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Permanent and Transient Fault Tolerance for
Reconfigurable Nano-Crossbar Arrays

Onur Tunali and Mustafa Altun

Abstract—This paper studies fault tolerance in switching
reconfigurable nano-crossbar arrays. Both permanent and tran-
sient faults are taken into account by independently assigning
stuck-open and stuck-closed fault probabilities into crosspoints.
In the presence of permanent faults, a fast and accurate heuristic
algorithm is proposed that uses the techniques of index sorting,
backtracking, and row matching. The algorithm’s effectiveness
is demonstrated on standard benchmark circuits in terms of
runtime, success rate, and accuracy. In the presence of transient
faults, tolerance analysis is performed by formally and recursively
determining tolerable fault positions. In this way, we are able to
specify fault tolerance performances of nano-crossbars without
relying on randomly generated faults that is relatively costly
regarding that the number of fault distributions in a crossbar
grows exponentially with the crossbar size.

Index Terms—Nano-crossbars; Fault Tolerance; Switching Ar-
rays; Permanent and Transient Faults/Defects.

I. INTRODUCTION

NANO-CROSSBAR arrays have emerged as a strong
candidate technology to replace CMOS in near future

[2] [3]. They are regular and dense structures, and fabricated
by exploiting self-assembly as opposed to purely using lithog-
raphy based conventional and relatively costly CMOS fabrica-
tion techniques [4] [5]. Currently, nano-crossbar arrays are fab-
ricated such that each crosspoint can be used as a conventional
electronic component such as a diode, a FET, or a switch [6]
[7]. This is a unique opportunity that allows us to integrate well
developed conventional circuit design techniques into nano-
crossbar arrays. However, as expected, the integration comes
with some challenges and fault/defect tolerance is one of the
significant ones. Fault rates are much higher for nano-crossbars
compared to those of conventional CMOS circuits [8] [9].
Therefore developing efficient fault tolerance techniques for
nano-crossbars is a must and the main motivation of this study.
In this study, we examine reconfigurable crossbar arrays by
considering randomly occurred stuck-open and stuck-closed
crosspoint faults. This is illustrated in Figure 1. Our fault
tolerance approach is based on an assumption that a crossbar
input can be used for multiple crossbar outputs (broadcasting
allowed) that fits Boolean logic applications. On the other
hand, especially for memory applications a crossbar input is
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Fig. 1. Nano-crossbar array with faulty/defective crosspoints.

TABLE I
PERMANENT VERSUS TRANSIENT FAULTS.

Permanent Faults Transient Faults
• Occurring mostly in fabrication • Occurring in field
• Tolerated in design phase • Tolerated in use phase
• Tolerated by reconfigurability (mapping) • Tolerated by redundancy

and redundancy

strictly used for only one output that necessitates different fault
tolerance approaches [10] [11].

We propose distinct approaches for permanent and transient
faults regarding their exclusive natures as shown in Table I.
In the presence of permanent faults, tolerance is achieved
by mapping target Boolean functions on a defective cross-
bar using crossbar row and column permutations. This is
an NP-complete problem [12]. For the worst-case scenario,
implementing a target function with an N × M crossbar
requires N !M ! permutations; computing time quickly grows to
intractable levels with the crossbar size. To tackle this problem,
several approaches have been proposed in the literature that
can be classified into two main categories: defect-unaware and
defect-aware approaches.

Defect-unaware algorithms aim to find the largest possible
k×k defect-free sub-crossbar from a defective N×N crossbar
where k ≤ N [13] [14] [15]. Detailed yield analysis of these
algorithms shows a common shortcoming: the algorithms are
inefficient for high fault rates – obtained k values are much
smaller than N [15]. When N = 250 and the fault rate is
15% that is a reasonable value for nano-arrays, the fastest
algorithms find k values as high as 30 [15]. It means that
only 1% of the crossbar can be used. In this regard, defect-
aware algorithms perform much more satisfactorily [16] [17]
[18]. A valid mapping is generally found using a 1.5 times
larger row and column sizes than the optimal sizes. Note
that for a specific target function, the larger the crossbar, the



2

easier to find a valid mapping due to an increase in solution
space. Therefore it is challenging, as well as desired for area
considerations, to find a mapping with optimal size crossbars.
We satisfy this with our heuristic defect-aware algorithm.

Defect-aware algorithms which use graph based heuristics,
transform the mapping problem into a graph isomorphism
problem [19] [20] [16]. An initial input assignment is made
to prune the permutation space. However, in case of an un-
favourable assignment, the number of reconfigurations needed
to find a valid mapping increases drastically . Additionally, the
runtime quickly grows beyond practical limits, especially for
large-scale target functions. Other algorithms based on integer
linear programming also suffer from runtime inefficiency for
large-scale functions [21] [18]. Apart from the mentioned
methods, a considerably fast memetic algorithm is proposed to
tackle this problem. [22]. Here the drawback is that the starting
conditions affect the results significantly. As an example,
experimental results presented in [22] show as large as a 25
times difference in runtimes for the same size target functions.
Our proposed algorithm works considerably faster compared
to the algorithms in the literature with nearly steady runtime
values for the same size target functions. To our knowledge
no other algorithm is able to find a valid mapping for large
benchmarks such as “table5” and “t481” with up to 15%
fault rates. Additionally, the proposed algorithm shows 99%
accuracy in accordance with the results of an exhaustive search
algorithm.

Our algorithm performs sorting to avoid disadvantageous
initial appointments and reduce unnecessary reconfigurations.
For this purpose, matrix and index representations of target
functions and defective crossbars are obtained. Sorted matrices
are matched using one dimensional array matchings that makes
the mapping problem to be solved with mere multiplication op-
erations. Backtracking is also performed to improve accuracy.

Although permanent fault tolerance of nano-crossbar arrays
have been thoroughly studied in the literature, transient faults
are not adequately emphasized. Redundancy based approaches
are proposed to tolerate transient faults by exploiting tech-
niques including majority voting, hardening, and fault masking
[17] [23] [24] [25] [26] . For these studies, the main goal is
to find an efficient method of adding extra redundancies to
correct/detect single or multiple faults while optimizing the
area overhead. In this study, we do not aim to correct faults; in-
stead we aim to determine tolerable fault positions in advance
without increasing area. We adopt a formal approach instead
of randomly generating faults and checking whether the faults
ruin the crossbar functionality. We determine equivalent logic
functions of a target function that denotes the positions of
tolerable faulty switches. We show that iff faults occur on these
positions, the crossbar still implements the correct function. In
other words, we show that it is possible to tolerate transient
faults without adding extra redundancies. In this way, we are
able to specify fault tolerance performance without relying on
a Monte Carlo simulation that is relatively costly regarding
that the number of fault distributions in a crossbar grows
exponentially with the crossbar size.

Our method can be used for the above mentioned studies
to manipulate redundancies using the obtained tolerable fault
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Fig. 2. Matrix representations and crossbar implementations for (a) a function
f and (b) a defective crossbar.

positions. Additionally, the obtained equivalent Boolean func-
tions can be used generally for logic equivalence problems.

