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ABSTRACT
In this study, we perform logic synthesis and area optimization of approximate ripple-carry adders and
Wallace-tree multipliers with a given error constraint. We first implement approximate 1-bit adders
having different error rates as building blocks of the proposed multi-bit adders and multipliers. In
implementations, we exploit offsetting errors in carry and sum outputs of the adders. Also we take
into account the probability of occurrence of input assignments. Using the implemented 1-bit adders,
we systematically synthesize multi-bit adders and multipliers proceeding from the least to the most
significant bits. We design the ripple-carry adders such that their successive 1-bit approximate adders
cannot produce build-up errors. We design the Wallace-tree multipliers by considering the fact that
their building blocks of 1-bit adders might have different probabilities of occurrence for different
input assignments. As a result, the proposed adders and multipliers, implemented using the Cadence
Genus tool with TSMC 0 18µm CMOS technology, offer in average a 25% smaller circuit area, and
correspondingly power consumption, compared to the circuits proposed in the literature by satisfying
the same error constraint. We also evaluate the adders andmultipliers in image processing applications
as well as within artificial neural networks.

1. Introduction
Approximate computing is used for area, power, and en-

ergy improvement, targeting applications not strictly requir-
ing high accuracy including image processing and learning
applications. Since arithmetic operations are the core of these
applications, designing approximate adders and multipliers
is crucial and extensively studied in the literature, especially
in the last decade [1, 5, 6, 7, 8, 9, 13, 16, 18, 19, 28]. This
study also focuses on the implementation of approximate
arithmetic blocks in logic and circuit design levels. Consid-
ering their area and power efficiency among different adder
andmultiplier architectures, ripple-carry adders andWallace-
tree multipliers are selected for synthesis with an aim of op-
timizing the circuit area to satisfy a given error constraint.

Examining the related studies on approximate ripple-
carry adders, we see a common tendency of assuming that
the more erroneous outputs (Sum and Carry) we have, the
less accurate our designs are [1, 6, 28]. This assumption ne-
glects offsetting errors, errors in different outputs fully or
partially cancelling each other. Motivated by this, we first
design 1-bit full adders having offsetting errors in “Sum"
and “Carry". We show that adding an error to an output
might result in better accuracy and smaller area. Similarly
in higher level, we design the ripple-carry adder such that
two successive approximate 1-bit full adders cannot produce
build-up errors or errors in different outputs cancelling each
other. For example, if a 1-bit adder has an erroneous output
of logic 1, expected as logic 0, we guarantee that the neigh-
bour adder’s output can be error free or it produces error with
a logic 0 output, expected as logic 1.

⋆This work is supported by the TUBITAK-1001 project #117E078.
nojehdeh@itu.edu.tr (M. Esmali Nojehdeh); altunmus@itu.edu.tr

(M. Altun)

In the literature, approximate ripple-carry adders are de-
signed in two ways: 1) implementing 1-bit full adders in
transistor level and then constructing a ripple-carry adder;
2) directly implementing a ripple-carry adder in logic level
with synthesis tools. For the first way, approximate 1-bit
adders are commonly derived from conventionalmirror adders
andXOR/XNORbased adders, by removing transistors and/or
replacing some parts of the adders with smaller circuitries
[1, 5, 6, 28]. In these studies, error dependencies in terms of
offsetting and build-up errors are not considered. Also the
implementation technique is not systematic, mostly based on
the designer’s experience and intuition. In the second way,
the introduced tools are general purpose tools, not specifi-
cally for ripple-carry adders [3, 17, 23, 24, 25, 27, 30]. Also
since finding near-optimal solutions needs much more time
compared to the conventional non-approximate synthesis
tools, these tools generally suffer from large runtimes. For
instance, themethod in [25] implements a 32-bit ripple-carry
adder with 10% area saving, whereas truncation and the pro-
posedmethods yield 25% and 32% area savings, respectively
for the same worst-case error value. If an average error value
was used, then the results would be even worse with imprac-
tically high runtimes.

Motivated by the drawbacks of transistor and logic level
approximation methods, we propose a systematic synthesis
technique based on a new error calculationmethod. Our syn-
thesis method is particularly for adders; it is fast, accurate,
and scalable.

Along with ripple-carry adders, we implement Wallace-
tree multipliers that consist of three stages: partial product
generation, accumulation of partial product, and adding fi-
nal results. In [15] approximate 2 × 2 multiplier is intro-
duced to generate partial products and exact adders for the
accumulation tree. In [16], a new approximate adder is rec-
ommended for product accumulation where accurate adders
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are exploited to recover error in final results. To speed up
product accumulation and reduce the tree size, compressors
are used in [16, 26]. Two approximate 4-2 compressor is
proposed in [18] and relatively four different multipliers are
introduced. Also by modifying this compressor with error
recovery, a new multiplier is proposed in [7]. Additionally,
in some studies truncation and rounding methods are ex-
ploited in the least significant columns of partial products
[14, 22]. In [4], a bit-width awaremultiplication algorithm is
proposed with a carry-in prediction technique that improves
the critical path of the multiplier. Also in [19], different ap-
proximate adders and multipliers library is introduced. All
of these circuits are derived from conventional multipliers
and adders based on multi-objective Cartesian genetic pro-
gramming (CGP). Additionally, reconfigurable approximate
arithmetic units are also proposed. Reconfiguration-oriented
adder is proposed in [29] ; bit wise multipliers are proposed
in [10, 20]where detecting leading one block provides smaller
cost in terms of area and power for targeted error values. Al-
though reconfigurable circuits are adjustable for different er-
ror values, they need extra control blocks that increases their
area and power consumption. Since we focus on achieving
minimum area and power as opposed to reconfigurability,
these studies are not considered in this work.

