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This paper studies synthesis and optimization of reversible cir-
cuits composed of Toffoli gates with negative and positive con-
trol lines. The proposed synthesis algorithm performs sorting
among optimal implementations of certain functions - called as
essential functions - to implement any reversible Boolean func-
tion. Essential functions comprise very small amount of all func-
tions. For example, to implement 3 bit circuits, 28 essential func-
tions out of all 40320 functions are needed. The proposed opti-
mization algorithm considers both reversible and quantum circuit
costs. First, reversible cost is reduced by considering adjacent
gate pairs. Then, inner quantum structures of the gates are inves-
tigated and quantum optimization is performed. The proposed
algorithms are evaluated on benchmark circuits in comparison
with the results in the literature.
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1 INTRODUCTION

As Moore’s Law has kept its validity for decades, not only the number of
transistors on a chip but also the chip’s power dissipation have continually
doubled for every 18 to 24 months. Nowadays this trend has reached a crit-
ical point at which new technologies enabling low-power designs are highly
desired. Reversible circuits are considered as a strong candidate technology
in this regard. Reversible logic offers low-power designs [3] – zero power
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dissipation is theoretically possible if all operations during computation are
reversible [2] – that has motivated several emerging technologies including
quantum computing that is solely based on unitary matrix based reversible op-
erations, and DNA computing that is used to implement universal reversible
gates [16]. With the advent of these technologies, reversible logic synthesis
has found a renewed interest aiming on efficient algorithms to implement re-
versible circuits by considering run time and circuit size [7], [17]. Although
finding optimal or near-optimal size circuits is an ultimate goal in synthesis, it
is costly for reversible circuits. It has been achieved for all input-output com-
binations only up to four bits in the literature [8], [17]. For higher bit counts,
it is a non-trivial problem [8]. If we consider recent experiments where 84
qubits are used [4], we easily see the impracticability of synthesizing optimal
or near-optimal circuits that would take years. Motivated by these findings
and with our previous work [21], we aim at a fast synthesis algorithm in this
study.

For our synthesis algorithm, we face a decision of whether or not to use
garbage outputs. Garbage outputs are used especially for synthesizing func-
tions with high number of bits [22] that offers design flexibility and gate cost
reduction at the expense of additional bit lines [24]. In this study, we do not
use garbage outputs; we use minimum number of bit lines. Our synthesis
algorithm is straightforward and fast without requiring additional bit lines. It
is a well known fact that any reversible function can be implemented without
a need of a garbage bit by using the NCT (NOT, CNOT, Toffoli) gate library.
Along with the NCT library, we also use the MCT (Multiple Control Toffoli)
gate library for which the number of the control lines is not limited. These
libraries include gates with positive control lines. To extend our synthesis ap-
proach with negative-polarity control lines, we also use the MPMCT (Mixed
Polarity Multiple Control Toffoli) gate library.

Our synthesis process has two steps. In the first step, we use a permu-
tation based algorithm to implement certain functions called as “essential
functions”. Here, the algorithm is optimal in the sense that it uses a min-
imum number of reversible gates. In the second step, we implement given
target functions by using the essential function implementations obtained in
the first step. Here, we use a fast sorting algorithm. Our overall synthesis
approach is greedy as opposed to dynamic or optimal. It can also be con-
sidered as a look-up table approach with performance metrics of circuit size,
synthesis time, and space required to store look-up tables. As opposed to tar-
geting on the circuit size to find optimal or near-optimal results [8], we aim
to reduce the storing space and correspondingly the synthesis time. We only

2



store essential function implementations that comprise very small amount of
all implementations. For example, to synthesize all 4 bit circuits (total of 16!),
our approach needs only 120 essential function implementations. Remaining
16!− 120 are synthesized by sorting them.

The synthesis process is followed by optimization for which we perform
gate reductions by checking adjacent gate pairs. In the literature, reductions
using gate pairs and templates are extensively studied for the NCT and the
MPMCT libraries [10], [19], [6]. In this study, we specialize those templates
and reduction rules to be applicable to the neighbour gate pairs of the circuit
implementations of essential functions. We also define cost reduction tech-
niques for the circuits based on the NCV (NOT, CNOT, controlled-V and
controlled-V †) gate library.