Organization of the paper is as follows. In Section II, we
present the proposed fault tolerance algorithm for permanent
faults. In Section III, we explain transient faults, their reliabil-
ity analysis, and eventually a performance calculation method.
In Section IV, we present experimental results and elaborate
on them. In Section V, we discuss our contributions and future
works.

A. Definitions

In this section, we explain key concepts used throughout
the paper for both permanent and transient faults.

Definition 1: Consider k independent Boolean variables,
x1, x2, . . . , xk. Boolean literals are Boolean variables and
their complements, i.e., x1, x̄1, x2, x̄2, . . . , xk, x̄k.

Definition 2: A product (P) is an AND of literals, e.g.,
P = x1x̄3x4. A sum-of-products (SOP) expression is an OR
of products.

Definition 3: A prime implicant (PI) of a Boolean function
f is a product that implies f such that removing any literal
from the product results in a new product that does not imply f.

Definition 4: An irredundant sum-of-products (ISOP)
expression is an SOP expression, where each product is a
PI and no PI can be deleted without changing the Boolean
function f represented by the expression.

Definition 5: A sum (S) is an OR of literals, e.g., S =
x1 + x̄3 + x4. A product-of-sums (POS) expression is an
AND of sums.

Definition 6: Function matrix (FM) is a representation of a
Boolean function in SOP form such that the function’s literals
and products are appointed to the matrix columns and rows,
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respectively. If a literal occurs in a product, it is denoted with
+1; otherwise -1 is assigned. Figure 2 (a) shows an example
of a function matrix.

Definition 7: Crossbar matrix (CM) is a representation of
a crossbar array such that functional switches of crossbars
are denoted with 0; defective stuck-closed and stuck-open
switches are denoted with +1 and -1, respectively. Figure 2
(b) shows an example of a crossbar matrix by considering
stuck-closed and stuck-open faults.

Definition 8: Logic inclusion ratio (IR) is defined as a ratio
of the number of +1’s, corresponding to used switches, to the
total number of elements, +1’s and -1’s, in a function matrix.
As an example, consider the function matrix in Figure 2 (a).
Here, the number of +1’s or the number of used switches is
6, so IR = 6/15.

II. PERMANENT FAULT TOLERANCE

We aim to find out a valid mapping, namely a correct
assignment of literals and products of a target function to
inputs and outputs of a given crossbar having permanent faults.
Positions of the faults are known, represented by a crossbar
matrix, prior to mapping. We consider randomly distributed
stuck-closed and stuck-open faults at crosspoint switches; wire
breakdowns and bridging faults are not considered in this
study.

In case of having a defect-free crossbar, every assignment
produces a valid mapping. Figure 3 (a) shows two different
assignments resulting in valid mappings for a target function
f . However, finding a valid mapping for a defective crossbar
requires trials of different assignments. This is illustrated in
Figure 3 (b). While the assignment in the upper part produces
an incorrect mapping since x1 of P1 is positioned on a stuck-
open fault, the assignment in the lower part is correct resulting
in a valid mapping. The main purpose of our algorithm is
to find a correct assignment or a valid mapping ; a formal
problem definition is given as follows.

Problem Definition: Consider different assignments of literals
(x’s) to inputs and products (P ’s) to outputs. An input array
I[xi, · · · , xj] and an output array O[Pi, · · · , Pj] are defined
such that ith elements of the arrays are the assigned literal
and product to the ith crossbar input and output, respectively.
The proposed algorithm yields input and output arrays that
establish a valid mapping or a correct assignment. As an
example, the correct assignment in the lower part of Figure
3 (a) has I = [x1 x3 x2 x4] and O = [P2 P1 P3].

Our algorithm fundamentally uses index representations
of function and crossbar matrices as well as row/column
permutations and matchings. These concepts are explained as
follows.

A. Preliminaries

Row index: The number of +1, 0, or -1 valued elements in a
matrix row. For example, the row represented by P1 in Figure
4 has a row index of 3 for a chosen value of +1.
Column index: The number +1, 0, or -1 valued elements in
a matrix column. For example, the column represented by x1

in Figure 4 has a column index of 1 for a chosen value of -1.
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Fig. 3. Logic function implementations for (a) a defect-free crossbars (b) a
defective crossbars with assignments.

Row index set: A set of all row indices of a matrix for a
chosen value of +1, 0, or -1. In Figure 4, rows represented by
P1, P2, and P3 have row indices of 1, 2, and 2, respectively, for
a chosen value of -1. So its row index set is IR,F = {1, 2, 2}
where R stands for row and F stands for function.
Column index set: A set of all column indices of a matrix for
a chosen value of +1, 0, or -1. In Figure 4, columns represented
by x1, x2, x3, and x4 have column indices of 2, 2, 1, and 2,
respectively, for a chosen value of +1. So its column index
set is IC,F = {2, 2, 1, 2} where C stands for column and F
stands for function.
Row/Column permutation: In order to find a valid mapping,
defective switches of a crossbar matrix which are denoted as
+1’s (stuck-closed) and -1’s (stuck-open) must be matched
with +1’s (used) and -1’s (unused), respectively in a function
matrix. Here, an important property is that row and column
permutations in the function matrix do not alter the imple-
mented function. This is an important reconfigurability feature
for fault tolerance as illustrated in Figure 4.
Row matching with Hadamard product: In order to match
two rows from function and crossbar matrices, we use
Hadamard product by performing element-by-element multi-
plication that is similar to an inner product operation used for
vectors. If there is any negative valued element in the resulting
matrix then there is no matching; otherwise there is a valid
matching. Note that functional switches (denoted with 0) in
the crossbar matrix can be always matched with either +1’s
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Fig. 4. Row and column permutations of the function matrix to obtain a valid
mapping in case of having stuck-open faults.

TABLE II
ELEMENT COMPATIBILITY OF FUNCTION MATRIX (FM) AND CROSSBAR

MATRIX (CM).

FMik CMik FMik × CMik Matching

+1 +1 +1 3

+1 0 0 3

-1 0 0 3

-1 -1 +1 3

+1 -1 -1 5

-1 +1 -1 5

Function Matrix Row Crossbar Matrix Row

f = x1 x3 x5 + x2 x3 + x3 x4

x1 x2 x3 x4               x5

O1P1

P1  O1

I1 I2            I3 I4 I5            

Fig. 5. Hadamard product of row matrices represented by P1 and O1. The
resulting matrix has no negative element; there is a valid matching.

or -1’s in the function matrix. However, +1’s and -1’s in the
crossbar matrix can only be matched with +1’s and -1’s in the
function matrix, respectively. This is illustrated in Table II.
Additionally, Figure 5 shows an example for a valid matching
between the first rows of the matrices in case of having stuck-
closed and stuck-open faults.

