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A Fast Logic Mapping Algorithm for
Multiple-type-Defect Tolerance in Reconfigurable

Nano-Crossbar Arrays
Onur Tunalı and Mustafa Altun

Abstract—Unlike conventional CMOS circuits, nano-crossbar arrays have considerably high defect rates. Multiple-type defects
randomly occur both on crosspoint switches and wires that substantially complicates the design phase of the circuits with an
elimination of systematic design choices. In order to overcome this problem, a logic mapping methodology is presented in this paper. A
fast heuristic algorithm using pre-mapping logic morphing, defect oriented adaptive sorting, matching with Hadamard multiplication,
and backtracking is introduced. The proposed algorithm covers both crosspoint defects including stuck-open and stuck-closed types
and wire defects including bridging and broken types. Effects of stuck-closed defects, mostly disregarded in the literature, are studied in
depth. In simulations, an industrial benchmark suit is used for obtaining runtime and success rate values of the proposed algorithm in
comparison with those of the existing algorithms in the literature. A relative accuracy evaluation is also given in comparison with exact
mapping techniques. Finally, the steps of the algorithm that are based on pre-mapping and heuristic matching techniques, are
separately justified with experimental results.

Index Terms—Reconfigurable Nano-crossbars; Defect Tolerance; Switching Arrays.
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1 INTRODUCTION

Rapid developments in nanotechnology have made it pos-
sible to produce viable solutions to longstanding integra-
tion and miniaturization issues of electronic circuits [1]
and [2]. Single components such as a diode and a FET
have been successfully built with carbon nanotubes or
silicon nanowires [3]. More importantly, these realizations
lead to programmable circuit architectures based on nano-
crossbar arrays which operate similarly to conventional
programmable logic arrays (PLA’s) [4], [5], [6], and [7]. Two
fully operational implementations as a nanoprocessor and a
finite-state machine are shown to be feasible in [8] and [9].

A nano-crossbar is constructed from two layers of or-
thogonal wires/lines. Every crosspoint/junction acts as a
switching element analogue to a diode or a FET in custom-
ary circuits. A diagram of a nano-crossbar is displayed in
Figure 1 (a). Nano-crossbars are dominantly produced with
bottom-up fabrication techniques that generates uniform
and dense structures. However, higher density comes with
a price: higher defect rates. Predicted maximum defect rates
likely to present in end products deviate between 15% and
20% [10] and [11]. Additionally, post-fabrication defect rates
of components are given as 16% and 7% in [8] and [9].

Since current CMOS based paradigm has very small de-
fect rates in contrast to the nano-crossbars, it is not possible
to practice prevalent design and manufacturing techniques.

• This work is supported by the EU-H2020-RISE project NANOxCOMP
#691178 and the TUBITAK-Career project #113E760.

• Onur Tunali and Mustafa Altun are with the Department of Nanoscience
and Nanoengineering and Department of Electronics and Communication
Engineering Istanbul Technical University, Istanbul, 34469.

• E-mails: onur.tunali, altunmus @ itu.edu.tr

Inputs

O
u

tp
u
ts

Wire/Line Crosspoint

: Stuck-open

: Stuck-closed

Wire breakdown

Wire bridging

 

  

(a) (b)

: Functional Switch

Fig. 1. Nano-crossbar array with (a) switching crosspoints (b) possible
switch and wire defects.

They are not capable of handling high defect rates, espe-
cially for logic mapping processes during the design phase.
Logic mapping of a nano-crossbar is to implement a given
logic function by assigning function elements to inputs and
outputs of a circuit. In conventional architectures, logic map-
ping is a straightforward process due to uniform and defect-
free structures. However, in nano-crossbars high defect rates
substantially complicate the mapping process. Every man-
ufactured crossbar needs to be adjusted individually with
respect to a defect map showing the position of damaged
elements. Motivated by this, we offer an efficient defect
tolerant logic mapping method for nano-crossbars having
diverse defect types such as stuck-closed, stuck-open, wire
breakdown, and wire bridging. These types are illustrated
in Figure 1 (b).

In our mapping methodology, we do not need to comply
with the constraints imposed by multi-level logic design
which limits the input and output assignments and or-
derings. Two-level logic synthesis including AND and OR
planes, is used for nano-crossbars, similar to PLA’s. Fur-
thermore, we only consider the configuration of the AND
plane for defect tolerant logic mapping that is a common
practice in the literature. The reason is that AND planes
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are generally much larger than OR planes; using a reconfig-
urability feature, a single line/wire as an OR plane is even
sufficient to have every output a time, and correspondingly
OR planes can be fabricated in a much more robust fashion
with an aim of having defect-free crosspoints as suggested
in [6]. Indeed, our mapping technique is fully applicable
even for multi-level logic design if we have defect-free OR
planes that allows us to select any ordering for AND planes
without a constraint.

1.1 Previous Works

Our method is defect-aware meaning that it employs de-
fective elements in the mapping process that allows us to
use the crossbar area efficiently. On the other hand, defect-
unaware methods aim to find the largest possible defect-free
sub-crossbar from a defective full-crossbar that results in
much lower yields especially for high defect rates [12] and
[13]. As follows, we elaborate on defect-aware methods.

A common practice for the mapping problem is to use
graph based models. Assignment algorithms including the
Hungarian method [14] exploit a bipartite graph based
model. Graph embedding and maximum bipartite graph
matching are used in [15] and [16], respectively. Another
algorithm uses graph canonization with sorting logic and
crossbar adjacency matrices for the mapping [17]. Different
from these methods, we use adaptive sorting by considering
the dominant defect type. Additionally, we use a back-
tracking process for the mapping that eliminates overheads
of initial graph construction and update that are severe
especially for having multiple defect types.