Different from the mentioned studies, we propose ap-
proximate full-adder and half-adder in both accumulation of
partial product and in final result summation. Our design
strategy is based on the occurrence probabilities of input as-
signments of 1-bit adders. We assign higher error rates for
the input assignments having lower probabilities. As an ex-
ample, consider a circuit having two inputs, and consider
two different scenarios. For the first one, both inputs take the
value of logic 1 and 0 with equal probabilities of 1/2. For the
second scenario, both inputs take the value of logic 1 and 0
with probabilities of 1/4 and 3/4, respectively. We comment
that for these two scenarios, area optimization techniques for
a given error constraint should be different. While, an error
corresponding to each input assignment equally contributes
to the total error for the first scenario, this is different for the
second one. Therefore, in our example we have more erro-
neous outputs corresponding to the input assignments with
1/4 probabilities than those for 3/4 probabilities. This leads
us to synthesize full and half adders as the building blocks
of the Wallace-tree multiplier based on the probability of in-
puts. To our knowledge our synthesis technique offers the
smallest area in average compared to those in the literature,
by satisfying the same error constraint. Also, our systematic
synthesis technique is quite fast yet accurate in terms of error
calculations.

The paper is organized as follows. In Section 2 and Sec-
tion 3, we present our approximate synthesis methodologies
for ripple-carry adders and Wallace-tree multipliers, respec-
tively. We perform area optimization satisfying a given error
objective. In Section 4, we present experimental results to
compare the proposed adders and multipliers with their pre-
decessors. We also evaluate them in image processing ap-
plications as well as in a learning application using a fully-

connected neural network. Finally in Section 5, we present
conclusions and discuss future directions.

2. Ripple-carry adder design
Our synthesis techniques consists of two steps, given in

the following two subsections. In the first step, we create
a library of approximate 1-bit full adders with different er-
ror rates. In the second step, we systematically synthesize
an n-bit ripple-carry adder from the least to the most signifi-
cant bits by using the obtained library; the adder satisfies the
given error constraint with minimum area.
2.1. 1-bit full adder design

A 1-bit full adder has three binary inputs: A, B and C
(Carry or Cin), and two binary outputs Cout and Sum that
comprises a two digit binary number. We represent the ex-
pected and the real decimal values of the output as ŷ and
y, respectively. Note that they are in the range of decimal
[0 − 3]. As an error metric, we use total absolute error dis-
tance (TAED):

TAED =
7
∑

i=0
∣ yi − ŷi ∣ (1)

where i refers to the ith input assignment of the truth table.
For example, if both Cout and Sum are grounded for all in-
puts assignments, that is indeed truncation offering zero cost
for circuit area, then TAED = 12. However, we show that
the zero cost can be achieved with TAED = 4. We also syn-
thesize adders with TAED = 1, TAED = 2, and TAED = 3.
Our synthesis technique is based on exploiting offsetting er-
rors in Sum and Cout. As a motivating example, consider
three different approximate adders having an erroneous out-
put for a certain input assignment. For the first adder there is
0→1 error in Sum, so TAED = 1; for the second one there is
1→0 error in Cout, so TAED = 2; and for the third one that
is the proposed one, both of the errors occurs, so TAED = 1
since simultaneous 0→1 and 1→0 errors occurring in Sum
and Cout for the same input assignment results in a change
of 1 in TAED. Among these three adders, the third one has
much smaller area due to simultaneous minimization in Sum
and Cout.

The main idea behind the proposed design approach is
using offsetting errors 0→1 and 1→0 to the same input as-
signments. There are 6 input assignments in an exact adder
(EXAD) to be used for our approximation technique (6 of 8
inputs has different Sum and Cout values). By considering
these assignments and selecting the solutions offering mini-
mum literal costs in sum-of-products (SOP) expressions, we
present four different approximate adders APAD1, APAD2,
APAD3, and APPAD4 respectively having TAED values of
1, 2, 3 and 4. Examples are given as truth tables in Table 1.
As follows we elaborate on each adder type.