B. Proposed Algorithm

The outline of our four-step algorithm is shown in Figure 6.
Step 1 starts with obtaining index sets of function and crossbar
matrices. Using the sets, crossbar matrices are sorted according
to either stuck-closed (+1) or stuck-open (-1) faults such that

Input: Function and crossbar (defective) matrices of size N ×M

Output:  YES  with valid input and output assignments if the 

matrices are matched;  NO  otherwise

Step 1 Sorting: Sort function and crossbar matrices using row 

and column index sets according to either stuck-closed 

(+1) or stuck-open (-1) faults. 

Step 2 Matching: Starting from the top row in the function 

matrix, perform matching with Hadamard product by 

advancing search from the top row to the bottom row of 

the crossbar matrix. If all of the function rows are 

matched then return  YES .

Step 3 Backtracking: If no matching is found for a function 

row then search previously matched crossbar rows from 

top to bottom. If a matching is found then repeat Step 2 

by excluding the already matched rows. 

Step 4 Repeating: If no matching is found then repeat Step 2 

(and Step 3) for PL=3000 times by randomly applying a 

pairwise crossbar column permutation . If a matching 

cannot be found under PL trials then return  NO .

Fig. 6. Outline of the proposed algorithm.
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Fig. 7. According to stuck-closed faults(+1) (a) function matrix and (b) its
sorted form.

rows and columns with the most defective elements are aligned
to the top and the left sides, respectively. Function matrices are
sorted in the same manner as shown in Figure 7. Using sorted
matrices significantly reduce the matching workload in the
next step. Note that although we treat stuck-closed and stuck-
open faults separately throughout this study, our algorithm
works properly in case having both fault types in crossbars.
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Fig. 8. An example of backtracking for the row R14.

Step 2 performs row by row matching between the sorted
matrices advancing from top to bottom. For the matched
matrices, the number of columns is always less than or equal
to the number of rows. In case, a function or a crossbar
matrix does not satisfy this, it is transposed. The reason of
this operation is to decrease the number of trials in Step 4.

If a function matrix row can not be matched with any
of the unmatched crossbar matrix rows then the algorithm
proceeds to Step 3. Figure 8 illustrates an example; numbers in
red assigned to the crossbar matrix rows represent the orders
of the corresponding matched rows in the function matrix.
Every row of the function matrix until the 14th row R14 is
matched with a row in the crossbar matrix. Since R14 cannot
be matched with any of the unmatched rows, backtracking
starts by checking the previously matched crossbar rows from
top to bottom. This results in a matching with the 4th row
followed by performing Step 2 by excluding the matched rows.
Note that after backtracking R2 becomes unmatched and is to
be matched with the unmatched crossbar matrix rows. This
prevents a recursive character that would cause a significant
computational load.

In case backtracking does not result in a valid matching,
the algorithm proceeds to Step 4 with repeating Step 2 (and
Step 3) at most PL (Permutation Limit) times. Here, column
permutations are randomly applied. Note that Step 4 is used
as a contingency plan to maintain certain performance metrics
including accuracy and success rate (Psucc). Accordingly, the
value of PL is determined. In this study, we aim to maintain
minimum of 95% success rate. For this purpose, we randomly
generate function and crossbar matrices for different crossbar
sizes with a fault rate of 15% that is an accepted upper
limit for nano-crossbars [27] and an inclusion ratio of 40%
that is a typical average value for benchmark functions. The
results using optimal size crossbars and 1.5 larger sizes than
the optimal ones are given in Figure 9 (a) and Figure 9 (b),
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Fig. 9. Minimum permutation limit PL needed to achieve 95% success rate
versus size N×M for (a) optimal size crossbars (b) 1.5 larger size crossbars.

respectively. Both graphs clearly show a steep increase after
PL exceeds 2000. It means that selecting PL considerably
larger than 2000 does slightly improve the success rate of the
algorithm while it would increase the runtime significantly.
We select PL = 3000 in this study. Indeed, our algorithm
proceeds to Step-4 only for very small portion of benchmark
simulations that are thoroughly explained in Section IV.

Since permutations are performed column wise, we expect
much stronger relation of PL with the number of columns
M compared to the number of rows N . The relation between
PL and M can be relatively examined with the following
probability analysis. Consider function and crossbar matrix
rows to be matched. In case of having stuck-closed faults with
a fault probability of pf , probability of having a valid matching
between these rows can be found as:

Prm(M,a, b) =
(M−a
f1−a)
(M

b )

where a = pf ·M and b = IR·M represent expected values for
the number of 1’s in crossbar and function rows, respectively.
Additionally, probability of having a valid matching after
performing a pairwise permutation (initially no matching) can
be found as

Prp(M,a, b) =
a·[b−a+1]·( M−a

b−a+1)
(M

2 )·[(M
b )−(M−a

b−a )]
.

By considering constant IR and pf values, we can comment
that 1) increasing M makes Prp decrease; 2) decreasing Prp
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reduces the effectiveness of performing a permutation 3) PL
is negatively correlated with Prp; 4) if Prp decreases to rela-
tively small levels then increasing PL would not significantly
contribute in finding a valid matching that is also verified by
the results in Figure 9.

A pseudo code of the proposed heuristic algorithm is
depicted in Algorithm below. The algorithm yields input and
output arrays that establish a valid mapping or a correct
assignment of a target function into a defective crossbar.

C. Performance Evaluation

Our algorithm uses a constant permutation for one dimen-
sion (column) and advancing through the other one (row) that
reduces the number of operations for finding a valid mapping
[20] [23]. Instead of using conventional two dimensional
matchings of matrices, our algorithm performs considerably
faster one dimensional matrix row matchings. Our motivation
is that the main problem of mapping target functions has many
different solutions. Therefore probable information lost in one
dimensional check can be easily compensated; backtracking
and repeating is also for this purpose. Here, an important
factor is the relation between logic inclusion ratio (IR) and
fault rate. For a constant IR around 40%, a typical average
value for standard benchmark functions, an increase in the
fault rate especially beyond 25% significantly reduces the
number of mapping solutions that worsens the performance
of our algorithm. For fault rates below 25%, our algorithm
works satisfactorily in terms of both runtime and accuracy with
surpassing related algorithms in the literature. Our algorithm’s
performance is also justified with a complexity analysis as
follows and detailed experimental results in Section IV.

Consider a function/crossbar matrix with a size of N ×M
where N ≥ M . The number of initial operations for every
row checking is M for multiplication plus M for comparison,
so in total of 2M . Additionally, each function row is matched
with N crossbar rows, so 2M · N operations are needed. In
case of backtracking, another N rows need to be checked that
results in 2M · [N + N ] operations. For all of the function
rows, there are N · [2M · [N + N ]] operations. Considering
PL trials in the last step of the algorithm, the number of
operations become (PL + 1) · [2 ·M · [N + N ]]. If we select
a constant number for PL = 3000 that is independent of M ,
our algorithm works in O(M · N2) time. Of course, for the
worst-case scenario where M ! permutations are performed, the
complexity becomes factorial.