A different method based on logic function manipula-
tion is presented in [18]. It uses logic hardening and logic
morphing methods during mapping to discard possible
mismatches. Logic hardening benefits from redundancies by
adding extra lines/wires; same function literals (variables
and their negations) are assigned to multiple lines. This
surely increases the chance of matching since having a single
valid matching for each literal line is sufficient for valid
mapping. Nevertheless, its impact on yield is overlooked;
used crossbar sizes are two or three times larger than the
sizes of the required defect-free crossbars. In the experimen-
tal results, we show that using the same crossbar sizes, it
is possible to find a valid mapping without employing the
proposed hardening method unless defect rates reach very
high impractical values. In the same study, logic morphing
is utilized during mapping which puts burden on the al-
gorithm in each and every row/column matching process.
We propose a pre-mapping morphing methodology that
generates a logic function fine-tuned by considering given
defect rates and can be used in all crossbars having the
same or approximate defect rates. Further analysis of both
methods are given in the experimental results.

Another approach is modelling the mapping problem
as a Boolean satisfiability problem (SAT) [19]. Using SAT is
truly inefficient especially for large crossbar sizes. In [17],
both graph based and SAT based algorithms are imple-
mented and it is observed that runtimes of the SAT based
algorithm are always larger, close to one to two order of
magnitude. The same drawback is visible in integer linear
programming based models proposed in [20] and [21].

Apart from all these mentioned issues, underestimating
the effect of stuck-closed defects is a general tendency in
the literature. In [22] and [23], stuck-closed defects are
entirely disregarded in the mapping process. In [24], [16],
and [25], proposed algorithms are in compatible with stuck-
closed defects, but no experimental result is given. In [18]
and [17], although stuck-closed defects are considered in
experimental results, chosen defect rates are rather low
that prevents a comprehensive evaluation. In these studies,
low stuck-closed defect rates are justified by projecting
the underlying physical structure of nano-crossbars that is
apparently not based on experimental data. Furthermore,
all implementations require less than half of the switches
in crossbars which makes the problem positively biased
towards stuck-open defect types. For this reason, proposed
methods concerning only stuck-open or low stuck-closed
defect rates inherently gain an unfair leverage. In this paper,
we propose an adaptive algorithm by equally considering
stuck-closed and stuck-open defects with appointing a dom-
inant character to a chosen defect type.

1.2 Overview and Contributions

Brief summary of this study and main contributions are as
follows.

• We propose a defect-tolerant logic mapping algo-
rithm for reconfigurable nano-crossbar arrays that
uses pre-mapping logic morphing, sorting, and back-
tracking methods.

• We consider multiple-type defects by fine-tuning ac-
cording to the defect type.

• We cover defect rates up to 20% in order to design
a methodology resilient enough for potential fluctu-
ations in the estimated defect rates.

• Our algorithm’s success yield is 100% in most sim-
ulation cases; a failure of our algorithm is a strong
indicator that even with exact algorithms finding a
valid assignment is a rather demanding task.

• Our mapping algorithm works considerably faster
than the existing algorithms in the literature.

The rest of the paper is organized as follows. In Section
2, we define key concepts and techniques. In Section 3,
we present our algorithm that uses pre-mapping morphing,
sorting, and backtracking methods. In Section 4, we present
experimental results and elaborate on them. In Section 5, we
summarize our contributions and discuss future directions.

2 PRELIMINARIES

In this section, we explain key concepts and models used in
this study.

1) Defect types can be categorized under two main
headings: switch and wire/line defects.

a) Switch defects can be either stuck-closed or
stuck-open. A stuck-closed defect makes a
crosspoint switch permanently ON, so it can
be considered as a logic 1. A stuck-open de-
fect makes a crosspoint switch permanently
OFF, so it can be considered as a logic 0.
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Fig. 2. Matrix representations of (a) a logic function (b) a defective nano-
crossbar (c) a matching matrix showing matching possibilities of function
and crossbar matrices.

b) Wire defects have two types that are break-
down and bridging wires. A breakdown de-
fect makes the entire wire unusable, so the
corresponding input/output should be ex-
cluded from the mapping process. A bridg-
ing defect makes two adjacent wires un-
usable, so the corresponding pair of in-
puts/outputs should be excluded from the
mapping process as well.

2) Function matrix (FM) is a representation of a logic
function in sum-of-products form such that the
function’s literals (variables and their negations)
and products are appointed to the matrix columns
and rows, respectively. If a literal occurs in a prod-
uct, it is denoted with +1; otherwise -1 is assigned.
Figure 2 (a) shows an example of an FM.

3) Crossbar matrix (CM) is a representation of a nano-
crossbar such that its elements show either defective
or functional switches. Figure 2 (b) shows a CM that
can be also referred as a defect map.

a) Functional switches are denoted with 0’s that
can be matched with +1’s and -1’s in an FM.

b) Stuck-closed switches are denoted with +1’s
that can only be matched with +1’s in an FM.
A mismatched stuck-closed defect results in
an addition of a literal to the corresponding
product of a given function.

c) Stuck-open switches are denoted with -1’s that
can only be matched with -1’s in an FM. A
mismatched stuck-open defect results in a
removal of a literal from the corresponding
product of a given function.

4) Row matching with Hadamard product starts with
an element-by-element multiplication, called as

TABLE 1
Element Compatibility of a Function Matrix (FM) and a Crossbar Matrix

(CM)
FMik CMik FMik × CMik Matching

+1 +1 +1 Yes
+1 0 0 Yes
-1 0 0 Yes
-1 -1 +1 Yes
+1 -1 -1 No
-1 +1 -1 No

Hadamard multiplication in this paper, similar to an
inner product operation used for vectors. If there is
a negative element of -1 in the resulting matrix then
it means that there is no matching; otherwise there
is a valid matching. Note that functional switches
(denoted with 0’s) in a CM can be always matched
with +1’s or -1’s in an FM. However, +1’s and -1’s
in a CM can only be matched with +1’s and -1’s in
an FM, respectively. This is illustrated in Table 1.
Additionally, Figure 3 shows an example for a valid
matching between two rows of the matrices in case
of having stuck-closed and stuck-open defects. This
concept is proposed in [25].