The total time required for our synthesis and optimization processes is
the time needed for synthesizing essential functions, sorting, and optimiza-
tion. Because of the essential functions’ fewness, and sorting-optimization
algorithms’ speed, the total time is very small compared to the studies in the
literature.

The paper is organized as follows. In Section 2, we introduce background
information of reversible circuits and quantum gates. In Section 3, we present
our synthesis algorithm based on essential functions and sorting. In Section 4,
we present our optimization method to reduce reversible and quantum costs.
In Section 5 and 6, we give experimental results and conclusions, respectively.

2 PRELIMINARIES

2.1 Reversible Funcitons
While a conventional Boolean function always carries a one bit information
(0 or 1) that is independent of the number of input bits, a reversible Boolean
function carries information with using the same number of input and out-
put bits. For reversible functions, each input bit combination results in a
unique output bit combination; the reverse of this is also true because of the
reversibility. This means that the input values can be deduced by looking at
the output values of the reversible function. For example, a NOT function, im-
plemented with a conventional inverter (logic gate), is reversible since we can
undo it. On the other hand, NAND, NOR, and XOR functions with multiple
inputs and a single output are irreversible. Bijection functions in mathematics
is also a great example to understand reversibility. In these functions, input
and output sets have the same number of elements and each element has only
one counterpart in the other set.
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2.2 Reversible Gates & Circuits
A reversible function can be realized by a reversible circuit consisting of
reversible gates [15]. In this study we use three types of gate libraries that are
the NCT (NOT, CNOT, Toffoli), the MCT (Multiple Control Toffoli), and
the MPMCT (Mixed Polarity Multiple Control Toffoli) libraries. Definition
of the gates:

• NOT: a 1-bit gate performing 1 bit NOT operation in any case.

• CNOT: a 2-bit gate performing 1 bit NOT operation on its target bit iff
its control bit is 1.

• Toffoli: a 3-bit gate performing 1 bit NOT operation on its target bit iff
its control bits are both 1.

• Multiple Control Toffoli: an n-bit gate, n = 1, 2, 3, 4, ..., performing
1 bit NOT operation on its target bit iff both of its control bits are 1.

• Mixed Polarity Multiple Control Toffoli: an n-bit gate, n = 1, 2, 3, 4, ...,
performing 1 bit NOT operation on its target bit iff all of its positive
control bits are 1 and all of its negative control bits are 0.

Note that an MCT gate becomes a NOT, a CNOT, and a Toffoli gate if
n = 1, n = 2, and n = 3, respectively. Circuit representations of the gates
are given in Figure 1 where symbols •, ◦, and ⊕ denote positive control,
negative control, and target lines, respectively.

• •
•


. n− 1 . n− 1

• . .

• • • •

NOT CNOT Toffoli MCT MPMCT

FIGURE 1
Circuit representations of NOT, CNOT, Toffoli, MCT, and MPMCT gates.
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• •

•
, , V , V †

FIGURE 2
Circuit representations of NOT, CNOT, controlled-V and controlled-V † gates.

2.3 Circuit Cost

In this study, we calculate circuit costs in two different ways. For the first
one, we consider each gate cost in the NCT, the MCT, and the MPMCT li-
braries as one that is the “Reversible Cost”.

Definition 1 Reversible cost is the total number of reversible gates used in a
given circuit.

For the second one, we consider sub-gates (elementary gates or elementary
quantum operations [1]). We take each sub-gate cost in the NCV-111 (NOT,
CNOT, controlled-V and controlled-V †) library as one to find the “Quantum
Cost”.

Definition 2 Quantum cost is the total number of elementary quantum oper-
ations (sub-gates) used to realize a given circuit. [23]

We use the NCV-111 library among different quantum libraries/metrics
since it is a well accepted one [11]. In this metric, “111” refers that each
NOT, CNOT, controlled-V and controlled-V † gate has a cost of one. Figure
2 illustrates NCV quantum gates that operate on quantum bits (qubits). As
opposed a conventional bit being either 0 or 1, a qubit is a linear superposition
of the states |0〉 and |1〉. General representation is |ψ〉 = α|0〉 + β|1〉 where
α and β are complex numbers satisfying that |α|2 + |β|2 = 1.