III. TRANSIENT FAULT TOLERANCE

Regarding the probabilistic and the continuous feature of
transient faults in time domain, their tolerance can not be
achieved by applying the same technique used for perma-
nent faults that is based on fault identification followed by
reconfiguration. Transient fault tolerance is purely based on
redundancy. For nano-crossbar arrays, redundancy is corre-
lated with the logic inclusion ratio (IR) as well as the used
sum-of-product representations of target functions.

Similar to permanent faults, we consider stuck-open and
stuck-closed transient faults that are treated separately. We

Algorithm Heuristic Algorithm
1: Input: Function Matrix (FM ), Crossbar Matrix (CM ),

and Permutation Limit PL
2: Output: I[i] and O[i] arrays
3:
4: function INDEX SORT(M )
5: IR,M ← Row Index Set according to the selected fault

type
6: IC,M ← Column Index Set according to the selected

fault type
7: Sort IR,M descending
8: Sort IC,M descending
9: row permutation ← IR,M

10: column permutation ← IC,M

11: M ←M [row permutation, column permutation]
12: return M
13: end function
14:
15: INDEX SORT(FM )
16: I[i] ← column permutation of FM
17: INDEX SORT(CM )
18: for t=1 to PL do
19: O[i] = []
20: if t > 1 then
21: change column permutation
22: I[i] ← column permutation
23: end if
24: for k=1 to N do
25: F k ← kth row of FM
26: for j=1 to N and O[j] = [] do
27: C j ← jth row of CM
28: if F k .* C j ≥ 0 then
29: O[k] = j
30: break
31: end if
32: end for
33: if no matching then . Backtracking process
34: for j in O[i] do
35: C j ← jth row of CM
36: if F k .* C j ≥ 0 then
37: O[k] = j
38: break
39: end if
40: end for
41: end if
42: if matching found then . O[i] changed
43: F m ← previously matched row of FM
44: for j=1 to N and O[j] = [] do
45: C j ← jth row of CM
46: if F m .* C j ≥ 0 then
47: O[m] = j . Rematching process
48: break
49: end if
50: end for
51: end if
52: if no matching found for F m then
53: break . column permutation changes
54: end if
55: end for
56: end for
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Fig. 10. Implementations in the presence of (a) no faults (b) stuck-open faults,
and (c) stuck-closed faults.

suppose that target functions are implemented in irredundant
sum-of-products (ISOP) forms to minimize the number of used
switches for cost optimization in fabrication. We analyse fault
tolerance performance of nano-crossbar arrays by considering
the specifics of target functions. Figure 10 shows an example.
A given target function f in ISOP form is implemented with a
fault-free crossbar shown in Figure 10 (a). When a stuck-open
fault occurs on a used switch (denoted with +1’s) as shown
in Figure 10 (b), the corresponding literal is erased from the
target function and the corresponding matrix element becomes
-1. In this example, since the new function f ′ is not equal to
the original function f , the fault cannot be tolerated. When a
stuck-closed fault occurs on an unused switch (denoted with
-1’s) as shown in Figure 10 (c), the corresponding literal is
added to the target function and the corresponding matrix
element becomes +1. Here, the new function f ′′ is equal to
f , so the fault is tolerated.

A. Stuck-Open Faults

Stuck-open faults are tolerated iff they occur on unused
switches. Faults on used switches change the implemented
functions. Since we use ISOP forms of target functions
consisting of prime implicants, by definition removing any
literal from a prime implicant results in a new function. Fault
tolerance performance FTso of an N ×M crossbar can be
directly calculated by using

FTso = (1− pso)N ·M ·IR

Faults effecting 3 products

Faults effecting 1 product

f = x1 x2 + x1 x2 x5 + x2 x3 x4 + x4 x5

x1 x2 x3 x4 x5 x1 x2 x3

P1

P2

P3

P4

P5

Faults effecting 2 products

Fig. 11. Tolerable and intolerable (with red crosses) fault positions.

where pso is an independent stuck-open fault probability of
each switch and IR is the logic inclusion ratio. Note that our
analysis for stuck-open faults is applicable for both single-
output and multi-output functions.

B. Stuck-Closed Faults

We show that along with all stuck-closed faults occurring on
used switches, faults on unused switches can also be tolerated.
This is illustrated in Figure 11 with a brief summary of our
tolerance analysis method. We determine all possible positions
of tolerable faults on unused switches in the crossbar. These
positions, represented by added +1’s in red in Figure 11,
are determined recursively. First, tolerable fault positions in
single rows are determined. For the example in Figure 11,
among 5 rows representing 5 products of the target function,
3 of them have the positions. Therefore there are 3 matrices
showing tolerable fault positions. Analysing the first matrix at
the upper-left corner, we conclude that a stuck-closed fault in
the first row at the right end of the crossbar can be tolerated;
f ′ = x1x2x3 + x1 x2x5 + x2x3 + x3x4 + x4x5 = f . The
same is valid for the second and the third matrices as well.
Next, we determine tolerable fault positions simultaneously
occurring in all of the three rows. For the example in Figure
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11, there is no solution for this case, so we proceed to next
steps by decreasing the number of rows that the faults are seen
until there is a solution. Among

(
3
2

)
= 3 probable row pairs

with tolerable fault positions, 2 of them have solutions.
In order to find all possible positions of tolerable faults, we

exploit logic equivalences of Boolean expressions. Consider
a given target function f = P1 + ... + Pm in ISOP form.
Stuck-closed faults on unused switches add literals to the
corresponding products that results in a new function named
ft. Our main purpose is finding all ft’s such that ft = f .
Two examples of ft’s corresponding to the top two matrices
in Figure 11 are ft1 = x1x2x3+x1 x2x5+x2x3+x3x4+x4x5

and ft2 = x1x2 + x1 x2x5 + x1x2x3 + x3x4 + x4x5. Added
products of literals, shown in red, are named as Pti ’s where i
represents the corresponding product number. As an example,
ft1 has Pt1 = x3; ft2 has Pt3 = x1. A general form of ft can
be represented as

ft{i,..,k} = P1 + ... + PiPti + ... + PkPtk + ... + Pm

where the subscript of f , {i, .., k} set shows which products
have added literals.

Our method for finding all ft{i,..,k} = f ’s has two steps. In
the first step, we determine tolerable fault positions affecting
single products. We obtain all ft{i} ’s and corresponding Pti ’s,
1 ≤ i ≤ m for which a necessary and sufficient condition is
given in Theorem 1. In the second step, we first construct
an ft such that it has all Pti ’s obtained in the first step. If
the ft is equal to the target function f then we are done
with finding all tolerable fault positions; no further steps are
necessary as justified by Theorem 2. If the functions are not
equal to each other then we advance through decrementing
the number of products affected by faults. We repeat this
until the equivalence(s) are satisfied.

As a core property used in the theorems, we first present
the following lemma.