Logic synthesis of APAD1, TAED= 1: Offsetting errors in
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Adder Type

Inputs EXAD APAD1 APAD2 APAD3 APAD4

A B Cin Cout Sum Decimal Cout Sum Error Decimal Cout Sum Error Decimal Cout Sum Error Decimal Cout Sum Error Decimal

0 0 0 0 0 0 03 03 0 0 03 03 0 0 03 03 0 0 03 03 0 0

0 0 1 0 1 1 03 13 0 1 03 13 0 1 03 13 0 1 03 07 -1 0

0 1 0 0 1 1 17 07 +1 2 03 13 0 1 03 13 0 1 03 13 0 1

0 1 1 1 0 2 13 03 0 2 07 17 -1 1 07 17 -1 1 07 17 -1 1

1 0 0 0 1 1 03 13 0 1 17 07 +1 2 1 7 07 +1 2 17 07 +1 2

1 0 1 1 0 2 13 03 0 2 13 03 0 2 13 03 0 2 13 03 0 2

1 1 0 1 0 2 13 03 0 2 13 03 0 2 13 17 +1 3 13 17 +1 3

1 1 1 1 1 3 13 13 0 3 13 13 0 3 13 13 0 3 13 13 0 3

Table 1
Examples of Truth Tables of the Proposed Approximate Adders APAD's.

both Sum and Cout for one input assignment. There are (61
)

candidates for synthesis, and 2 of them have the minimum
literal cost. Fig. 1 (a) shows one of them with Cout = B +
ACin; Sum = ABCin + AB Cin + ABCin.
Logic synthesis of APAD2, TAED= 2: Offsetting errors in
both Sum and Cout for two input assignments. There are (62

)

candidates for synthesis, and 3 of them have the minimum
literal cost. Fig. 1 (b) shows one of them with Cout = A;
Sum = AB + ACin + BCin.
Logic synthesis of APAD3, TAED= 3: Since we reached a
literal cost of 1 for Cout in APAD2, no further 0-1 transitions
are preferred for Cout. However, for Sum we use one more
error. As a result, offsetting errors in both Sum and Cout
for two input assignments, and an error in Sum for one input
assignment return TAED = 3. There are (62

)(4
1

) candidates
for synthesis, and 9 of them have the minimum literal cost.
Fig. 1 (c) shows one of them with Cout = A; Sum = ACin
+ B.
Logic synthesis of APAD4, TAED = 4: Similar to APAD3
synthesis, we use offsetting errors in both Sum and Cout for
two input assignment. Additionally, we inject errors in Sum
for two input assignments, so TAED = 4. There are (62

)(4
2

)

candidates for synthesis, and 9 of them have the minimum
literal cost. Fig. 1 (d) shows one of them with Cout = A;
Sum = B.
2.2. n-bit ripple-carry adder design

We design the ripple-carry adder such that two succes-
sive approximate 1-bit full adders cannot produce build-up
errors. For example, if a 1-bit adder has an erroneous output
of logic 1, expected as logic 0, we guarantee that the neigh-
bour adder’s output can be error free or it produces an off-
setting error with a logic 0 output, expected as logic 1. The
following lemma gives necessary and sufficient conditions
to eliminate build-up errors.
Lemma 1. Consider a ripple-carry adder having different
1-bit approximate adders. Build-up errors in successive adders
of any type are eliminated if and only if all of the following
requirements are met:

1. For all input assignments causing error, Cout = Cin;
2. For all input assignments causing a positive error that

increases the expected output, all correspondingCouts
should be the same ; and

3. For all input assignments causing a negative error, de-
creasing the expected output, all corresponding Couts
should be the same.

Proof. The proof is by contradiction. For the first require-
ment, if a 1-bit adder has an assignment causing error with
Cout=C , then successively using this adder would result in
build-up errors. Again violating the second or the third re-
quirement with even satisfying the first one causes a build-up
error. Finally, satisfying these three requirements is suffi-
cient to prevent build-up errors.

To elucidate this lemma consider a 2-bit adder, where the
least significant bit adder is APAD4 and the second adder
can be any of proposed APADs. Let us investigate all possi-
ble inputs and their inexact results. Start by 001 as an input
of APAD4, that results in 0s for both Cout and Sum. Ac-
cording to Table 1 this result is smaller than the exact result,
so we name it as negative error. Since Cout of APAD4 is
Cin of the second adder, we investigate inputs with Cin=0
for the second adder. According to Table 1 when Cin is 0,
the generated results are exact results or positive errors. i.e
if APAD4 generates negative error, it is impossible to have a
positive error for the second adder. Next, consider the other
input 011 causing negative error; same considerations are
applicable for this case too. For positive error cases, inputs
are 100 and 110; for both cases Cout value is 1. According
to Table 1, if there is a positive error, Cin is always 0. There-
fore two consecutive positive error is impossible too.
To satisfy Lemma 1, we shrink our 1-bit approximate adder
library. Initially, it consists of 2APAD1, 3APAD2, 9APAD3,
and 9APAD4, and it becomes 2APAD1, 2APAD2, 2APAD3,
and 2 APAD4, all satisfying Lemma 1 with Cin= 0 for posi-
tive errors, Cin= 1 for negative errors, and Cout=Cin. Note
that for each APAD type, we have two options with identi-
cal area and error performances. For simplicity we use the
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Figure 1: Karnough Maps of APADs.

adders given in Table 1, where all of proposed adders, satis-
fying Lemma 1 for all experiments.