Using the NCV-111 library necessitates to use 4 possible states for a qubit
[19]:
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that results in input-output transition tables for NOT, V , and V † gates given
in Table 1.

Figure 3 shows a Toffoli gate realization using NCV gates. Quantum costs
of gates in the NCT and MPMCT libraries, up to 3 bits, are given in Figure 4
[1], [12], [25].

NOT V V †

Input Output Input Output Input Output

|0〉 |1〉 |0〉 |+〉 |0〉 |−〉

|+〉 |−〉 |+〉 |1〉 |+〉 |0〉

|1〉 |0〉 |1〉 |−〉 |1〉 |+〉

|−〉 |+〉 |−〉 |0〉 |−〉 |1〉

TABLE 1
Input-output transition tables for NOT, V , and V † gates.

• • • •

• • = •

V V † V

FIGURE 3
Implementation of a Toffoli gate using the NCV library; quantum cost is 5.
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MPMCT

NCT

NOT CNOT Toffoli

• •
• • •

1 1 5 5 5 6 2

FIGURE 4
Reversible gates of the NCT and the MPMCT libraries up to 3 bits and their quantum
costs below them.

3 SYNTHESIS

Our synthesis algorithm is greedy as opposed to dynamic or optimal. It has
two steps that are implementing essential functions and performing sorting.
After achieving essential function implementations with the NCT, MCT, and
MPMCT gate libraries, we sort them to implement any target function. In
sorting, our algorithm determines which essential function implementations
are needed and how to efficiently use them.

3.1 Essential Functions and Their Implementations
Definition 3 An essential function is a reversible Boolean function such that
its truth table has exactly two rows having different input and output bit val-
ues, i.e., all other rows have identical inputs and outputs.

Consider a truth table such that input and output bit values are all identical.
If we interchange any two output rows without changing others, the result is
an essential function. Table 2 shows three 3-bit essential functions; bold rows
represent interchanged rows. The total number of essential functions for a
certain bit size n can be derived as(

2n

2

)
=

2n!

2!(2n − 2)!
= 2n−1 ∗ (2n − 1) (1)

that is favourably low compared to the total number of 2n! functions. Table 3
compares the formulas for different bit sizes up to 6.
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fE1 fE2 fE3

Input Output Input Output Input Output

cba c’b’a’ cba c’b’a’ cba c’b’a’

000 001 000 000 000 000

001 000 001 111 001 001

010 010 010 010 010 110

011 011 011 011 011 011

100 100 100 100 100 100

101 101 101 101 101 101

110 110 110 110 110 010

111 111 111 001 111 111

TABLE 2
Truth tables of 3-bit essential functions fE1, fE2, and fE3 .

Bit Size # of Essential Functions # of Total Functions

2 6 24

3 28 40320

4 120 20922789888000

5 496 2.613308e + 35

6 2016 1.268869e + 89

TABLE 3
Number of essential functions and total number of functions according to bit size.

The reason of using essential functions is consistent with our main goal
of achieving a fast greedy algorithm as opposed to exhaustive search based
algorithms. In general, it is desired for a greedy algorithm that each local syn-
thesis problem should be efficiently solved, preferably with an optimal solu-
tion and local solutions should be easily integrated in order to solve the global
problem. For our algorithm, local and global synthesis problems correspond
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to implementing essential and given target reversible functions, respectively.
Optimal implementation of an essential function is relatively fast since only
two input bit assignments result in different output values that allows us to
eliminate considerable amount of cases. More importantly, discussed in the
next section “Sorting”, implementations of essential functions can be directly
integrated; for a given reversible function, the total number of the required
essential function is always the same but the ordering of their implementation
is arbitrary.