Lemma 1: Consider f1 = P1+...+Pi+...+Pm, 1 ≤ i ≤ m,
in SOP form and f2 = S1 · · ·Sk in POS form. Additionally,
f3 in SOP form is obtained by removing a sum Sj , 1 ≤ j ≤ k,
from f2. If P1 + ... + Pi · f2 + ... + Pm = f1 then P1 + ... +
Pi · f3 + ... + Pm = f1.

Proof: It is apparent that P1 + ... + Pi · f3 + ... + Pm =
P1 + ...+ Pi · f3 · (Sj + Sj) + ...+ Pm = f1 + P1 + ...+ Pi ·
f3 · Sj + ... + Pm = f1.

Theorem 1: Consider a function gi = f − Pi in ISOP form
(Pi is excluded from f ). Iff Pti consists of negated forms of
single-literal products in gi(Pi = 1) in ISOP form, f = ft{i} .

Proof: It is trivial that f = Pigi+gi = Pigi(Pi = 1)+gi.
Here, gi(Pi = 1) is a POS expression with sums having either
single literal or multi literals. Single-literal sums are negated
forms of single-literal products in gi(Pi = 1). To eliminate
multi-literal sums from Pigi(Pi = 1), we can directly apply
Lemma 1 with guaranteeing f = ft{i} . To prove sufficiency,
we also show that each literal from Pti should correspond
to a negated form of a single-literal product in gi(Pi = 1).
Consider a literal li from Pti . From Lemma 1, we know that

f = Pili + gi. Since f(Pi = 1) = 1, li + gi(Pi = 1) = 1.
This necessitates having a product li in gi(Pi = 1) in ISOP
form.

Theorem 2: If ft{i,..,k} = f , then for ∀x ⊂ {i, .., k}, ftx = f .

Proof: The proof is a direct corollary of Lemma 1 from
which we know that we can remove any literal (s) from Pti ’s
without disturbing the equivalence with f .

Theorem 1 allows us to separately construct Pti ’s showing
tolerable fault positions for each Pi. Additionally, removing a
literal from Pti ’s does not ruin the functionality as justified by
Lemma 1 that are considered in our fault tolerance analysis.

Theorem 2 significantly reduces the computing load of
finding tolerable fault positions. For example, if we find for
a target function f that ft3,4,8,9 = f , then all tolerable fault
combinations affecting products of P3, P4, P8, and P9 are
known. For example, ft3,8,9 = f or ft4,9 = f .

We present an example to elucidate our method.

Example 1: Consider a target function in ISOP form
f = x1x2x3 + x2x4x5 + x3x4 + x3x5. Literal set (LS) of f
is LS = {x1, x2, x3, x4, x5, x2, x5}.

1.Step: We find faults affecting single products by exploiting
Theorem 1. We only consider literals being member of LS.

g1(P1 = 1) = x4x5

Pt1 = x5

g2(P2 = 1) = x3

Pt2 : not a member of LS

g3(P3 = 1) = x1x2x5

Pt3 = x2, Pt3 = x5, Pt3 = x2x5

g4(P4 = 1) = x4(x1 + x2)
Pt4 : not a member of LS

2.Step: We first check whether f equals to ft{1,3} having
Pt1 , Pt3 . We start with Pt3 having the largest number of
literals.
Pt1 = x5

Pt3 = x2x5

f = x1x2x3 + x2x4x5 + x3x4 + x3x5

ft{1,3} = x1x2x3x5 + x2x4x5 + x2x3x4x5 + x3x5

Since f = ft{1,3} , Theorem 2 ensures that Pt3 = x2

and Pt3 = x5 also makes f = ft{1,3} . Additionally,
f = ft{1,3} = ft{1} = ft{3} . Note that our fault tolerance
calculations consider all possible literal combinations of Pt’s.
As a result, all tolerable stuck-closed fault positions are found.

Fault tolerance performance FTsc of an N ×M crossbar
can be calculated by using

FTsc =

max{AL}∑
i=0

Ci(1− psc)
Z−ALipALi

sc
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where psc is an independent stuck-closed fault probability of
each switch; Ci is the number of cases tolerating i faults; ALi

is the number of added literals to the function f representing
the number of faulty switches; and Z = N ·M · (1 − IR).
Note that Z −ALi represents the number of unused switches
in crossbars. Note that C0 represents a fault-free condition and
always C0 = 1. For Example 1, N = 4, M = 7, and IR =
10/28 that results in Z = 18. Additionally C1 = 3, C2 = 3
and C3 = 1, and suppose that psc = 2%. As a result, FTsc is
calculated as 74%.

Fault Tolerance for Multi-Output Functions
Although we develop our method for stuck-closed faults

using single-output functions, we can directly apply it to multi-
output functions. We only need a modification for the first step
of our method, obtaining all Pti ’s. First, we need to obtain all
Pti ’s for each output function separately. If a product is used
by multiple outputs then only common Pti ’s for this product
are used. If a product is used by a single output then we use
all of the corresponding Pti ’s. After having Pti ’s in the first
step, we follow the same procedure as we do in the second
step of our method developed for single-output functions. To
elucidate our method for multi-output functions, we present
an example.

Example 2: Considering target functions in ISOP
form f1 = x1x2 + x1x3 + x2x4 + x3x5 and
f2 = x1x2 + x1x3 + x2 x4 + x4x5. Implementation is
shown in Figure 12. Literal set (LS) of f1 and f2 is LS =
{x1, x2, x3, x4, x5, x2, x3, x4}.

1.Step: We find faults affecting single products by exploiting
Theorem 1. We only consider literals being member of LS.

For f1:
g1(P1 = 1) = x3x4

Pt1 = x3, Pt1 = x4, Pt1 = x3x4

g2(P2 = 1) = x2

Pt2 = x2

g3(P3 = 1) = x1

Pt3 : not a member of LS

g4(P4 = 1) = (x1x4 + x2)
Pt4 : no single literal

For f2:
g1(P1 = 1) = x3(x4 + x5)
Pt1 = x3

g2(P2 = 1) = x2x4x5

Pt2 = x2, Pt2 = x4, Pt2 = x2x4

g3(P3 = 1) = (x1 + x3)
Pt3 : no single literal

g4(P4 = 1) = (x1 + x2x3)

x1 x2 x3 x4 x5 x2 x3 x4

Multi-Output Implementations

f1 = x1 x2 + x1 x3 + x2 x4+ x3 x5

f2 = x1 x2 + x1 x3 + x2 x4 + x4 x5

Common Products

f2

f1

f1 & f2

Fig. 12. A crossbar implementation in case of multi-outputs showing common
products found in f1 and f2.

Pt4 : no single literal

Since P1 and P2 are common products, we should choose
common Pt’s for these products that are Pt1 = x3 and
Pt2 = x2, so the tolerance condition is met for both functions.

2.Step: We first check whether f1 equals to f1,t{1,2} .
Pt1 = x3

Pt2 = x2

f1,t{1,2} = x1x2x3 + x1x2 x3 + x2 x4 + x3x5

Since f1,t{1,2} 6= f2 and no more products left, we stop.