In our synthesis technique, starting from the least to the
most significant bit, we benefit the ordering ofAPAD4-APAD3-
APAD2-APAD1-EXAD, where this array is justified with
the following lemma.
Lemma 2. Consider two successive 1-bit adders in a ripple-
carry adder. To achieve minimum area with a given error
constraint, the one closer to the least significant bit should
have a larger or an equal TAED value compared to the one
closer to the most significant bit.

Proof. By contradiction, assume that the statement is wrong.
By interchanging the two adders, we achieve a smaller error
with the same area. However, theminimum area should have
a negative correlation with the given error constraint. There
is a contradiction.

To understanding this lemma consider two scenarios for
2-bit adder. In the first scenario the least significant bit adder
is APAD4 and the second bit adder is APAD1. In the sec-
ond scenario the least significant bit adder is APAD1 and the
second bit adder is APAD4. Both cases hold same area, but
the first scenario results in smaller error.

In our synthesis technique, we use average absolute error
distance (AAED) that is obtainedwith dividing TAEDby the
number of input assignments. For example AAED values
of APAD4, APAD3, APAD2, and APAD1 are 4/8, 3/8, 2/8,
and 1/8, respectively. We model AAED value and named it
estimated average absolute error distance (EAAED). For an
n-bit ripple-carry adder:

EAAED =
n−1
∑

i=0
Ei2i−1 (2)

where Ei represents the error contribution of the ith 1-bit
adder from the least significant bit.

Ei =
2
3

∑

a∈{−1,0,1}

∑

b∈{−1,1}
P (i−1 ∶ a, i ∶ b) ∣ 0.5a+b ∣ (3)

where a and b represent the error values of the (i − 1)th and
ith 1-bit adders, respectively. Since, Equation 3 gives the
error contribution of the ith adder, b = 0 case, no error in
the ith adder, is excluded. In the equation, P represents a
probability that the (i − 1)th and ith adders have errors of a
and b, respectively. The constant factor 2∕3 is the ratio of
the error contribution of the ith adder (X) to the total error
contribution of the ith and the (i − 1)th adders (0.5X +X).
In a similar fashion, ∣ 0.5a + b ∣ represents the total er-
ror distance caused by the the (i − 1)th and the ith adders.
In calculating P ’s we use conditional probability such that
P (i−1 ∶ a, i ∶ b) = P (i−1 ∶ a)P (i ∶ b ∣ i−1 ∶ a). The fol-
lowing example elucidates our calculation steps of Ei givenin Equation 3.
Example 1. Calculate Ei if the (i − 1)th and the ith adders
are both APAD4.

Table 2 gives the calculations by using the truth table of
APAD4, previously given in Table 1. There are six cases in
Table 2 corresponding to six rows in the table for different as-
signments of a and b. For the first and the sixth cases P ’s are
zero, since two successive positive error or negative error is
impossible. For the second case, P (i− 1 ∶ −1) = 2∕8 since
APAD4 has 2 input assignments causing −1 error among 8
total assignments. Additionally, P (i ∶ +1 ∣ i − 1 ∶ −1) =
2∕4 since −1 error causes Cout = 0 for the (i − 1)th adder,
so the ith adder’s C is logic 0 and it has 2 input assignments
causing +1 error among 4 total assignments with C = 0. A
similar justification can be done for the fifth case. For the
third and the fourth cases, P (i − 1 ∶ 0) = 4∕8 and since
a = 0, P (i ∶ b ∣ i − 1 ∶ 0) = P (i ∶ b) = 2∕8.

Table 3 gives Ei values for all different combinations of
APAD’s as the (i − 1)th and the ith adders with satisfying
Lemma 2. Since C = 0 for the ripple-carry first adder, we
can obtain E1 as 2/4 for APAD4 and APAD3, and 1/4 for
APAD2 and APAD1 by using the truth tables in Table 1.
Example 2. Calculate EAAEDof an 8-bit ripple-carry adder
having APAD4-APAD4-APAD4-APAD4-APAD2-APAD1-EXAD-
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a b P = P (i − 1 ∶ a) × P (i ∶ b ∣ i − 1 ∶ a) ∣ 0.5a + b ∣
∑

b∈{−1,1}
−1 −1 2∕8 × 0 3∕2 0
−1 +1 2∕8 × 2∕4 1∕2 1∕16
0 −1 4∕8 × 2∕8 1 2∕16
0 +1 4∕8 × 2∕8 1 2∕16
+1 −1 2∕8 × 2∕4 1∕2 1∕16
+1 +1 2∕8 × 0 3∕2 0

2
3

∑

a∈{−1,0,1}
∑

b∈{−1,1} P (i − 1 ∶ a, i ∶ b) ∣ 0.5a + b ∣ = 4∕16

Table 2
Calculation of Ei for Example 1.

@
@@i
i − 1

APAD1APAD2APAD3APAD4

APAD12.66∕32 8 8 8

APAD22.33∕324.66∕32 8 8

APAD32.33∕324.33∕326.66∕32 8

APAD4 2∕32 4∕32 6∕32 8∕32

Table 3
Values of Ei's for Di�erent APAD Combinations.

EXAD 1-bit adders ordered from the least to the most signif-
icant bit.