5) Matching matrix is constructed after performing row
matchings of function and crossbar matrices. This is
similar to a cost matrix used in assignment problems
having an objective of minimizing the total cost.
Figure 2(c) shows a matching matrix of function and
crossbar matrices in Figure 2(a) and (b), respectively.
A 0 and +1 elements of the matrix respectively
show that a matching is possible and there is no
matching. In other words, assignments yielding zero
costs produce a valid mapping. Note that we only
use the matching matrix in the implementation of an
exact algorithm; our proposed algorithm does not
need it.

6) Logic inclusion ratio (IR), is defined as a ratio of the
number of +1’s, corresponding to used switches, to
the total number of elements, +1’s and -1’s, in an
FM. As an example, consider an FM in Figure 2 (a).
Here, the number of +1’s or the number of used
switches is 8, so IR = 8 /20.

7) Dominant defect type is found by comparing the
ratios of the stuck-closed defect rate to IR and the
stuck-open defect rate to (1 - IR). The defect type
with the larger ratio is appointed as dominant for
which it is more difficult to find a matching.

8) Dominant column index is a 2-tuple (a,b) denoting the
number +1’s and -1’s present in a column. The first
element of the tuple (a) represents the dominant
defect type, and sorting of indices is performed
primarily for this element. For example, assuming
a matrix having the following column indices: Col-
umn1 - (4,1), Column2 - (4,4), Column3 - (3,3), Col-
umn4 - (3,5), and Column5 - (2,4). If we sort indices
in descending order then the result is Column2 -
(4,4), Column1 - (4,1), Column4 - (3,5), Column3 -
(3,3), and Column5 - (2,4).
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Fig. 3. Matching two rows with Hadamard multiplication.

3 ALGORITHM

One can consider the mapping problem as an assignment
problem. To find a valid mapping, literals and products
of a logic function should be appointed to inputs and
outputs of a nano-crossbar yielding a correct assignment.
Consider assignments of n literals (x’s and their negations)
and m products (P ’s) to the columns and rows of an FM,
respectively. Also consider a CM with n input columns and
m output rows. An input array IA and an output array
OA are defined such that their ith and jthelements IA[i],
1 ≤ i ≤ n, and OA[j], 1 ≤ j ≤ m, are the assigned literal
and product to the ith crossbar input and the jth crossbar
output, respectively. As an example, if IA[2] = x3 and OA[4]
= P1 then it means that x3 and P1 are assigned to the 2nd

input and the 4th output of the crossbar, respectively. The
proposed algorithm results in input and output arrays that
establish a valid mapping or a correct assignment without
any mismatches. A pseudocode of the algorithm is given in
Algorithm 1.

The first step of the algorithm aims to improve stuck-
closed defect tolerance. In this step, we perform pre-
mapping morphing by adding redundant literals to the
products of a given logic function. Thus, the first step only
deals with the FM without changing its size.

The second step of the algorithm performs sorting both
for the FM and the CM to make them ready for matching.
Rows and columns of the FM are both sorted according
to the number of dominant defects. On the other hand,
rows and columns of the CM are sorted according to the
number of total defects and the dominant column indices,
respectively. The final sorted form of the literals (columns of
the FM) are directly assigned to the IA.

Third and the final step of the algorithm involves row
by row matching with Hadamard multiplication, and back-
tracking in case of having any mismatches. As a result the
OA is constructed. Detailed explanations of these three steps
are given in the following three sub-sections. Additionally, a
performance evaluation of the algorithm is given in the last
sub-section.

3.1 Pre-mapping Logic Morphing

Logic morphing considers equivalent forms of a logic func-
tion that can be exploited to tolerate defects. Considering
that a stuck-closed defect adds a literal to the corresponding
product and a stuck-open defect removes it, defect tolerance
is possible if these additions and removals result in a same
Boolean function as the one initially given. Figure 4 shows
an example. Suppose that f = x1x2+x1x2x4+x1x3 is given
and f

′
= x1x2 + x1x4 + x1x2x3 is obtained after having

Algorithm 1 Heuristic Algorithm
1: Input: FMm×n and CMm×n po, pc
2: Output: IA and OA . input and output arrays
3:
4: FM = PRE-MAPPING MORPHING(IRvalues, FMm×n, f , IRthr)
. Algorithm 2 is called

5:
6: if m < n then
7: FM = FMT . transpose of the matrices
8: CM = CMT

9: end if
10:
11: FM = FUNCTION SORT(FM)
12: IA← column permutation of the FM
13: CM = CROSSBAR SORT(CM)
14: OA = [] . initially no assignment is made to output array
15:
16: for k=1 to m do
17: matching = false;
18: F k← kth row of the FM
19: OA = BACKTRACK UNMATCHED(F k, OA) . output

array is updated with backtracking
20: if ¬ matching then
21: OA = BACKTRACK MATCHED(F k, OA)
22: end if
23: end for
24:
25: function FUNCTION SORT(FM)
26: πrow ← Row permutation sorted according to the dom-

inant defect type
27: πcolumn ← Column permutation sorted according to the

dominant defect type
28: FM← FM[πrow, πcolumn ]
29: end function
30: function CROSSBAR SORT(CM)
31: πrow ← Row permutation sorted according to the num-