We check whether f2 equals to f2,t{1,2} .
Pt1 = x3

Pt2 = x2

f2,t{1,2} = x1x2x3 + x1x2 x3 + x2 x4 + x4x5

Since f2,t{1,2} 6= f2 and no more products left, we stop.

For the above example, N = 6, M = 8, and IR = 16/48
that results in Z = 32. Additionally, C1 = 2 and suppose that
psc = 2%. As a result, FTsc is calculated as 54%.

C. Performance Evaluation

Our method finds all probable places of tolerable stuck-open
and stuck-closed transient faults occurring in nano-crossbars.
Using our method transient fault tolerance performances of the
crossbars can be also calculated. As opposed to the methods
using randomly assigned faults on crossbars such as a Monte
Carlo method, our method purely uses algebraic equations to
find fault performances. This allows to achieve accurate results
even for considerably large crossbars.

Table III shows fault tolerance performances FTso and
FTsc for few benchmark functions with a fault probability of
5%. For stuck-open faults, since it is not possible to tolerate
faults occurring on used switches, the performance is directly
calculated using the logic inclusion ratio and the crossbar size.
However, for stuck-closed faults there are some cases such
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TABLE III
PERFORMANCE OF BENCHMARK FUNCTIONS FOR TRANSIENT FAULTS

WITH 5% FAULT RATE.

Circuit Name Stuck-open Stuck-closed
Direct Accurate results with
results the proposed method

B12 1 23% 16% 21%
B12 6 19% 14% 16%
B12 7 19% 14% 19%
C17 0 73% 73% 77%
Dc1 2 54% 44% 53%
Dc1 6 73% 63% 66%

Misex1 7 48% 32% 35%

that faults on unused switches are tolerated. Table III shows
results derived by neglecting these cases (direct results) and by
considering them via the proposed method (accurate results);
there is as high as 9% difference between the values.

Our method is applicable to both single-output and multi-
output functions as justified in the previous section. Another
important consideration is redundancy. Although in this study,
we suppose that target functions are implemented in irredun-
dant sum-of-products (ISOP) forms to minimize the number of
used switches for cost optimization in fabrication, this is not a
necessary condition to apply our tolerance method. In case of
having redundancy in literal level with addition of literals to
products, by keeping the number of products same, our method
is directly applicable to find all possible positions of tolerable
faults in the crossbar. We only need to have an ISOP form of
the given expression in SOP form. Indeed, adding a literal to
a prime implicant is the base of our method for stuck-closed
faults. Here, the difference comes in the calculation of fault
tolerance performances FTso and FTsc; given formulas in the
previous section need to be updated that would result in an
increase and decrease in FTso and FTsc values, respectively.

In case of having redundancy in product level, having mul-
tiple lines/wires implementing the same product (as a prime
implicant), our method can be directly applicable for stuck-
open faults including the calculation of FTso since removing
any literal from a prime implicant results in a new function.
However, for suck-closed faults we need modifications espe-
cially for Theorem 1. Here, if a product Pi is implemented A
times then for each of the A wires, we need to calculate Pti ’s
by considering negated forms of products having at most A
literals in gi(Pi = 1). The calculation of FTsc should be also
changed accordingly. One can also consider redundancy both
in literal and product levels. Lets explain this with an example
using different implementations with different redundancies:

Example 3: Consider a target function in ISOP form f =
x1x2x3 + x2x4x5 + x3x4 + x3x5 that is the same function
used in Example 1. Consider different implementations of f
using different types of redundancies in Figure 13.

Figure 13 (a) shows an implementation of f with literal
level redundancy by a 4 × 7 crossbar. Assume that we have
a 5% stuck-open fault rate. Tolerable cases become no fault
with (1 − 0.05)12 = 54% probability, single fault with
2 × (1 − 0.05)110.051 = 5% probability, and two faults
with (1 − 0.05)100.052 = 0.1% probability. At the end
FTso = 54% + 5% + 0.1% ≈ 60%. For stuck-closed faults,
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Tolerable faults

Tolerable faults

There are no tolerable faults 

f = x1 x2 x3 x5 + x2 x4 x5 + x3 x4 x5 + x3 x5 

f = x1 x2 x3 + x1 x2 x3 + x2 x4 x5 + x3 x4 + x3 x5 

f = x1 x2 x3 + x1 x2 x3 + x2 x4 x5 + x3 x4 x5 + x3 x5 

Fig. 13. Tolerance with redundancy based implementations (a) literal level
redundancy (b) product level redundancy (c) literal and product level redun-
dancy.
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we already determine the tolerable positions in Example 1
as Pt1 = x5, Pt3 = x2x5, and their literal combinations.
It is shown in Figure 13 (a) that Pt1 = x5 and Pt3 = x5

are covered by literal redundancies, so only tolerable fault is
Pt3 = x2. In this case, N = 4 and M = 7 that results in
Z = 16. Additionally C1 = 1, and suppose that psc = 2%.
As a result, FTsc is calculated as 73%.

Figure 13 (b) shows an implementation of f with product
level redundancy by a 5×7 crossbar. Even though a redundant
product is used, we are still working with prime implicants. So
no literal can be erased from any product. Therefore, with a
5% stuck-open fault rate, FTso becomes (1−0.05)13 = 51%.
For stuck-closed faults, it is shown in Figure 13 (b) that an
extra tolerable fault x5 comes from the product redundancy, so
Pt1 = x5, Pt3 = x2x5, and Pt1 = x5. Calculating all literal
combinations with N = 5 and M = 7 results in Z = 22.
Additionally, C1 = 4, C2 = 6, C3 = 4, and C4 = 1. Also
suppose that psc = 2%. As a result, FTsc is calculated as
69%.

Figure 13 (c) shows an implementation of f with with
literal and product level redundancies by a 5 × 7 crossbar.
Assume that we have a 5% stuck-open fault rate. Tolerable
cases become no fault with (1 − 0.05)14 = 48% probability
and single fault with (1− 0.05)130.051 = 2% probability. At
the end, FTso = 48% + 2% = 50%. For stuck-closed faults,
Pt3 = x5 is covered by a literal redundancy, so Pt1 = x5,
Pt1 = x5, and Pt3 = x2. In this case, N = 5 and M = 7,
that results in Z = 21. Additionally, C1 = 3, C2 = 3, and
C3 = 1. Also suppose that psc = 2%. As a result, FTsc is
calculated as 69%.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for our algo-
rithm dealing with permanent faults given in Section II. We use
standard benchmark circuits to measure fault tolerance perfor-
mances of nano-crossbars [28]. We mostly consider an inde-
pendent fault probability/rate (Pf) of 15% for each crosspoint
that is an accepted upper limit for nano-crossbars [27]. We
also try higher fault rates to test our algorithm’s performance
limits. Simulations are conducted in MATLAB. Crossbars with
random faults are produced with MATLAB’s predetermined
matrix generator; only stuck-open faults are considered for
consistency. All experiments run on a 3.30GHz Intel Core i5
CPU (only single core used) with 4GB memory. All the bench-
mark functions used in the simulations and the source code of
proposed algorithm with supporting material are available at
http://www.ecc.itu.edu.tr/images/f/f2/Fault Tolerant Logic
Mapping MATLAB.zip

A. Runtime, Success Rate, and Accuracy

For a given target function with a certain function matrix
size, we consider crossbar matrices both in optimal row-
column sizes and in 1.5 times larger sizes. Although optimal
crossbar sizes are desired for area considerations, it is quite
challenging to find a mapping and that is why using 1.5 larger
sizes are preferred in the literature [16] [17] [18] [22]. The
larger the crossbar, the easier to find a valid mapping due to
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Fig. 14. Accuracy of the proposed algorithm for optimal size crossbars using
8 different benchmark circuits.

an exponential increase in solution space regarding the number
of probable permutations.