With E1 = 2∕4, and using Table 3: EAAED = 2
42

0 +
8
32 (2

1 + 22 + 23) + 4
322

4 + 2.33
32 25 = 8.33.

Constructed on Lemma 2 and the proposed error calcula-
tion method summarized in Table 3, our synthesis technique
consists of the following 5 steps.

1. Start with an exact ripple-carry adder consisting of
EXAD’s.

2. From the least to themost significant bit, replace EXAD’s
with APAD4’s until the calculated error value is larger
than the given target error value.

3. Repeat the second step for APAD3, APAD2, andAPAD1
instead ofAPAD4, respectively, replacing the unchanged
EXAD’s. Save the solution.

4. Replace all APAD3’s, APAD2’s, and APAD1’s with
EXAD’s in Step 3; replace the last APAD4 (most sig-
nificant one) respectively with APAD3, APAD2, and
APAD1; apply the second step with APAD3, APAD2
and APAD1 instead of APAD4. Save solutions.

5. Using area costs of APAD4, APAD3, APAD2, APAD1,
and EXAD, select the best solution with minimum
area cost.

Note that due to the essence of the proposed method, with-
out using any error detection block that causes area over-
head, build-up errors are fully eliminated. To elucidate our
synthesis technique, we present an example.
Example 3. With a given target AAED = 3.9, synthesize an
approximate 8-bit ripple-carry adder. Suppose that the 1-bit
adders are implemented with a generic library consisting of
NAND2 gates (4 transistors) and inverters (2 transistors);
APAD4, APAD3, APAD2, APAD1, and EXAD has transistor
costs of 0, 12, 20, 32, and 44, respectively.

Proposed Method Exhaustive Search

Desired
Ripple-carry

Est.
Time Ripple-carry

Exact
Time

Error AAED (s) AAED (s)

1.5 E E E E E 2 4 4 1.5 .02 E E E E E 2 4 4 1.5 >104

2.9 E E E E 2 2 4 4 2.665 .022 E E E E 2 2 4 4 2.875 >104

4.5 E E E 1 2 4 4 4 4.165 .016 E E E 1 2 4 4 4 4.46 >104

7.5 E E E 3 4 4 4 4 7 .02 E E E 3 4 4 4 4 7.125 > 104

18 E 1 2 4 4 4 4 4 16.66 .017 E 1 2 4 4 4 4 4 17.59 > 104

48 2 4 4 4 4 4 4 4 48 .016 2 4 4 4 4 4 4 4 48 > 104

64 4 4 4 4 4 4 4 4 64 .023 4 4 4 4 4 4 4 4 64 > 104

Table 4
Synthesis of 8-bit Adders with the Proposed Synthesis Tech-
nique and Exhaustive Search.

Steps are shown in Fig. 2. In Step 4 check-marks are for
satisfying given error and Lemma 2.

Examining our technique, we see that the second and the
third steps constitute the core of it. The fourth step is a back-
tracking step to find other candidates for minimum area. In
the fifth step, we have three solutions and the one with the
smallest area cost wins. From our experiments, we see that
the first solution is generally the best one. However, different
area costs of 1-bit adders would change this. For example,
suppose that area costs are 70, 45, 20, 10 and 0 for EXAD,
APAD1, APAD2, APAD3, and APAD4, respectively. Syn-
thesis results with these costs are given in Table 4 by com-
paring our synthesis technique with the exhaustive search
technique for different AAED’s.

The exhaustive search is done by checking all approxi-
mate and exact adder combinations satisfying Lemma 2 as
well as by obtaining exact AAED values with testing all pos-
sible input combinations. The results prove the accuracy of
our synthesis technique. Additionally, estimated AAED val-
ues are almost the same as the exact ones. For some cases,
there are deviations, but it is expected since our calculation
technique applies conditional probability to adder pairs by
only considering the target adder and the previous adder. A
fully exact calculation should consider all of the previous
adders. However, this type of calculation would result in
impractical run times as shown in Table 4.

Note that different technologies might result in different
area sizes for APADs. However our synthesis algorithm is
unrelated to the technology and always find near optimal area
solutions.

3. Wallace-tree multiplier design
We implement Wallace-tree multipliers in a usual fash-

ion by using 1-bit full adders, 1-bit half adders, and AND
gates in three stages. This is shown in Fig. 3 for 4-bit in-
puts. In the first stage, the multiplier inputs a0, a1, a2, a3 andb0, b1, b2, b3 are first ANDed. Then the outputs of AND
gates are fed to 1-bit adders. Considering that the multiplier
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Step1:

EXAD-EXAD-EXAD-EXAD-EXAD-EXAD-EXAD-EXAD
Array EAAED

0

EXAD-EXAD-EXAD-EXAD-APAD3-APAD4-APAD4-APAD4       188
EXAD-EXAD-EXAD-APAD1-APAD1-APAD3-APAD4-APAD4    208 
EXAD-EXAD-EXAD-APAD1-APAD2-APAD2-APAD4-APAD4    204

Array Cost

Step5:

 

EXAD-EXAD-EXAD-EXAD-APAD3-APAD4-APAD4-APAD4
Array EAAED

3.5
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Figure 2: Demonstration of Steps for Example 3.

inputs take the values of logic 1 and 0 with equal probabili-
ties of 1/2, the adder inputs take the values of logic 1 and 0
with probabilities of 1/4 and 3/4, respectively. Motivated by
this fact, we prefer erroneous outputs corresponding to the
input assignments with 1/4 probabilities. In other words, we
synthesize full and half adders based on the occurrence prob-
abilities of inputs. Therefore, we do not use the APAD’s,
previously used for the synthesis of ripple-carry adders in
Section 2.

