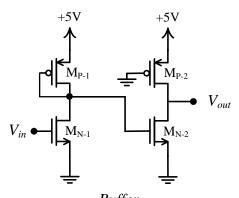
Student Name: Instructor: Mustafa Altun

Student ID: Date: 4/4/2022

EHB322E Digital Electronic Circuits MIDTERM I

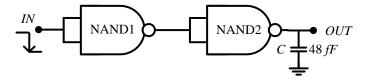
Duration: 60 Minutes Grading: 1) 35%, 2) 35%, 3) 30%


Exam is in closed-notes and closed-books format; calculators are allowed For your answers please use the space provided in the exam sheet GOOD LUCK!

1) Consider a buffer shown below. Use the following equations for your calculations.

Saturation region current-voltage equation: $I_D = \frac{1}{2} k'_{p,n} \frac{W}{L} (V_{GS} - V_{T0p,n})^2$

 $\text{Linear region current-voltage equation: } I_D = \frac{1}{2} k'_{p,n} \frac{W}{L} \Big[2 (V_{GS} - V_{T0p,n}) V_{DS} - V_{DS}^2 \Big]$


Transistor parameters: $k_p' = \mu_p c_{ox} = 35 \text{uA/V}^2$, $k_n' = \mu_n c_{ox} = 98 \text{uA/V}^2$, $V_{TN} = 1 \text{V}$, $V_{TP} = -0.5 \text{V}$, $W_{N-1} = 5 \text{u}$, $W_{N-2} = 5 \text{u}$, $L_P = L_N = 1 \text{u}$.

- a) Find the maximum value of W_{P-1} satisfying that V_{in} =5V results in V_{out} =5V.
- **b)** Find the value of W_{P-2} if $V_{in}=0V$ results in $V_{out}=1V$.
- c) Find the buffer's static power consumption values when $V_{in}=0$ V and $V_{in}=5$ V.

2) Consider a buffer circuit consisting of two CMOS NAND gates, shown below. An external capacitor of 48fF is connected to the output. A signal switching from high to low is applied to the input.

Equivalent resistor for an NMOS transistor: R_N = (12k Ω) / (W/L)_N Equivalent resistor for a PMOS transistor: R_P = (24k Ω) / (W/L)_P Gate capacitors C_{GS-N} = c_{ox} W_NL_N and C_{GS-P} = c_{ox} W_PL_P; neglect C_{GD} capacitors. Transistor parameters: c_{ox} =1 fF/um2, L_N =L_P=1u, W_N 1=2u, W_P 1=3u, W_N 2=4u, W_P 2=6u.

Digital circuit with two CMOS NAND gates

- a) Implement a NAND gate with a Boolean function $f = \overline{x_1 x_2}$ using CMOS transistors. If inputs of a NAND gate are shorted, as we use in our circuit, then find its Boolean function. Draw the CMOS implementation of the above circuit.
- **b)** Find the **total propagation delay value** (delay of NAND1 + delay of NAND2) between the input and the output.
 - You should consider C_{GS} capacitors as well as the external C=48fF capacitor
 - Do not consider capacitors at nodes other than the node of gate inputs/outputs.

- 3) Consider $f = x_1 x_2 x_3 + x_1 \overline{x_2} \overline{x_3} x_4 + \overline{x_1} \overline{x_2} x_3 x_4$.
 - a) Implement f with a CMOS circuit using minimum number of transistors. Draw the circuit. How many PMOS and NMOS transistors do you use?
 - **b**) Suppose that both NMOS and PMOS transistors have equivalent resistance values of $1k\Omega$; a total output load capacitor is 2 fF (Neglect all other internal capacitors). Find the worst case (largest) t_{PHL} and t_{PLH} values.