Table IV shows runtime and success rate values of the
proposed algorithm for benchmark circuits with 15% stuck-
open fault rate. We select a sample size of 600 around which
average runtime and success rate (probability of success -
Psucc) values become steady. Success rate is calculated as a
ratio of the number of samples with valid mappings/matchings
to the total sample size of 600. As seen from the table, our
algorithm successfully finds mappings for considerably large
benchmark circuits. To our knowledge no other algorithm is
able to find a valid mapping for benchmarks “table5” and
“t481”. Examining the numbers in Table IV, we see that our
algorithm does not need a permutation for 1.5 larger crossbars.
We also see that although selecting 1.5 larger crossbars always
reduces the runtime values, it does not necessarily result in
better fault tolerance performances. Optimal size crossbars
can also perfectly tolerate faults. To elaborate on this, we
perform accuracy analysis as shown in Figure 14. We compare
our optimal size mapping results with those of an exhaustive
search algorithm. Since it is intractable to implement an
exhaustive search for crossbar sizes larger than 7 × 7, only
results pertaining to this limit are presented in Figure 14 that
show an accuracy of at least 99% for 8 different benchmarks
BM1 through BM8.

In Table V and Table VI, runtime comparisons of the
memetic algorithm with fitness approximation (MA/FA) [22]
and the proposed heuristic algorithm are given. We use the
memetic algorithm since to our knowledge it is the fastest and
the most efficient algorithm especially for large crossbars. We
run the publicly posted code from [22] and tailor it for our
benchmark functions which is not included in the referenced
paper.

Examining the numbers in Table V and Table VI, we see that
our runtime values are always better than those of the memetic
algorithm. The memetic algorithm is not able to find a valid
mapping for large functions such as 9sao, table5, and t481
under a reasonable time constraint. Additionally, while runtime
values of the memetic algorithm for large benchmark circuits
produce relatively high standard deviation, our runtimes are
almost stable. Another aspect is that, the memetic algorithm
is not as immune to an increase in fault rate as the proposed
algorithm does.

http://www.ecc.itu.edu.tr/images/f/f2/Fault_Tolerant_Logic_Mapping_MATLAB.zip
http://www.ecc.itu.edu.tr/images/f/f2/Fault_Tolerant_Logic_Mapping_MATLAB.zip
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TABLE IV
SUCCESS RATE (%), RUNTIME (S), AND AVERAGE PERMUTATION VALUES OF THE PROPOSED ALGORITHM FOR OPTIMAL AND 1.5 LARGER CROSSBAR

SIZES WITH 15% STUCK-OPEN FAULT RATE.

Benchmark Size IR Optimal Size 1.5 Larger Size
Psucc Runtime(s) Avg. Per. Psucc Runtime(s) Avg. Per.

5xp1 75 x 14 28% 100% 0.001 0 100% 0.001 0
inc 34 x 14 40% 95% 0.29 450 100% 0.001 0
clip 167 x 18 29% 100% 0.032 4 100% 0.01 0

misex2 50 x 29 12% 100% 0.005 4 100% 0.002 0
9sym 87 x 18 33% 100% 0.008 1 100% 0.005 0
bw 65 x 10 35% 100% 0.01 4 100% 0.002 0

rd53 32 x 10 45% 100% 0.003 5 100% 0.001 0
rd73 141 x 14 42% 100% 0.13 18 100% 0.01 0
9sao 58 x 20 36% 0% 3.85 3000 100% 0.003 0

table5 158 x 34 36% 0% 27.7 3000 100% 0.02 0
t481 481 x 32 30% 0% 362.08 3000 100% 0.2 0

TABLE V
SUCCESS RATE (%) AND RUNTIME (SECOND) VALUES OF THE MEMETIC AND THE PROPOSED ALGORITHMS FOR 1.5 LARGER CROSSBAR SIZES WITH

DIFFERENT STUCK-OPEN FAULT RATES.

Benchmark Size
MA/FA [22] Proposed Algorithm

Pf=15% Pf=20% Pf=30% Pf=15% Pf=20% Pf=30%
Psucc Time Psucc Time Psucc Time Psucc Time Psucc Time Psucc Time

5xp1 75 x 14 100% 0.702 - - - - 100% 0.001 100% 0.003 100% 0.003
inc 34 x 14 100% 0.110 67% 14.93 - - 100% 0.001 100% 0.007 100% 0.007
clip 167 x 18 100% - - - - - 100% 0.01 100% 0.015 100% 0.020

misex2 50 x 29 100% 0.008 100% 0.354 100% 0.374 100% 0.002 100% 0.020 100% 0.028
9sym 87 x 18 100% 0.109 - - - - 100% 0.005 100% 0.005 100% 0.007
bw 65 x 10 100% 0.798 - - - - 100% 0.002 100% 0.001 100% 0.002

rd53 32 x 10 100% 0.074 100% 0.336 82% 12.67 100% 0.001 100% 0.001 100% 0.001
rd73 141 x 14 - - - - - - 100% 0.01 100% 0.012 100% 0.021
9sao 58 x 20 - - - - - - 100% 0.003 100% 0.003 0% 6.65

table5 158 x 34 - - - - - - 100% 0.024 0% 51.38 0% 36.38
t481 481 x 32 - - - - - - 100% 0.208 100% 0.303 0% 423.2

TABLE VI
SUCCESS RATE (%) AND RUNTIME (SECOND) COMPARISON OF THE MEMETIC AND THE PROPOSED ALGORITHMS FOR 16× 16 AND 24× 24 SIZE

BENCHMARKS USING 1.5 LARGER CROSSBAR SIZES, STUCK-OPEN FAULT RATE: 15%, IR: 40%.