In designing 1-bit adders, anothermotivation is to achieve
Cout = 0 that either converts the proceeding full adder to an
half adder or rules out the proceeding half adder, without
loss of accuracy. That is why we do not need approximate
full adders in the second and the third stages; only approx-
imate half adders are used in these stages. Similar to the
ripple-carry adder synthesis in the previous section, we have
two steps. In the first step, we create a library of approxi-
mate 1-bit full and half adders. In the second step, we sys-
tematically synthesize an n-bit Wallace-tree multiplier from
the least to the most significant bits by using the library; the
multiplier satisfies the given error constraint with minimum
area. The following two subsections explain these two steps.
3.1. Design of 1-bit approximate full adder

(APFA) and half adder (APHA)
Logic synthesis of APFA, TAED = 1.375: Table 5 shows
the truth table of APFA.We use offsetting errors in both Sum
and Cout for three input assignments having probabilities of
9∕64, and tomake Cout= 0, wemake an error at Cout for the
last input assignment with a probability of 1∕64. As a result,
Cout = 0 and Sum =A + B + Cin. The adder’s TAED value
is given by:

TAED =
7
∑

i=0
8 ∣ yi − ŷi ∣ Pi (4)

where Pi represents an occurrence probability of the ith in-
put assignment. Using Table 5, we can find that TAED =
8(3∕64+3∕64+3∕64+2∕64) = 1.375. Due to varied prob-
abilities for input assignments, we achieve an adder that is
much more efficient than the APAD’s.
Logic synthesis of APHA, TAED= 0.25, 1.34, 0.58: Table
6 shows the truth table of APHA. We use offsetting errors
in both Sum and Cout for the last input assignment with a
probability of 1∕16. As a result, Cout = 0 and Sum = A +
B; total literal cost is 2. The adder’s TAED value is given
by:

TAED =
4
∑

i=1
4 ∣ yi − ŷi ∣ Pi (5)

where Pi represents an occurrence probability of the ith in-
put assignment. In contrary to APFA’s that are only used in
the first stage, APHA’s are used in all stages. Therefore we
have different Pi values for three different cases as shown inTable 6. Case1 corresponds to the first stage. Case2 occurs
when the inputs A and B of APHA are connected to Sum
outputs of APFA. Case3 occurs when the input A of APHA
is connected to the output of an AND gate, and the input B
of APHA is connected to a Sum output of APFA. As a result,
Case1, Case2, and Case3 have TAED values of 0.25, 1.34,
and 0.58, respectively.
3.2. n-bit Wallace-tree multiplier design

The multiplier synthesis technique is more straightfor-
ward than ripple-carry adder, also unlike to adders, error
calculation method is effectively accurate for proposed ap-
proximate multipliers. Restricted exploiting of APFA and
APHA results only negative errors, thus summation of er-
rors enable us to obtain exact error value. Additionally using
APFA or APFA decreases the number of inputs of the pro-
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Adder Type Error
Inputs

EXAD APFA
Error Probabiility

A B Cin Sum Cout Sum Cout

0 0 0 0 0 03 03 0 3∕4 × 3∕4 × 3∕4 = 27∕64
0 0 1 1 0 13 03 0 3∕4 × 3∕4 × 1∕4 = 9∕64
0 1 0 1 0 13 03 0 3∕4 × 1∕4 × 3∕4 = 9∕64
0 1 1 0 1 18 08 -1 3∕4 × 1∕4 × 1∕4 = 3∕64
1 0 0 1 0 13 03 0 1∕4 × 3∕4 × 3∕4 = 9∕64
1 0 1 0 1 18 08 -1 1∕4 × 3∕4 × 1∕4 = 3∕64
1 1 0 0 1 18 08 -1 1∕4 × 1∕4 × 3∕4 = 3∕64
1 1 1 1 1 13 08 -2 1∕4 × 1∕4 × 1∕4 = 1∕64

Table 5
Truth Table of the Proposed Approximate Full Adder APFA.

Adder Type Error
Inputs

EXAD APHA
Error

Probability

A B Sum CoutSum Cout Case1 (Stage1) Case2 (Stage2-3) Case3 (Stage2-3)

0 0 0 0 03 03 0 3∕4 × 3∕4 = 9∕16 27∕64 × 27∕64 = 729∕4096 3∕4 × 27∕64 = 81∕256
0 1 1 0 13 03 0 3∕4 × 1∕4 = 3∕16 27∕64 × 37∕64 = 999∕4096 3∕4 × 37∕64 = 111∕256
1 0 1 0 13 03 0 1∕4 × 3∕4 = 3∕16 27∕64 × 37∕64 = 999∕4096 1∕4 × 27∕64 = 27∕256
1 1 0 1 18 08 -1 1∕4 × 1∕4 = 1∕1637∕64 × 37∕64 = 1369∕4096 1∕4 × 37∕64 = 37∕256

Table 6
Truth Table of the Proposed Approximate Half Adder APHA.
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Figure 3: 4×4 bit Exact Wallace-tree Multiplier.

ceeding adder by one, so only two successive approximate
adders can be employed.