ber of total defects
32: πcolumn ← Column permutation sorted according to the

dominant column indices
33: CM← CM[πrow, πcolumn ]
34: end function
35:
36: function BACKTRACK UNMATCHED(F k, OA)
37: for j=1 to m and OA[j] = ∅ do
38: C j← jth row of the CM
39: if F k .* C j ≥ 0 then . Hadamard multiplication
40: OA[j] = k . assigning process
41: matching = true;
42: break
43: end if
44: end for
45: end function
46:
47: function BACKTRACK MATCHED(F k, OA)
48: for j=1 to m and OA[j] 6= ∅ do
49: C j← jth row of the CM
50: if F k .* C j ≥ 0 then . Hadamard multiplication
51: F OA[j]← OA[j]th row of the FM
52: OA = BACKTRACK UNMATCHHED(F OA[j], OA)
53: if matching then
54: OA[j] = k . assigning process
55: break
56: end if
57: end if
58: end for
59: end function
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Fig. 4. Mismatches due to stuck-closed and stuck-open defects. Al-
though there are two mismatches, the resulted function f

′
equals to

a given function f .

defects. Here, a stuck-closed defect results in an addition of
x2, and a stuck-open defect results in a removal of x2. Since
the resulted function f

′
is still equal the given function f ,

tolerance is achieved.
Our logic morphing technique aims to improve defect

tolerance of only stuck-closed defects by adding redundant
literals to products. Our motivation is based on two obser-
vations. First, function matrices always have IR values less
than 50%, so stuck-open defects are much more likely to be
tolerated. Note that to implement a logic function, a nano-
crossbar uses literals as input lines. Since rows in an FM
represent products of a logic function, maximum IR value
of a row is 50% because both a variable and its negation can
not be present in a product. Second observation is that logic
functions in benchmarks are mostly given in minimal forms,
so there is very limited chance of finding a redundant literal
to be removed. Experimental results given in Section 4 also
support our claims.

We apply our morphing technique before the mapping
process, so it is a one-time operation. Additionally, we do
not apply morphing to all products/rows. Adding redun-
dant literals surely improves stuck-closed defect tolerance,
but at the same time it makes harder to tolerate stuck-open
defects. To determine which rows needing morphing, we
define IRthr, a threshold value for IR. If an IR value of a
row is under IRthr, we apply morphing; otherwise we do
not apply. Indeed, IRthr corresponds to a case in which the
matching probability of an FM row (pm) is maximum. Here,
the best-case scenario for mapping is IR=IRthr for each of
the rows of the FM, and our purpose is getting close to this
best-case by logic morphing.

Consider an FM with n inputs. Suppose that a row of the
FM has X number of +1’s where 1 ≤ X ≤ n

2 . Additionally,
po, pc, and pf represent rates of stuck-open defects, stuck-
closed defects, and functional switches, respectively. Note
that (po + pc + pf ) = 1. As a result, we derive the following
equations:

pm(X) =

X∑
k=0

n−X∑
t=0

n!

k! (n− k − t)! t!
pkcp

n−k−t
f pto (1)

max
(
pm(X = 1), pm(X = 2), ..., pm(X = Xthr), ...,

pm(X =
n

2
)
)
= pm(X = Xthr)

(2)

IRthr =
Xthr

n
(3)

Equation (1) is used to find the matching probability of
a row considering the all permutations. In deriving pm, first
we find the matching probability of a row with pkcp

n−k−t
f pto

considering the functional and defective elements. Then we
consider all different permutations of the row elements to
make them matched that is in compatible with our mapping
algorithm that performs sorting for this purpose. If a row of
the CM has smaller number of +1’s and -1’s than a row of the
FM does, then these two rows can be matched by applying
proper permutations or sortings. Note that 0’s in a CM row
can be matched both with +1’s and -1’s in an FM row. Upper
limits X and n−X in Equation (1) ensure that this matching
condition is met. The coefficient n!

k! (n−k−t)! t! in Equation (1)
considers different arrangements of a CM row respectively
having k, (n − k − t), and t number of +1’s , 0’s, and -1’s
satisfying the matching condition.

Equation (2) is used to find X = Xthr value that
maximizes the matching probability of an FM row. After
finding Xthr, we can determine IRthr defined in Equation
(3). As we previously state, we apply morphing to the CM
rows having smaller IR values than IRthr. We elucidate this
with the following example.

Example 1: Consider a given logic function
f = x1x2x6 + x1x3x4x5 + x2x5x6 + x2x3 x5x6 + x2x4x5x6

having 5 products and 12 literals (x’s and their negations).
Accordingly, the FM should have 5 rows and 12 columns,
so every product is denoted with a row having n = 12
elements. Suppose that po = 4% and pc = 12%. As a result,
Equation (1) results in

pm(X) =

X∑
k=0

12−X∑
t=0

12!

k! (12− k − t)! t!
(0.12)k(0.84)n−k−t(0.04)t

.
Using Equation (2), we calculate the pm(X) values as
follows:

pm(1) = 84%, pm(2) = 97%, pm(3) = 99.7%
pm(4) = 99.8%, pm(5) = 97%, pm(6) = 78%,

and finally using Equation (3), we decide Xthr = 4
and IRthr = 4

12 . It means that a row having a smaller IR
value than 4

12 needs morphing. Let’s check the IR values of
the rows denoting the products:

P1 = x1x2x6 has 3 literals, so the corresponding FM
row has 3 +1’s with IR = 3

12 < IRthr. Therefore, it needs to
be morphed.

P2 = x1x3x4x5 has 4 literals, so the corresponding
FM row has 4 +1’s with IR = 4

12 = IRthr. Therefore,
morphing is not needed.
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P3 = x2x5x6 has 3 literals, so the corresponding FM
row has 3 +1’s with IR= 3

12 < IRthr. Therefore, it needs to
be morphed.