Size = 16 × 16 Size = 24 × 24

No
MA/FA [22] Proposed Algorithm MA/FA [22] Proposed Algorithm

Psucc Runtime(s) Psucc Runtime(s) Psucc Runtime(s) Psucc Runtime(s)
1 100% 0.004 100% 0.002 100% 0.006 100% 0.002
2 100% 0.002 100% 0.001 100% 0.005 100% 0.001
3 100% 0.002 100% 0.001 100% 0.004 100% 0.002
4 100% 0.004 100% 0.001 100% 0.005 100% 0.002
5 100% 0.007 100% 0.001 100% 0.004 100% 0.001
6 100% 0.003 100% 0.001 100% 0.004 100% 0.002
7 100% 0.003 100% 0.001 100% 0.004 100% 0.001
8 100% 0.003 100% 0.001 100% 0.005 100% 0.001
9 100% 0.004 100% 0.001 100% 0.005 100% 0.002

10 100% 0.003 100% 0.001 100% 0.005 100% 0.002
11 100% 0.002 100% 0.001 100% 0.006 100% 0.002
12 100% 0.007 100% 0.001 100% 0.005 100% 0.002
13 100% 0.004 100% 0.001 100% 0.005 100% 0.002
14 100% 0.007 100% 0.001 100% 0.004 100% 0.001
15 100% 0.002 100% 0.001 100% 0.005 100% 0.001
16 100% 0.003 100% 0.001 100% 0.007 100% 0.002
17 100% 0.008 100% 0.001 100% 0.005 100% 0.001
18 100% 0.003 100% 0.001 100% 0.004 100% 0.002
19 100% 0.002 100% 0.001 100% 0.007 100% 0.002
20 100% 0.002 100% 0.001 100% 0.004 100% 0.001
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Fig. 15. Number of permutations to find a valid mapping for each sample
using optimal size crossbars.
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Fig. 16. Success rate versus fault rate; inc, bw, and 5xp1 have IR’s of 40%,
35%, and 28%, respectively.

B. Effectiveness and Limitations

In our algorithm if no matching is found initially, column
permutations are changed to find a matching that is repeated at
most PL times. Experimentally we found that PL = 3000 for
our benchmarks. The reason of selecting 3000 as a trial limit is
our goal of maintaining minimum of 95% success rate. Indeed,
for most cases repeating is not necessitated. Especially for 1.5
larger crossbar sizes, no permutation is needed at all; all results
with having non zero success rates in Table IV, Table V, and
Table VI do not need any a permutation (PL = 0). However,
for optimal sizes, we sometimes need permutations; Figure 15
illustrates this by presenting the number of permutations for
different benchmark circuits using 50 samples.

We explore our algorithm’s performance limitations by
increasing fault rates and row/column sizes. The limitations
are directly correlated to the size of the solution space. As
expected, the solution space diminishes if fault rates are getting
close to IR and 1-IR in the presence of stuck-closed, and
stuck-open faults, respectively. This is illustrated in Figure 16
for stuck-open faults using 1.5 times larger crossbars. Here,
success rates drop sharply after certain threshold values that
are positively correlated with 1-IR values of the benchmarks.
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Fig. 17. Runtime changes with an increase in either row or column size,
IR=40%.

Increasing row or column sizes also affect the solution
space. Recall that our algorithm uses a constant permutation
for one dimension (column) and advancing through the other
one (row) that reduces the number of operations for finding a
valid mapping. Therefore, while increasing row sizes does not
directly affect the solution space for matchings, an increase
in column size dramatically reduces it. To overcome this
problem, our algorithm transposes given matrices to satisfy
that the number of columns is always less than or equal to
the number of rows. To see the effects of column and row
increases to our algorithm, we discard transposing operation.
The results are given in Figure 17 for stuck-open faults using
1.5 times larger crossbars and IR=0.4. As it appears from the
figure, the runtime sharply increases from 0.002s to 1.2s if the
crossbar size increases from 48× 30 to 48× 42. As a result,
for the same size crossbars, same N ·M , our algorithm works
more satisfactorily if the crossbar column and row sizes are
more apart from each other.

Another limitation of our algorithm would be its accuracy in
case of having a small solution space. Indeed, this is a general
problem for heuristic algorithms. To overcome this problem,
exact algorithms exploiting a sub-graph isomorphism can be
used [29] if runtime is not a main concern. In addition, a
slower algorithm using pruning techniques can be exploited
[30].

V. CONCLUSION

In this study, we propose a fast heuristic algorithm to toler-
ate permanent faults in nano-crossbar arrays by exploiting the
techniques of index sorting, backtracking, and row matching.
The algorithm’s effectiveness is demonstrated on standard
benchmark circuits in comparison with the related studies
in the literature. Also we develop a method to accurately
analyse transient fault tolerance of nano-crossbar arrays. The
method formally and recursively finds tolerable fault positions
represented by Boolean logic expressions. Using the method,
transient fault tolerance performances of the crossbars can be
calculated.
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Throughout this study, we treat stuck-closed and stuck-open
faults separately. Indeed, for permanent faults our algorithm
works properly in case having both fault types in crossbars.
Matrices are sorted according to stuck-closed and stuck-open
faults in case of having a higher stuck-closed and stuck-
open fault rates, respectively. However, the efficiency of the
algorithm would not be satisfactory if we have close fault rates.
This is considered as a future work. Another future direction
is to develop circuit design and optimization techniques for
given fault tolerance specifications by simultaneously treating
permanent and transient faults. We also aim to extend this
study to be applicable for different emerging technologies
including magnetic, memristive, and organic switch based
nanoarrays.
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“A hybrid nano-cmos architecture for defect and fault tolerance,” ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol. 5,
no. 3, p. 14, 2009.

[24] I. Polian and W. Rao, “Selective hardening of nanopla circuits,” in
Defect and Fault Tolerance of VLSI Systems, 2008. DFTVS’08. IEEE
International Symposium on. IEEE, 2008, pp. 263–271.

[25] W. Rao, A. Orailoglu, and R. Karri, “Logic level fault tolerance
approaches targeting nanoelectronics plas,” in Design, Automation &
Test in Europe Conference & Exhibition, 2007. DATE’07. IEEE, 2007,
pp. 1–5.

[26] S. Baranov, I. Levin, O. Keren, and M. Karpovsky, “Designing fault
tolerant fsm by nano-pla,” in On-Line Testing Symposium, 2009. IOLTS
2009. 15th IEEE International. IEEE, 2009, pp. 229–234.

[27] M. Haselman and S. Hauck, “The future of integrated circuits: A survey
of nanoelectronics,” Proceedings of the IEEE, vol. 98, no. 1, pp. 11–38,
2010.

[28] K. McElvain, “Iwls’93 benchmark set: Version 4.0,” in Distributed as
part of the MCNC International Workshop on Logic Synthesis, vol. 93,
1993.

[29] A. Aho, J. Hopcroft, and J. Ullman, “Computers and intractability: A
guide to np-completeness,” 1979.

[30] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph
isomorphism algorithm for matching large graphs,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 26, no. 10, pp. 1367–
1372, 2004.


	Introduction
	Definitions

	Permanent Fault Tolerance
	Preliminaries
	Proposed Algorithm
	Performance Evaluation

	Transient Fault Tolerance
	Stuck-Open Faults
	Stuck-Closed Faults
	Performance Evaluation

	Experimental Results
	Runtime, Success Rate, and Accuracy
	Effectiveness and Limitations

	Conclusion
	References