Similar for the ripple-carry adders, we again use AAED
(average absolute error distance). This value is obtained
with dividing TAED by the number of input assignments.
For example AAED of APFA is 1.375/8. Regarding to input
probability and negative error inherent of APFA and APHA,
n-bit multiplier AAED value is formulated as below.

AAED =
∑

i

∑

j
AAEDi−j2i−1 (6)

whereAAEDi−j represents the error contribution of the adderin the ith column and the jth row of the Wallace-tree struc-
ture. Check that the multiplier in Fig. 3 has 7 columns and
3 rows.

Our synthesis technique consists of the following 5 steps:
1. Start with an exact Wallace-tree multiplier.
2. Replace an exact adder having the smallest column

and row numbers (column numbers are more signif-
icant) with an approximate adder. Calculate AAED.

3. Update the multiplier structure without loss of accu-
racy by converting full adders to half adders and/or
ruling out half adders.

4. Repeat the second and the third steps until the calcu-
lated error value AAED is larger than the given target
error value and store result.

5. Obtain the area cost of the multiplier by using the area
costs ANDgates, exact adders, and approximate adders.

To elucidate our synthesis technique, we present an ex-
ample.
Example 4. With a given target AAED = 1, synthesize an
approximate 4-bit×4-bit Wallace-tree multiplier. Suppose
that the circuits are implemented with a generic library con-
sisting of NAND2 gates (4 transistors) and inverters (2 tran-
sistors); AND2 gate, APHA, APFA, exact half adder, and
exact full adder has transistor costs of 6, 8, 16, 14, and 44,
respectively.

In the first step, we have an exact multiplier having 6 full
adders, 6 half adders, and 16 AND2 gates as shown in Fig.
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3. In the second step, we start with the half adder in the
place 2-1, to be replaced by APHA (AAED2-1 = 0.25∕4).
In the third step, we first rule out the half adder in 3-2 since
c2-1 = 0, the half adder in 3-2 becomes s3-1 that also makes
c3-2 = 0. Similarly, the half adder in 4-3 is ruled out. In the
fourth step since AAED is smaller than the target error rate,
we repeat the second and third steps.

We replace the full adder in 3-1 with APFA (AAED3-1 =
1.375∕8) that converts the full adder in 4-2 to an half adder.
The total error is given by AAED= (0.25∕4)21+(1.375∕8)22 =
0.8125. Since the next approximation in 4-1 would make
AAED exceed the target error of 1, we stop here.

In the last step, since the final multiplier structure has 4
exact full adders, 3 exact half adders, 1 APFA, 1 APHA, and
16 AND2 gates, we achieve the total area cost of 338 (24%
area saving).

4. Experimental results
All of the circuits are implemented in the same envi-

ronment using the Cadence Genus tool with TSMC 0 18µm
CMOS technology.
4.1. Area, power, delay, and energy versus average

error
Table 7 evaluates the proposed 1-bit adders. While

XOR/XNOR based adders from [1] and mirror adder based
adders from [6] are synthesized in transistor level, the rest
of the adders including the proposed ones, are obtained with
logic synthesis algorithms using standard gate libraries. For
comparison, among many different 1-bit adders in the liter-
ature, we consider the best and working ones. For example,
since that INXA1 adder in [1] does not work properly, hav-
ing stability problems, we do not consider it. Among the
adders in [6], only AMA3 is selected for comparison since
it performs much better compared to the other AMAs. Also
AMA5 in this work is the same as the proposed APAD4,
however design methodology of AMAs and our method is
completely different. Note that APAD4 and AMA5 have
zero area and power.
In Table 7 all of the proposedAPADs are derived from an ex-
act adder with aforementioned synthesis method. Since mir-
ror based exact adders and XOR/XNOR based exact adders
are built in transistor level with low power considerations,
inevitably their area and power is smaller than those of the
standard logic-level exact adder. According to this table for
same TAED values, the proposed APADs achieve better per-
formance for most of the cases.
Table 8 evaluates the proposed 8-bit ripple-carry adders com-
pared to other methods. Area, power, delay and power-delay
product (PDP ) results for given AAED values are given.

AAED values calculated by simulation for all input com-
binations (256 × 256), and the case with maxinum area save
for givenAAEDconstraint prefferd. For comparison, AMA3
and INAXA3 selected from Table 7 base on their better per-
formances. Also the Evoapprox adders in [19] are chosen
among the logic-synthesis approximation methods, since the

library generated in this study covers all competitive adders.
Among different adders introduced in [19], we opted for adders
with maximum area saving, for given AAED value. By in-
vestigating the results in Table 8, we see that the proposed
and Evoapprox adders come forward, however the introduced
adders in [19] are limited to 8-bit due to long run-time prob-
lem. The proposed adders generally are the best in area; for
other performances the adders are comparable. These results
imply inefficiency of transistor-level synthesis methods.