We use a simple algorithm to synthesize essential functions with minimal
circuit sizes considering their reversible costs. Our algorithm is based on
permutation trials. At first, essential functions are determined and the essen-
tial function library is created. Then, optimal circuit implementations of the
functions are achieved. Each essential function has three different optimal
implementations corresponding to three different gate libraries NCT, MCT,
and MPMCT. Permutation trials start circuits having a reversible cost of one
(one gate) and continue by gradually increasing the cost until obtaining an
optimal solution. The optimal circuit implementation, which may not be a
unique solution, is stored and the algorithm picks the next essential function
to be realized. Figure 5 represents a flow chart diagram of the algorithm.

FIGURE 5
Flow chart of the algorithm for essential function implementations.
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3.2 Sorting
Sorting process begins after the essential function implementations are stored.
An example of this process is shown in Figure 6. Here, f1 and f2 are essential
functions used to obtain a target function F . The truth table of F has 8 rows;
4 of them are mismatched, having different input and output bit values. To
match them, pairwise interchanging of output rows is done by the essential
functions f1 and f2. Bold lines in the functions’ truth tables indicate the
interchanged rows. Since every distinct essential function, for this case f1
or f2, only deals with two rows without changing others, the ordering of the
implementations of essential functions can be arbitrary. It means that F could
also be implemented by changing the circuit order of f1 and f2.

Fixing mismatched rows is indeed a sorting problem among output rows.
We investigate different sorting algorithms in reversible circuit design per-
spective and choose a selection sort algorithm that uses row by row checking
of mismatched input and output bits. Row by row checking and fixing can
be efficiently done by reversible circuits, in our case by circuit implemen-
tations of essential functions. However, operations like dividing and sliding
used in other sorting algorithms necessitates relatively larger circuits. For ex-

FIGURE 6
Implementations of essential functions f1, f2, and the target function F : (a) truth
tables, (b) circuits.
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ample, a merge sort algorithm divides a target set into two subsets and sorts
them separately. After subset sorting is completed, they are merged and the
same procedure repeats until finding a final solution. Here, each of these op-
erations, especially the dividing operation, is quite costly. Similarly, sliding
process used in an insertion sort algorithm has the same handicap. Figure 7
illustrates differences between sorting algorithms by showing the number of
required essential function implementations. For this specific example, the
selection/merge/insertion algorithms require 2/4/6 essential function imple-
mentations, respectively.

Given a target function F with m mismatched rows, the selection sort al-
gorithm first fixes one of the m rows and continues to fix the rows one by
one. Here, the number of possible solutions is upper bounded by m!. For

FIGURE 7
Sorting process with essential functions: (a) selection sort, (b) merge sort, (c) insertion
sort. Numbers associated with arrows represent the number of essential functions
needed. Crossed arrows show the operations that cannot be directly achieved by using
essential functions.
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all of these solutions, the total number of interchanging operations or corre-
sponding essential functions is constant, as stated by the following theorem.

Theorem 1 Consider a target function F with mismatched rows in its truth
table. In order to implement F , the required number of essential functions is
always the same, regardless the sequence of mismatched rows to be fixed.

Before proving the theorem we elucidate it with an example shown in Ta-
ble 4. In the table, mismatched and fixed rows are represented by red and
green colors, respectively; there are 4 mismatched rows initially. Table 4(a)
shows a solution with a sorting sequence that starts at the first row and pro-
gresses to the bottom one by one. Table 4(b) represents a solution with a
sorting sequence that results in the smallest reversible cost. As stated in The-
orem 1 both solutions use the same number of 3 essential functions.

We use the following definition and lemma for the proof of the theorem.

F F

000 0 0 0 0 000 0 0 0 0

111 7 1 1 1 111 7 3 1 1

001 1 7 2 2 001 1 1 3 2

010 2 2 7 3 010 2 2 2 3

100 4 4 4 4 100 4 4 4 4

101 5 5 5 5 101 5 5 5 5

110 6 6 6 6 110 6 6 6 6

011 3 3 3 7 011 3 7 7 7
Essential
Functions

1-7 2-7 3-7 -
Essential
Functions

7-3 1-3 2-3 -

Function
Cost

4 4 1 - Function
Cost

1 2 2 -

Total
Cost

9 Total
Cost

5

(a) (b)

TABLE 4
Two different solutions with different costs to synthesize F using a selection sort
algorithm.
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Definition 4 A closed group of mismatched rows is defined such that removal
of any row(s) from the group makes it unmatchable, i.e., at least one of the
matching elements exists only once.

