Student ID:

Date: 19/11/2021

EHB 205E: Introduction to Logic Design MIDTERM I

Duration: 120 Minutes
Grading: 1) 15%, 2) 30%, 3) 25%, 4) 30%
Exam is in closed-notes and closed-books format; calculators are allowed For your answers please use the space provided in the exam sheet GOOD LUCK!

1) Consider a 4 -variable Boolean function $\boldsymbol{f}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{\mathbf{2}}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right)=\sum(1,3,4,5,9,11,12,13,14,15) ; \boldsymbol{x}_{\mathbf{1}}$ is the most significant bit. Obtain a minimal sum-of-products (SOP) expression for f using a Karnaugh map. Show all prime and essential prime implicants.
2) Consider a 6 -variable Boolean function $f=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) . f_{2}\left(x_{4}, x_{5}, x_{6}\right)$ where $\boldsymbol{f}_{\mathbf{1}}=\Pi(1,2,3,5,7,12,14)-\boldsymbol{x}_{\mathbf{1}}$ is the most significant bit, and $\boldsymbol{f}_{\mathbf{2}}=\Pi(3,4,5,6,7)-\boldsymbol{x}_{\mathbf{4}}$ is the most significant bit.
a) Obtain a minimal product-of-sum (POS) expression for f.
b) Implement \boldsymbol{f} using only two-input NAND (NAND-2) gates; use minimal number of gates. Use only variables as inputs (not their negated forms).
3) Consider a circuit consisting of AND-2 and XOR-2 gates with 4 inputs, A0, A1, B0, B1, and 4 outputs, C0, C1, C2, C3.

a) Derive truth table of this circuit.
b) Suppose that for a certain application, always $\mathbf{A 0}=\mathbf{1}$ and $\mathbf{B 0}=\mathbf{0}$. For this scenario, simplify the circuit by only using NOR-2 gates.
4) Consider 4 binary inputs representing decimal numbers from 0 to 15 . Also consider a 7 segment display as shown below. It only shows two letters: H (stands for high), and L (stands for low). If the decimal number is below 5 , the display shows L ; if the decimal number above 10 the display shows H ; otherwise ($5,6,7,8,9,10$) what the segment shows, does not matter Design a circuit consisting of minimal number of NAND-2 gates for this operation. Note that the circuit has 4 inputs and 7 outputs; 7 outputs of the circuit are connected to 7 segments $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$, and \mathbf{g}. If a segment output is logic 1 then the corresponding segment is illuminated or lit.