A similar analysis is made for the proposedmultipliers in
comparison with the other Wallace-tree multipliers in Table
9. On account of the fact that the multipliers in [7, 18] are
compressor based, their exact area values are smaller than
adder based multipliers; exact 8-bit multiplier area for com-
pressor based in [7, 18] and adder based in [19] are 7348�m2

and 8097�m2, respectively. Although area values of com-
pressor based exactmultipliers are generally smaller, for small
errors values it is not applicable to achieve approximate ver-
sions. According to Table 9, the proposed multipliers almost
always hold the smallest area and delay among investigated
studies.
4.2. Image processing: peak signal to noise ratio

(PSNR) versus area saving
We use mean filter and bit-wise multiplication to eval-

uate the adders and the multipliers, respectively. With the
same area savings, we compare the obtained images’ PSNR
values.

For the mean filter application, we first inject a Gaussian
noise having a zero mean and a variance of 0.008. Then
we apply mean filter using the 8-bit adders having 75% area
savings. For some of the adders, 75% is not achievable, so
we consider their maximum achievable values. The results
are shown in Fig. 4. The PSNR value for the proposed adder
is 37.6dB that is the highest one.

For the bit-wise multiplication, we use two images to ob-
tain the original image. For this purpose, we use the ap-
proximate 8-bit×8-bit multipliers having 40% area savings.
Again, for some of the multipliers, 40% is not achievable,
so we consider their maximum achievable values. The re-
sults are shown in Fig. 5. The PSNR value for the proposed
multiplier is 37.1dB that is the highest one.
4.3. Neural network: misclassification rate versus

area saving
We realize a handwriting recognition neural network. A

trained database PENDIGIT is used [2]. The network has
16-100-10 architecture having three layers. Due to neural
network essence 16×100multipliers and 17×100 adders in
hidden layer, also 100 × 10 multipliers and 101 × 10 adders
in output layer, are used to obtain the desired network. It
must be considered that training is done with unnormalized
inputs.

We only use 12-bit adders and 8-bit×8-bit multipliers
having a certain area saving, and then check misclassifica-
tion rates. Again for comparison, we select the best adders
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Adder Type
Results

AreaDelayAverage PowerAverage EnergyWorst case PowerTAED
�m2 �s �w �ws �w

Exact Adder 148 1080 348 14.98 2932 0

APAD1 148 955 582 14.24 1470 1

APAD2 74 220 208 2.63 1060 2

APAD3 55 183 226 2.41 930 3

AXExact[1] 53 9600 154 602 1280 0

INXA3[1] 44 9500 133 358 649 2

INXA2[1] 48 2800 353 456 772 2

AMAccurate[6] 169 718 231 14.27 1680 0

AMA3[6] 58 1200 290 13 616 3

Logic1[12, 23] 235 1050 417 18.68 2430 1

Logic2[12, 23] 84 957 291 14.1 1260 2

Logic4[12, 23] 105 970 229 13.3 1800 4

Carving[21] 105 1029 233 13.06 1800 4

BLASYS [11] 64 947 717 10.98 1086 4

Table 7
1-Bit Adder Results.

Adder Type

AAED
0.75 2.2 3.3 6.6 11

AreaPowerDelayPDP AreaPowerDelayPDP AreaPowerDelayPDP AreaPowerDelayPDP AreaPowerDelayPDP
�m2 �w �s aJ �m2 �w �s aJ �m2 �w �s aJ �m2 �w �s aJ �m2 �w �s aJ

AMA3[6] 925 622 2167 13.4 746 500 2263 11.3 746 500 2263 11.3 652 412 2368 9.7 558 303 2472 7.4

INAXA3[1] 869 594 2539 15 784 523 2853 14.9 784 523 2853 14.9 699 448 3166 14.2 615 366 3480 12.7

Evoapprox[19] 850 561 1657 9.3 630 363 1694 6.1 608 357 1148 4 458 194 1736 3.4 392 161 1566 2.5

Truncation 982 637 2459 15.6 850 560 2204 12.3 718 453 1949 8.8 718 453 1949 8.8 586 349 1694 5.9

Proposed 834 542 1912 10.3 649 400 1657 6.6 571 341 1403 4.8 439 231 1148 2.6 370 187 1275 2.4

Table 8
8-Bit Adder Results.

and multipliers by considering Table 8 and Table 9. Table
10 shows the results. The proposed circuits certainly over-
whelm the compared ones, especially for large area savings.

5. Conclusion
In this study, we perform area optimization techniques

for approximate ripple-carry adders and Wallace-tree multi-
pliers to satisfy a given error constraint. Our techniques are
accurate and fast, in courtesy of the proposed error calcula-
tion techniques that consider error dependencies of building
blocks of adders and multipliers as well as occurrence prob-

abilities of input assignments. As a future work, we intend to
extend our synthesis methodology to be directly applicable
for image processing and learning applications with satisfy-
ing a given PSNR and misclassification rate.
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