Example of closed groups are shown in Figure 8. Here, there are total of 8
mismatched rows that cannot constitute a single closed group since removing
the top 5 or bottom 3 rows does not make it unmatchable. However, “Group
a” and “Group b” are closed groups.

Lemma 1 Consider a closed group of k mismatched rows. The number of
required essential functions to match all k rows is k − 1.

Proof 1 The proof is by contradiction. In sorting process, each essential
function fixes either one or two mismatched rows. Additionally, the last mis-
matched row pair is always fixed using a single essential function. Suppose
that k − 2 or fewer essential functions are used; it means that in sorting
process, excluding the last two mismatched rows, one essential function is
used (at least once) to fix two mismatched rows. This row pair is indeed a
closed group that can not exist initially (before sorting starts); if it did, the
initial closed group would consist of multiple closed groups that is against the
definition of a closed group in Definition 4. Therefore this row pair should
be formed during the sorting process that results in an initial distinct closed
group as illustrated in Figure 9. In other words, if it happens then the ini-
tial closed group consists of multiple closed groups. Again this is against the
definition of a closed group. So we have a contradiction. �

FIGURE 8
Two different closed groups. Removing the fifth row from “Group a” results in un-
matchable rows: 4 on the left side and 5 on the right are unmatchable.
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FIGURE 9
A closed group of two rows (in 1) always results in a distinct closed group (in 2, 3, 4,
....) using essential functions in backward direction.

The proof of Theorem 1 is stated below.

Proof 2 Suppose that F has m mismatched rows in its truth table. Also sup-
pose that these rows are represented in g closed groups. Here, m and g are
fixed numbers for a certain function. Using Lemma 1, we know that the num-
ber of essential functions required for each closed group is the number of each
group’s rows minus 1. Therefore, the total number of the required essential
functions is fixed and always m− g. �

Comparing the two solutions given in Table 4, as expected from Theorem
1, both uses the same number of essential functions. However, the type of es-
sential functions and related costs are quite different. Total costs of 3 essential
functions are 5 and 9 for the solutions in (a) and (b), respectively. This under-
lines the importance of selecting an adequate sequence of mismatched rows
for a given target function. For this purpose, we offer an approach called as
“pick smallest”. We evaluate our approach by comparing it with “top-down”
and “optimal” approaches explained below. Worst case complexities for the
approaches are calculated by considering the time spent on row checking pro-
cedure. Note that m represents the total number of mismatched rows upper
bounded by 2n for a bit size of n.
Pick Smallest - Proposed
Our approach checks all mismatched rows and their related costs. The lowest
cost, assigned to a certain mismatched row, is selected and the corresponding
mismatched row is fixed. The checking process is repeated until there is no
mismatched rows left. Since our approach needs to check all mismatched
rows in each checking, the time complexity is O(m2).
Top-Down
Top-down approach fixes mismatched rows one by one from top to bottom.
Thus, its time complexity isO(m). Indeed, this approach represents all of the
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Pick Smallest - Proposed Top-Down Optimal

Reversible Cost 15.75 16.69 14.48

Time (s) 0.48 0.47 310

Complexities O(m2) O(m) O(m!)

TABLE 5
Sequence comparison regarding total run times and average reversible costs for all
3-bit functions.

approaches that use a certain sequence for all target functions. For example,
an approach with checking rows one by one from bottom to top will have
the same complexity and very close run time and average cost values as the
top-down approach has.

Optimal
An optimal sequence can be found by checking all possible m! sequences.
Therefore, the time complexity is O(m!).

While the top-down approach uses the same sequence of mismatched rows
for every target function, the proposed and the optimal approaches use differ-
ent sequences for different target functions that results in better reversible
costs. Table 5 compares the approaches considering total run times and aver-
age reversible costs for all 3-bit functions. Although the reversible cost of our
approach is slightly larger than that of the optimal approach, our approach
overwhelms the others considering the runtime performances.