P4 = x2x3 x5x6 has 4 literals, so the corresponding
FM row has 4 +1’s with IR = 4

12 = IRthr. Therefore,
morphing is not needed.

P5 = x2x4x5x6 has 4 literals, so the corresponding
FM row has 4 +1’s with IR = 4

12 = IRthr. Therefore,
morphing is not needed.

After determining which rows need to be morphed, we
start with the row having the smallest IR and its correspond-
ing product. In order to increase the IR value of the row, new
redundant literals need to be added to the product such
that the resulted new function should equal to the given
function. Another restriction is that we can only add literals
found in the given function to avoid adding extra wire/line
resulting in a larger array.

First, we add maximum number of literals to reach IRthr

and then we check if the new function equals to the given
function. If the equivalence is satisfied, the given function
is updated with the new product; otherwise we remove
a literal and check the equivalence again. This process
is continued until all of the products to be morphed are
considered. We elucidate this with the following example.

Example 2: Consider a same logic function used in the
previous example: f = x1x2x6 + x1x3x4x5 + x2x5x6 +
x2x3 x5x6 + x2x4x5x6. From the previous example, we
know that P1 and P3 need to be morphed.

P1 = x1x2x6 has IR = 3
12 , so only one literal can

be added because IRthr = 4
12 . Candidate literals are

x3, x4, x5, x3, x4, and x5. After checking all these
options, we find that only P1x5 satisfies the equivalence.
After updating the given function, we continue with P3.

P3 = x2x5x6 has IR = 3
12 , so only one literal can be

added as well. Candidate literals are x1, x3, x4, x1, x3,and
x4. After checking all these options, we find that only P3x3

satisfies the equivalence. We update our the given function
again and stop. As a result, the final function is f =
x1x2x5x6+x1x3x4x5+x2x3x5x6+x2x3 x5x6+x2x4x5x6.

A pseudocode of our complete morphing algorithm is
given in Algorithm 2.

Note that the existing morphing methods are utilized
during the mapping process and check the equivalence of a
given logic function and the crossbar realization of the same
logic function. Therefore they should be performed in every
step of the process; they are highly algorithm dependent.
On the contrary, our approach performs the logic morphing
process only one time and it is algorithm independent.
Morphed or manipulated logic functions found with our
method can be fed to any other algorithm as long as defect
parameters satisfy required conditions.

Algorithm 2 Pre-mapping Morphing
1: Input: Row IRvalues of FMm×n, logic function (f) and IRthr

2: Output: Morphed FMm×n

3: morphedproducts =[]
4:
5: for k = 1 to m do . m : number of products
6: IR[k]← IRvalues[k] . IR value of kth row
7: if IR[k] < IRthr then
8: morphedproducts[k] = k
9: end if

10: end for
11:
12: morphedproducts[k] ← morphedproducts[k] sorted with

IR[k]’s in ascending order
13:
14: for k = morphedproducts do
15: candidateproducts = generate products (IRthr) .

products with IRthr

16: for t = candidateproducts do
17: Pk = candidateproducts[t]
18: f∗ = f with a candidateproduct (Pk)
19: if f∗ = f then
20: f = f∗

21: break
22: end if
23: end for
24: end for
25: FM = generate functionmatrix (f ) . FM of the new f

3.2 Function and Crossbar Matrix Sorting
For the matrices to be sorted, the number of columns is
always less than or equal to the number of rows. In case,
an FM or a CM does not satisfy this, it is transposed.
The reason of this operation is to increase the matching
probability of two rows. Indeed, for almost all benchmark
circuits, transpose operation is not needed since the circuits
generally have more products than literals.

The purpose of sorting is to decrease the chance of
probable mismatches seen in the next step of the algorithm.
We apply different sorting methods to the FM and the CM
that is originated due to the different element types found in
these matrices. The FM and the CM have two {+1, -1} and
three {+1, 0, -1} distinct elements, respectively. Therefore,
while sorting with one type of element is adequate for the
FM, two elements should be considered for the CM.

First, we apply sorting to the rows of the matrices.
For the FM, they are sorted according to the number of
dominant defect type in descending order. Since it is harder
to match dominant defects, the row having the most is
assigned first. As for the CM, rows are sorted with respect
to the number of defective elements in descending order as
well. Thus, the most defective row or the row having the
least number of functional switches is placed at the top of
the CM, so the most problematic rows have a priority in the
matching process.

Second, we apply sorting to the columns of the matrices.
We sort the columns of the FM according to the number of
dominant defects in descending order. Figure 5(a) shows the
sorted final FM. Columns of the CM are sorted according
to the dominant column indices in descending order. Re-
call that first index/2-tuple element represents the number
dominant defects. Figure 5(b) shows our column sorting
method. Note that although the third column of the given
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CM with an index of (0,2) has more defective elements
than the sixth column with an index of (1,0), (0,2) comes
after (1,0) after sorting is performed. The reason behind the
dominant column index based sorting is to increase row
matching probabilities. Note that we apply different sorting
techniques for the rows and the columns of the CM since our
matching method, applied in the next step of the algorithm,
is a one dimensional row matching instead of a conventional
two dimensional matrix matching.

Another important aspect of our sorting method is that,
a dominant defect type is determined not only considering
defect rates, but as well as an IR value of a given function as
defined in Section 2. It means that a dominant defect type
does not necessarily have an higher defect rate. The reason
behind is that matching probabilities of matrices are directly
affected by defect rates and IR values. Consider an FM with
a given IR and a CM with given defect rates. Matching
probability of stuck-closed defects is negatively correlated
with the stuck-closed defect rate, and positively correlated
with the IR. Similarly, matching probability for stuck-open
defects has a negative and a positive correlation with the
stuck-open defect rate and the (1-IR), respectively.

