.5 20.6 145.4 13575.6 118.5 1.3 171.1 187.8 17385.4 131.9 1.2 160.0

TABLE II
SUMMARY OF RESULTS OF ANN DESIGNS WITH POST-TRAINING.

Structure Training Details PARALLEL TM-MUL TM-MCM
q hta A L P E A L P E add A L P E

16-10 5 86.6 8943 2.8 2.7 7.4 4278 47.2 0.4 19.0 11 3633 47.8 0.4 17.8
16-10-10 7 93.5 16838 5.4 8.6 46.0 8676 85.8 0.9 76.1 34 7648 91.5 0.6 57.5
16-16-10 7 95.9 20063 5.5 10.7 58.6 10014 114.0 1.0 112.3 33 8358 122.4 0.8 101.2
16-10-10-10 7 93.5 22994 7.9 13.7 108.4 13020 121.2 1.2 150.1 43 10743 134.6 1.0 132.1
16-16-10-10 7 95.6 25181 5.5 13.2 73.2 13368 147.8 1.3 199.3 29 11033 152.4 1.0 152.1
Average 6.6 93.0 18803.8 5.4 9.8 58.7 9871.2 103.2 1.0 111.4 30.0 8283.0 109.7 0.8 92.1

indicates the number of neurons in the jth hidden layer.
The ANNs were trained using 7494 data while the activation
function of each neuron in the hidden and output layers
was hardtanh and sigmoid, respectively. During the training,
the Adam optimization algorithm was used and the weights
were initialized using the Xavier technique. The training was
stopped whenever the accuracy on the validation data set is
decreased. Due to the randomness in our tool, the ANN was
trained 30 times and the weights, that lead to the best software
test accuracy, denoted as sta, were determined.

In this work, we present the results of ANN designs im-
plemented in three different architectures: i) parallel; ii) time-
multiplexed using multipliers, TM-MUL; iii) time-multiplexed
using MCM block(s), TM-MCM. In the parallel design, to make
a fair comparison, flip-flops were added to the outputs of the
ANN design. In parallel and time-multiplexed designs using
multipliers, the constant multiplications were described in a
behavioral fashion. In all the ANN designs, the bit-widths
of inputs and outputs were set to 8. The ANN designs were
described in Verilog and were synthesized using the Cadence
RTL Compiler with the TSMC 40nm design library.

Table I presents the gate-level results of ANN designs
implemented without applying the post-training stage. The
quantization value used to convert the floating-point weight
values to integer was 8. In this table, hta denotes the hardware
test accuracy, A, L, P, and E stand respectively for total
area in µm2, latency in ns, power dissipation in mW , and
energy consumption in pJ , and add indicates the total number
of adders/subtractors in the MCM block(s). The latency is
computed as the multiplication of the minimum clock period
by the number of clock cycles to obtain the ANN output. The
minimum clock period was found using the retiming technique
in the synthesis tool iteratively. The switching activity data re-
quired for the computation of power dissipation was generated
using 3498 test data in simulation. This test data set was used
to verify the ANN design. Energy consumption is computed
as the multiplication of latency and power dissipation.

Observe from Table I that the hardware test accuracy is close
to the software test accuracy. Note that the difference is mainly
due to the bit-widths of inputs and outputs, the quantization
value used to convert floating-point weights to integers, and
the weights themselves. Observe from Table I that the time-

multiplexed realization of ANNs using multipliers leads to a
2.7× area reduction on average when compared to the parallel
realization. However, the latency and energy consumption are
increased by 18.2 and 1.2 times on average, respectively. On
the other hand, the multiplierless time-multiplexed designs
occupy larger area and have greater latency when compared to
the time-multiplexed designs using multipliers. This is because
the weights have large and diverse values, requiring a large
number of adders/subtractors to replace a small number of
multipliers at each layer. For example, 110 adders/subtractors
are required to replace 10 multipliers in the 16-10 structure.

Table II presents the gate-level results of ANN designs
implemented after the post-training stage is applied. In this
table, q denotes the determined minimum quantization value.
Note that the post-training leads to high hardware test accu-
racy, where it even exceeds the software test accuracy in the
16-10 structure, and yields ANN designs with small hardware
complexity. Observe from Table II that the time-multiplexed
realization of ANNs using multipliers leads to a 1.9× area re-
duction on average when compared to the parallel realization.
The multiplierless time-multiplexed designs occupy less area
and consume less energy than the time-multiplexed designs
using multipliers. This is because the weights determined
during the post-training stage have small and very similar
values when they are shifted left. Note that the latency in
multiplierless designs is increased due to a large number of
adders/subtractors in series in MCM block(s).

V. CONCLUSIONS

This paper presented efficient techniques to reduce the
hardware complexity of a time-multiplexed feedforward ANN
design. It introduced a post-training stage where the size and
values of constant weights are explored to reduce the hardware
complexity. It also presented the multiplierless realization
of the time-multiplexed ANN design where the number of
addition/subtraction operations is optimized. Experimental re-
sults indicated that the proposed techniques yield a significant
reduction in design area when compared to the parallel and
time-multiplexed designs using multipliers.
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