4 OPTIMIZATION

The synthesis process explained in Section 3 is followed by the optimization
for which we perform reductions by checking adjacent gate pairs. If a gate
pair with a lower cost is found for a certain part of the circuit then the cost
reduction is achieved. We construct our gate pairs in two ways that are for
reducing reversible and quantum circuit costs. In both ways, the proposed
gate pairs include only two gates. More complex optimization techniques
based on template matching algorithms with considering higher number of
gates could have been constructed. This would slightly improve the circuit
cost, but at the same time severely harm our main purpose of achieving a fast
algorithm.
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• • • •
(a) • = , (b) • • = •

• •
(c) • • = , (d) • • = , (e) =

• •
(f) = , (g) = , (h) =

FIGURE 10
All possible two-gate gate pair forms (up to 3 bits) for reversible cost reduction: (a)
and (b) for one-gate reduction, (c) through (h) for two-gate reduction.

4.1 Reversible Cost Optimization
As a nature of the proposed sorting sequence, essential functions are used
one after the other that might form non-optimal joint circuit parts consisting
of two gates. When this formation is found, we replace the circuitry with its
optimal equivalent. For this purpose, we construct all possible gate pair forms
as shown in Figure 10. These are simple and easily applicable gate pairs that
are not costly in terms of the runtime. Note that the number of the joints is
one fewer than the number of essential functions. For each joint, there might
be two or even more gate reductions that is explicitly shown in Figure 11.

4.2 Quantum Cost Optimization
After optimizing the reversible costs using the gate pairs based on the NCT,
MCT, and MPMCT libraries, here we perform a second optimization process
that aims to reduce the quantum cost. We offer gate pairs based on NCV
quantum gates. For this purpose, we first implement reversible gates in opti-
mal sizes. We show that Toffoli gates with two positive control lines (Toffoli),
negative-positive control lines (Mixed Polarity Toffoli), and two negative con-
trol lines (Negative Toffoli) require 5, 5, and 6 gates, respectively, in their
optimal implementations with NCV [5]. Next, we search for non-optimal
joint circuit parts consisting of two gates and replace them with their optimal
equivalents. We construct all possible 7 gate pair forms as shown in Figure
12. The gate pairs in Figure 12(a) through (d) result in a cost reduction of two,
corresponding to two NOT gates. Examples shown in Figure 13 fall into this
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a • • a • • •
b b •
c • c • •

a • • • • •
b •
c • • •

a • • • • •
b •
c • • •

a • • •
b •
c • • •

FIGURE 11
Reduction with identical neighbour gates, 4 gates removed from the circuit.

FIGURE 12
All possible 3-bit gate pair forms for quantum cost reduction.

category. The gate pairs in Figure 12(e), (f), and (g) result in a cost reduction
of 8. To elucidate this, consider the circuits in 12(e). The two-gate circuit and
its equivalent optimal three-gate circuit have quantum costs of 11 (6+5) and
3 (1+1+1), respectively, that results in a cost reduction of 8 (11-3).

Since there are different optimal implementations of Toffoli gates, we need
to select proper ones to achieve a maximum quantum cost reduction. Figure
13 summarizes our optimization process. First, Toffoli gates are expanded
to their quantum circuit structures and proper optimal implementations are
selected (Figure 13(a), Figure 13(c). Then scanning process begins to find
conditions having identical neighbour gates; the process repeats until there is
no such condition left (Figure 13(b), Figure 13(d).
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FIGURE 13
(a) Toffoli gate with its inner quantum structure. (b) gate pair using a Toffoli gate.
(c) Mixed Polarity Toffoli gate with its inner quantum structure. (d) gate pair using a
Mixed Polarity Toffoli gate.

5 EXPERIMENTAL RESULTS

Implementations are realized in C. All experiments run on a 3.40 GHz Intel
Core i7 CPU (only single core used) with 8.00 GB memory.

In this section run times are calculated by excluding times needed to syn-
thesize essential functions. The reason is that we synthesize essential func-
tions and store them once that is a fixed time.