Finally, after assigning the sorted form of the columns of
the FM to the IA, the algorithm proceeds to the next step.

3.3 Matching and Backtracking
The algorithm performs row by row matching between the
sorted matrices advancing from top to bottom. During the
process, matched rows of the CM are traced with an array
showing which rows of the FM are assigned to them. At first,
the matching searches only unmatched rows. If an FM row
can not be matched with the unmatched rows of the CM,
then backtracking starts by considering the matched rows
of the CM from top to bottom. If a matching is found, the
previously assigned row of the FM is checked once whether
it can be assigned to an unmatched row of the CM. If this
check results in a mismatch then the algorithm continues
with the next matched row of the CM and repeats the same
process to find a valid matching. This failsafe condition
does prevent the algorithm to stop prematurely. This is also
demonstrated in Section 4.

This final step of the algorithm is illustrated in Figure 6.
Final assignments of the IA and the OA are also given in the
figure.

3.4 Algorithm Evaluation
Consider a given function with m products and n literals
resulting in an FM with a size of m × n. The fist step of
the algorithm finds equivalent products of a logic function
with higher IR values. For every product, either a literal
can be added or removed. Since there are n literals, total
possibilities are 3n in the worst-case scenario. This process
is performed for every product which makes the number
of operations m.3n. As a result, we have an exponential
time complexity O(3n). However, because this method is
executed only once and is applied to a small portion of the
products, overhead runtime cost is not dominant consider-
ing the other steps of the algorithm.

Following steps of the algorithm aim to find valid input
and output assignments. Solution space of the problem as
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The 7th row is assigned to the one of the matched rows

Row by row matching is completed and OA is constructed

IA =  [ x5   x3  x2 x1 x6 x4 ] 

OA =  [ P4  P8 P1  P7 P5  P6  P3 P2 ]
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Fig. 6. Row by row matching and backtracking of the FM and the CM.

the total number of input and output assignments is m!.n!
which is computationally intractable for large matrices.
However, as observed in [24] and [13] if an initial assign-
ment is made for inputs with performing a one dimensional
matching, for our case row by row matching, then the
computational load drastically decreases.

In order to generate an initial input assignment, we use
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TABLE 2
Success rate (%) and Runtime Values (in seconds) of the Simsir’ algorithm [24], KNS-2DS [17], Yuan’s algorithm [16] and the Proposed Algorithm

(PA) for 1.5 Larger Crossbar Sizes with Different Defect Rates.

Circuit Size IR
po = 12%, pc = 4%, pw = 4% po = 8%, pc = 8%, pw = 4% po = 4%, pc = 12%, pw = 4%

Psucc (%) Time (s) Psucc (%) Time (s) Psucc (%) Time (s)

[24] [17] [16] PA [24] [17] [16] PA [24] [17] [16] PA [24] [17] [16] PA [24] [17] [16] PA [24] [17] [16] PA

5xp1 75 x 14 28% 100 100 100 100 3.87 0.02 0.018 0.01 - 100 100 100 >60 0.03 0.021 0.01 - 34 100 100 >60 0.96 0.017 0.04

inc 34 x 14 39% 100 100 100 100 0.42 0.043 0.000 0.000 88 74 100 100 1.57 0.13 0.003 0.001 72 34 100 100 1.81 0.31 0.002 0.001

clip 167 x 18 29% - 100 100 100 >60 0.12 0.155 0.01 - 94 100 100 >60 0.52 0.167 0.03 - 2 100 100 >60 5.84 0.15 0.091

misex1 32 x 16 24% 28 83 100 100 2.50 0.09 0.002 0.001 0 8 100 94 2.61 0.39 0.083 0.02 0 0 82 27 2.35 0.41 3.15 0.07

misex2 50 x 29 16% 0 0 100 86 11.36 0.63 0.266 0.03 0 0 0 0 8.38 0.66 9.93 0.06 0 0 0 0 7.52 0.68 8.81 0.093

sqrt8 40 x 16 25% 48 100 100 100 4.40 0.01 0.0041 0.009 0 42 100 100 5.00 0.33 0.007 0.02 0 0 99 90 4.42 0.59 0.75 0.54

9sym 87 x 18 33% 100 100 100 100 14.74 0.03 0.028 0.001 - 96 100 100 >60 0.11 0.027 0.002 - 26 100 100 >60 1.57 0.026 0.003

bw 65 x 10 35% 100 100 100 100 12.57 0.01 0.024 0.007 - 100 100 100 >60 0.021 0.023 0.008 - 100 100 100 >60 0.023 0.027 0.032

rd53 32 x 10 45% 100 100 100 100 0.01 0.008 0.002 0.001 100 100 100 100 0.14 0.006 0.002 0.000 100 100 100 100 0.25 0.006 0.002 0.001

rd73 141 x 14 42% - 100 100 100 >60 0.07 0.093 0.002 - 100 100 100 >60 0.082 0.12 0.003 - 100 100 100 >60 0.07 0.1 0.006

sao2 58 x 20 38% 0 96 100 100 11.02 0.06 0.015 0.01 0 61 100 100 10.08 0.08 0.056 0.06 0 0 100 77 15.46 1.04 0.61 0.17

table5 158 x 34 36% - 0 100 92 >60 6.83 0.485 0.01 - 0 0 0 >60 6.70 11.57 0.092 - - 0 0 >60 6.89 11.21 0.58

t481 481 x 32 30% - 77 96 100 >60 5.62 4.176 0.05 - - - 0 >60 5.78 >60 0.27 - 0 - - >60 5.92 >60 0.42

(> 60) means algorithm is not able to find a valid mapping under our runtime constraint of 60 seconds. For this reason we use - to denote an unknown success rate.

matrix sorting according to row and column elements. For
a given FMm×n, the total number of elements need to
be visited is m.n. After we construct the arrays showing
the number of row and column elements, a quicksort of
arrays yields m. logm and n. log n operations which makes
the worst-case operation cost of this assignment process as
m.n +m. logm + n. log n resulting in a time complexity of
O(m.n).