Table 6 shows results of our synthesis method in comparison with the
optimal/near-optimal methods in the literature considering all 3-bit reversible
functions. Reversible costs are calculated by counting each gate cost as one
using the NCT and the MPMCT libraries. Quantum costs are calculated by
counting each gate cost as one using the NCV library. As a reminder, Figure 4
summarizes quantum cost values for all gates from the NCT and the MPMCT
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libraries up to 3 bits. In Table 6, the numbers under the library names rep-
resent the number of functions implemented with corresponding reversible
costs. For example, the first row tells that 26 reversible gates are used to im-
plement 10 different functions using the NCT library. In the table, an average
quantum cost of 13.88 is calculated by directly applying cost conversions pre-
sented in Figure 4 [20]. Indeed, this value can be improved with applying our
quantum optimization method; we improve it by 5.61%, from 13.88 to 13.10.

Table 6 demonstrates that using the MPMCT library instead of the con-
ventional NCT library not only improve reversible and quantum costs, as ex-
pected, but also reduces the run times. From Theorem 1, we know that the
number of essential functions to implement a specific target function is always
same that is independent of the used libraries. It means that the time required
for sorting and optimization steps is almost same for both libraries – both
steps have a linear time relationship with the number of essential functions.
However, the time required to implement essential functions is different; it is
smaller for the MPMCT due to having smaller circuits.

Comparing our synthesis algorithm with the optimal/near-optimal ones in
Table 6, we see that our run times are always better at the cost of circuit size.
This is an expected result. Here, an important point is that our algorithm can
effectively work for higher bits. However, the optimal/near-optimal synthesis
method is not practically applicable even for 5 bit circuits. To further justify
the speed of our algorithm, we compare our synthesis method with consider-
ably fast implementation techniques in the literature as follows.

We consider the Transformation-Based Synthesis (TBS) technique pro-
posed by [13]. We compare our method with the TBS method in two differ-
ent ways using the MCT gate library. First, we consider small functions to be
implemented by our method and the TBS method. We generate all functions
up to 5 bits that can be implemented with 2 or 3 essential functions. Then,
we obtain average reversible costs using our method and the TBS method; we
do not consider run times since they are negligibly small. Table 7 shows the
results. Examining the numbers, we can state that our synthesis method per-
forms better compared to the TBS. Our second way of comparison is based
on the benchmarks from Maslov’s website [9]. Results are given in Table 8. It
can be seen that, our synthesis times are always at least hundred times smaller
than those obtained using the TBS approach at the cost of the circuit size.
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Reversible Cost
Proposed Optimal/Near-Optimal

NCT MPMCT NCT [20] MPMCT [18]
26 10
25 31
24 145
23 238
22 682
21 1031
20 1625
19 2720 9
18 3129 11
17 4022 156
16 4383 224
15 4179 582
14 4126 1422
13 3528 2388
12 3104 3690
11 2389 5509
10 1772 6493
9 1203 5906
8 818 5007 577
7 531 3966 10253
6 322 2623 17049 3236
5 181 1400 8921 20480
4 80 623 2780 13282
3 43 232 625 2925
2 18 66 102 369
1 9 12 12 27
0 1 1 1 1

Average 14.82 9.50 5.86 4.57
Reversible Cost

Average 30.82 26.02 13.88 NA
Quantum Cost
Total Time (s) 0.47 0.26 40 NA

TABLE 6
All 3-bit reversible function implementations: the number of implemented functions
with certain reversible costs for the proposed and the optimal/near-optimal algorithms.

20



Bit Size
# of Essential Functions = 2 # of Essential Functions = 3

Proposed TBS [13] Proposed TBS [13]
2 4.00 3.00 5.22 2.44
3 6.69 6.83 8.82 7.64
4 9.47 13.14 15.58 21.86
5 12.20 23.97 21.07 45.68

Total Average 11.86 22.70 16.01 27.43

TABLE 7
Average reversible costs for our method and the TBS method considering all functions
(total of 13799) up to 5 bits to be implemented with 2 and 3 essential functions.

Name Bit
Proposed TBS [13]

Size # of Essential Reversible Quantum Time (s) Reversible Quantum Time (s)

Functions Cost Cost Cost Cost

4b15g 1 4 11 50 238 0.116.10−3 25 103 0.01
4b15g 2 4 12 60 258 0.206.10−3 27 149 0.01
4b15g 3 4 12 50 230 0.113.10−3 30 148 0.01
4b15g 4 4 11 47 215 0.161.10−3 30 152 0.01
4b15g 5 4 10 48 208 0.187.10−3 31 145 0.01

3 17 3 4 16 32 0.068.10−3 12 28 0.07
4 49 4 10 49 197 0.196.10−3 35 205 0.01

nth prime3 inc 3 5 14 42 0.138.10−3 7 17 0.01
nth prime4 inc 4 12 48 256 0.139.10−3 27 171 0.01
nth prime5 inc 5 30 160 1534 0.408.10−3 72 832 0.02

ham3 3 3 9 19 0.141.10−3 6 10 0.01
hwb4 4 8 41 173 0.217.10−3 29 151 0.01
hwb5 5 24 149 1183 0.387.10−3 79 805 0.02

TABLE 8
Benchmark synthesis in comparison with the TBS method.

We also consider the Quantum Multiple-valued Decision Diagrams (QMDD)
approach proposed by [14]. We compare our method with the QMDD method
by using the MPMCT library; we use the same benchmarks as used in Table
8. Results are given in Table 9 that again approves the speed of our algorithm.
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Name Bit
Proposed QMDD [14]

Size # of Essential Reversible Quantum Time (s) Reversible Quantum Time (s)

Functions Cost Cost Cost Cost

4b15g 1 4 11 37 360 0.096 .10−3 21 146 0.03
4b15g 2 4 12 44 400 0.101 .10−3 19 161 0.07
4b15g 3 4 12 36 334 0.191 .10−3 - - -
4b15g 4 4 11 29 294 0.089 .10−3 20 135 0.01
4b15g 5 4 10 28 274 0.090 .10−3 20 112 0.01

3 17 3 4 12 38 0.068 .10−3 7 17 0.04
4 49 4 10 38 284 0.196 .10−3 16 116 0.03

nth prime3 inc 3 5 11 33 0.063 .10−3 - - -
nth prime4 inc 4 12 32 284 0.115 .10−3 16 133 0.01
nth prime5 inc 5 30 116 2318 0.322 .10−3 - - -

ham3 3 3 7 19 0.039 .10−3 7 19 0.01
hwb4 4 8 32 252 0.091 .10−3 21 151 0.01
hwb5 5 24 112 1664 0.230 .10−3 49 806 0.02

TABLE 9
Benchmark synthesis in comparison with the QMDD method. Dashes are put if no
solution is found in 15-minute run.

Note that three functions (4b15g 3, nth prime3 inc, and nth prime4 inc)
could not be synthesized by the QMDD method in a sufficient time duration,
selected as 15 minutes.

In order to evaluate the scalability performance of our method for higher
bits, we consider functions with bit sizes between 1-21. We randomly gen-
erate one million and one thousand functions for bit sizes between 1-15 and
16-21, respectively. Table 10 shows the results. Examining the numbers, we
can see an almost linear relationship between the run times and the number
of truth table rows. This is an expected result since our synthesis approach
directly deals with truth table rows. Therefore, we expect that increasing bit
sizes by 1, beyond 21 bits, results in doubled run times. Using this assump-
tion, average run times for 29-bit and 33-bit functions are achieved below 1
minute and 15 minutes, respectively. Of course, this expectation can not be
directly used for certain types of functions. For instance, if different func-
tions with different bit sizes need same number of essential functions then
corresponding synthesis run times are expected to be close.
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Bit Size 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of 106 103

Functions
Average <0.0001 <0.001 0.002 0.003 0.007 0.010 0.031 0.064 0.140

Time (s)

TABLE 10
Average run times of the proposed algorithm to synthesize functions with different bit
sizes.

6 CONCLUSION

In this paper, we present new synthesis and optimization methods for re-
versible circuits. We propose a fast synthesis algorithm that implements any
given reversible Boolean function using the NCT, the MCT, and the MPMCT
libraries. Instead of an exhaustive search on every given function, our algo-
rithm creates a library of essential functions and performs sorting. We also
propose reversible and quantum cost optimization techniques by considering
adjacent gate pairs. The proposed algorithms are evaluated on benchmark
circuits in comparison with the results in the literature.
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