After the initial assignment is determined, we match
matrices row by row with backtracking. Every row has
n elements, so Hadamard multiplication and checking for
mismatches performs n + n = 2n operations. Additionally,
each function row is matched with m crossbar rows, so
2n.m operations are needed. In case of backtracking with
checking matched rows, m.m rows also need to be checked
that results in 2n.(m+m2) operations. For all of the matrix
rows there are m.2n.(m+m2) operations in the worst-case
scenario, so a time complexity becomes O(n.m3).

4 EXPERIMENTAL RESULTS

In this section, we give experimental results of the proposed
algorithm (PA) in comparison with the Simsir’s algorithm
using partial graph construction and maximum bipartite
mathcing [24], k-neighbour sort with 2-dimensional sort al-
gorithm (KNS-2DS) [17], Yuan’s algorithm using a memetic
fitness approximation during matching process [16], and
an exact algorithm using the Hungarian method in [14].
To our knowledge, KNS-2DS is the only algorithm that
tailors itself according to the effects of multiple defect types.
However, we also include the rest of the existing methods
in compatible with multiple-type defects.

We prefer the Hungarian method as an exact algorithm
due to its high efficiency as well as its similarities with the
PA regarding the used matrix based models which yields a
fair comparison. We also evaluate our morphing technique
in comparison with the hardening and morphing techniques
proposed in [18].

We use MATLABTM to implement all of these algorithms
and techniques with calling the Berkeley tool ABC [26].
We use standard benchmark circuits presented in [27]. All
experiments run on a 3.4GHz Intel Core i7 CPU (only single
core used) with 8GB memory. All the benchmark func-
tions used in the simulations and the source code of pro-
posed algorithm with supporting material are available at
http://www.ecc.itu.edu.tr/images/f/fb/TETC Multiple
Type Defect Tolerance Codes.rar

4.1 The PA versus the Existing Methods

We use three different defect types and generate 200 random
crossbar matrices for each mapping to prevent runtime and
success rate (Psucc) fluctuations. In addition, we limit the
runtime as 60 seconds for each sample of 200 cases. We
use 1.5 larger crossbar sizes than the optimal sizes that is
a common practice in the literature [17], [18], [21], and [16].
We choose wire breakdown and bridging defect rates as 2%,
so the total wire defect rate is Pw = 4%.
Defect rates used in our simulations are listed as follows.

• Stuck-open po = 12%, stuck-closed pc = 4%, and
pw = 4%.

• stuck-open po = 8%, stuck-closed pc = 8%, and
pw = 4%.

• Stuck-open po = 4%, stuck-closed pc = 12%, and
pw = 4%.

The reason behind using different defect rates is to show
the adapting performance of the algorithms for different
defect orientations. In Table 2, comparison of the all al-
gorithms and the PA is given. Considering the runtime
values, the PA always yields best results. The slowest one
is Simsir’s algorithm due to its constant call of bipartite
maximum matching routine. As for the Psucc values, the
PA is the best one; Yuan’s algorithm is better in certain
cases at the cost of high runtime values. In short, trade-
off between runtime and success rate is directly related to
the number of column permutations tried for mapping. The
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TABLE 3
Succes Rate and Runtime Comparison of the PA and the Exact

Algorithm.

po = 12%, pc = 4%, pw = 4%

Circuit Size IR
PA Exact Algorithm

Psucc Time Psucc Time
5xp1 75 x 14 28% 100% 0.01 100% 0.16
inc 34 x 14 39% 100% 0.00 100% 0.012
clip 167 x 18 29% 100% 0.01 100% 1.67

misex1 32 x 16 24% 100% 0.001 100% 0.017
misex2 50 x 29 16% 86% 0.03 100% 0.021
sqrt8 40 x 16 25% 100% 0.009 100% 0.025
9sym 87 x 18 33% 100% 0.001 100% 0.03
bw 65 x 10 35% 100% 0.007 100% 0.108

rd53 32 x 10 45% 100% 0.001 100% 0.009
rd73 141 x 14 42% 100% 0.002 100% 1.24
sao2 58 x 19 38% 100% 0.01 100% 0.053

table5 158 x 34 36% 92% 0.01 98% 0.52
t481 481 x 32 30% 100% 0.05 100% 53.08

PA finds a single column permutation (initial assignment)
using sorting methods and the Yuan’s algorithm tests the
performance of many column permutations according to an
objective function. For this reason, while runtime increases,
success rate improves as well. Similarly, if multiple column
permutations were used in the PA, its success rate could
be improved. Another point is that for benchmarks misex2,
table5, and t481, all algorithms fail when po ≤ pc. The
common thing for these benchmarks is their low IR values
that severely complicates stuck-closed defect tolerance.

4.2 The PA versus the Exact Algorithm
To find a valid mapping, we make an initial assignment to
inputs of a crossbar and progressively construct an output
assignment with row by row matching and backtracking.
In this section, we evaluate our approach of finding the
output assignment in comparison with an exact algorithm
that constructs a matching matrix, previously defined in
Section 2, and uses the Hungarian method to minimize the
assignment cost which needs to be zero for a valid mapping.

Table 3 gives the results. The PA is able to maintain the
same success rate as the exact algorithm for almost all cases.
Only, for the benchmark misex2 and table 5, there is a 14%
and 8% success rate difference respectively. In terms of run-
time values, our algorithm overwhelms the exact algorithm
as expectedly. Additionally, Figure 7 gives comparisons of
the algorithms in terms of success rate and runtime. For
small logic functions, runtime difference is between 10 and
100 times. However as the size of a given function increases,
runtime of the exact algorithm rapidly reaches very high
values.

Note that both the PA and the exact algorithm operate
with only one initial assignment or column permutation as
opposed to the Yuan’s algorithm that uses many different
permutations. Therefore, here our comparison is fair for
evaluation of the algorithms’ matching performances.

4.3 Evaluation of the Morphing
We first justify that why our algorithm does not use logic
hardening, but only use logic morphing. A hardening
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Fig. 7. Comparison of the PA and the exact algorithm showing (a)
successful mappings found (b) runtimes when Po = 12%, Pc = 4%,
and Pw = 4%.

method improves tolerance of stuck-open defects by adding
redundant literal lines that results in larger crossbar sizes
[18].

In Figure 8, we give results for the benchmarks misex1
and rd53 since they are thoroughly examined in [18]. We
compare the hardening technique proposed in [18] and our
PA with and without applying hardening. To effectively
show the benefits of hardening, we select much higher rates
for stuck-open defects than those for stuck-closed defects;
stuck-open and the stuck-closed rates are respectively 90%
and 10% of the defect probability. For example, 0.5 defect
probability yields po = 45% and pc = 5%. Crossbars used in
all mapping trials have 2 and 3 times larger row and column
sizes, respectively as done in [18]. With an advantage of
using these large sizes, the PA is able to find a valid mapping
without a need of hardening for defect probabilities under
50%. This is shown in Figure 8. Benefits of the hardening
method is only apparent in case defect rates are higher than
50%. Nonetheless, it is reasonable to assume that defect rates
are unlikely to be that high.

We also evaluate our pre-mapping morphing technique
used in the PA in comparison with the PA without morphing
and the tailored PA performing morphing during mapping.
We select the benchmarks misex1 and sqrt8 having low IR
values in order to see the effectiveness of morphing. Table
4 shows the results. Examining the numbers, we see that
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TABLE 4
Success rate (%) and Runtime Results of Misex1 and Sqrt8 using the Tailored PA Performing Morphing During Mapping, the PA without Morphing,

and the PA using a Pre-mapping Morphing

po pc

Morphing during Mapping PA without Morphing PA
misex1 sqrt8 misex1 sqrt8 misex1 sqrt8

Psucc Time Psucc Time Psucc Time Psucc Time Psucc Time Psucc Time
10% 4% 100% 0.11 100% 0.37 100% 0.001 100% 0.001 100% 0.001 100% 0.01
10% 6% 98% 0.16 100% 0.53 100% 0.001 100% 0.001 100% 0.008 100% 0.015
10% 8% 88% 0.25 94% 0.83 98% 0.001 98% 0.001 96% 0.023 100% 0.027
10% 10% 52% 0.30 76% 1.04 59% 0.001 86% 0.007 74% 0.023 95% 0.028
10% 12% 4% 0.33 30% 1.45 14% 0.007 44% 0.008 22% 0.06 57% 0.035
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Fig. 8. Success rates of the PA with and without hardening, and the
hardening method in [18] for (a) misex1 (b ) rd53 benchmark circuits.

our pre-mapping morphing technique increases the success
rates up to 30%. Additionally, runtime overhead of our
pre-mapping morphing is better than that of the during-
mapping morphing. While our pre-mapping morphing is a
one-time operation that can be used for different crossbars,
applying morphing during mapping needs to be run for
every different crossbar.

In addition, we evaluate our threshold values used dur-
ing the morphing process. We choose 4 benchmark functions
with low IR values such as con1, sqrt8, misex1, and sao2, and
execute the algorithm with different threshold values. It is
clear from Figure 9 (a) success rate of the algorithm stabilize
after our threshold, however choosing a larger threshold
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Fig. 9. Success and runtime values of the PA with different threshold
values, given in (a) and (b), respectively. Our threshold values (Xthr’s)
found with the proposed equations are given as bubbles on the line.

increases the runtime drastically as shown Figure 9 (b).
This approves our technique aiming to find an optimum
threshold values (Xthr) for maximum matching probability.

4.4 Unsuccessful Cases and Underlying Cause
Experimental results indicate that for certain benchmark cir-
cuits with high stuck-closed defects rates, the PA is not able
to find a valid assignment. In order to determine whether
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this phenomena is particular to the PA or originated from
the difficulty of mapping for these specific cases, we utilize
the exact algorithm. Although our iterations reach as high
as 108 different input assignments, the exact algorithm is
not able to produce a single assignment with a zero cost or
a valid mapping.

When we analyze matching matrices of trials, we realize
that some function rows have no valid matching with any
of the rows in the crossbar. Although input assignment iter-
ations are increased to construct sparser matching matrices
meaning more rows can be matched with each other, it is
also not possible to find a valid mapping with the exact
method. We believe that this is the main reason why the
PA and the rest of the algorithms yield 0% success rate for
benchmark circuits such as misex2, table5, and t481.

5 CONCLUSION

In this paper, we present a fast heuristic algorithm using
pre-mapping morphing, defect oriented sorting, row by
row matching, and backtracking for defect tolerant logic
mapping of nano-crossbars. We show that our algorithm
covers both crosspoint defects including stuck-open and
stuck-closed types and wire defects including bridging and
broken types. Effectiveness of the algorithm is demon-
strated through extensive simulation results covering a wide
range of comparison with existing methods using industry
standard benchmarks. Especially, it is shown that our al-
gorithm independent pre-mapping morphing considerably
improves the tolerance of stuck-closed defects.

In future work, we plan to extend our studies to cover
both variation and defect characteristics of nano-crossbar
arrays. Another future direction is developing the proposed
techniques for memristive and resistive crossbars which are
very similar to our current architecture interest.
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