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ABSTRACT This paper aims to exploit approximate computing units in image processing systems
and artificial neural networks. For this purpose, both a general design methodology is introduced and
approximation-oriented architectures are developed for different applications. This paper proposes a method
to compromise power/area efficiency of circuit-level design with accuracy supervision of system-level
design. The proposed method selects approximate computational units that minimizes the total computation
cost, yet maintaining the ultimate performance. This is accomplished by formulating a linear programming
problem, which can be solved by conventional linear programming solvers. Approximate computing units
such as multipliers, neurons, and convolution kernels which are proposed by this work are suitable for
power/area reduction through accuracy scaling. The formulation is demonstrated on applications in image
processing, digital filters, and artificial neural networks. This way, the proposed technique and architectures
are tested with different approximate computing units, as well as system-level requirement metrics such as
PSNR and classification performance.

INDEX TERMS Approximate computing, artificial neural networks, field programmable gate arrays, high-
level synthesis, image processing.

I. INTRODUCTION
Approximate computing is an ever-growing approach in
computation and it recently gained an importance in
power/area efficient electronics. Research is mainly focused
on these two areas: design and modeling of approximate
computing circuits, and analysis of system components for
their error resilience.

From circuit design point of view, in the past decade,
there is a rapid acceleration in approximate circuit synthe-
sis methods, ranging from logic circuits to arithmetic units
such as adders and multipliers [1]– [3]. Moreover, a Verilog
based framework called Axilog [4] is also presented enabling
design and reuse of approximate circuits in language abstrac-
tion level. Innovations on approximate circuits empowers
system designers to promote these circuits in their error
resilient applications. More complex computation units such
as general purpose approximate computing machines [5],
and vector processors [6]– [7] are also available. However,
a system level study is not performed by the circuit design

methods so they do not provide a system level optimization
exploiting the area and power benefits of these circuits.

From system analysis point of view, a systematic frame-
work for analysis and characterization of inherent application
resilience gives an understanding on error characteristics of
12 widely used benchmarks [8]. Work by Chippa, et al clearly
shows approximate computing is appropriate for a wide
variety of applications. However, analysis of benchmarks do
not particularly answer the question of building a system
satisfying a certain quality, yet using the most efficient ap-
proximate circuits. Although approximation algorithms for
many signal processing applications can be derived, there
is a need for high level approximate system design for
area or power reduction. High level systematic methods that
can automatically derive approximate circuit based on the
behavioral description of the system are needed. Some of
the high-level synthesis methods for approximate comput-
ing are present in the literature are SALSA [2], SASIMI
[9], and ABACUS [10]. These models require eliminating
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costly system designs, by examining signal pairs such as in
SASIMI or using an iterative stochastic greedy algorithm on
a tree generated from the input behavioral description such
as in ABACUS. Evaluating the entire design space would be
costly, but by not evaluating the best design may be missed by
these design methods. In order to cover a larger piece of the
design space, search-based algorithms such as evolutionary
methods are also employed in digital circuit design. By evo-
lutionary approximation methods [11]– [14], an exact system
is used to generate candidate approximations by the help
of generic operators. Conventional methods trying to prune
computations in the system may bring additional error due
to pruning. On the other hand, complexity of search-based
algorithms increase with the system size.

As an alternative to these two approaches, the overall
system can be profiled for error resiliency before introduc-
ing approximate circuits in. However, profiling is costly for
large systems. By appropriate error metric conversions, the
ultimate system error can be modeled as a linear program to-
gether with circuit cost. In order to achieve a balance between
the system quality, circuit efficiency, and profiling burden, we
should investigate the circuit and system level considerations
together. In this work, we aim to embody the approximate
circuit design methods and system analysis by the help of
a generalized optimizer. An overview on approximate cir-
cuit design methods and case studies are given in Section
II, followed by the proposed system-to-circuit approximate
design method in Section III. We demonstrated our optimizer
in Sobel edge detector, JPEG compression, multiple Convo-
lution Kernels (CKs) and Fully Connected Networks (FCNs),
all implemented on Xilinx SPARTAN6 FPGA in Section IV.
Verilog implementations of approximate computation units
are provided at github.com/tubaayhan/approximatesystems.
Finally the paper is concluded with future work discussions
in Section V.

II. BACKGROUND
A. APPROXIMATE COMPUTING CIRCUITS
In order to obtain different levels of approximation, two main
approaches are followed. The first approach include voltage
over-scaling methods such as [15] where over-scaling can
vastly decrease quality by its impact on MSB. The second
approach propose transistor level or gate level design and
implementation methods. These methods include varying the
bit precision of addition and multiplication, reducing the
size of carry chain, and employing look up tables for pre-
computed value integration etc.

Connecting the approximate computing units with differ-
ent levels of precision to each other would require additional
shift operation and control circuity. In order to avoid this
overhead and be able to implement an approximate version of
a system by just replacing the computing circuits, truncation
is not considered. An approximate adder design method
is to implement approximate Full Adders (FAs) either in
transistor level, such as done by IMPACT [16], or gate level
as [17]. Multi-bit adders built using these approximate FAs

consume less power and area when compared to exact adders.
Moreover, word length of the sum is not changed when
approximation level of FAs are changed.

A similar approach can be followed in approximate multi-
plier design. Multiplication is interpreted as simplified shift
and add operation in [18], so that which is approximate in
nature. Furthermore, if one of the multiplicands is a con-
stant, then multiplication process can be converted to sum
of smaller multiplications. Omitting one or more small mul-
tiplications or using an approximate adder make the process
approximate. In short, all approximate circuits which do not
alter the word length of the sum or product can be used
in this work, such as the ones given in the library of 8-bit
approximate adders and multipliers available online [3]. In
the case studies, examples of approximate adders, approx-
imate multipliers and approximate constant-multipliers will
be shown.

B. OVERVIEW ON CASE STUDIES
In this work, a Sobel edge detector, a Discrete Cosine Trans-
form (DCT) module for a JPEG encoder/decoder, multiple
convolutional kernels for Convolutional Neural Networks
(ConvNets) and an artificial neuron for FCNs are investgated.
Here, a background on these applications are briefly given.

Firstly, A classical Sobel operator [19] is considered for
edge detection. The image I is convolved with two 3 × 3
kernels,

Gx =

1 0 −1
2 0 −2
1 0 −1 1

6

 ∗ I and Gy =

 1 2 1
0 0 0
−1 −2 −1 1

6

 ∗ I.
(1)

Norm between Gx and Gy returns the edges. Non-zero
coefficients of the kernels do not require a multiplier; logic
shift and sign change operations are used. However, the
edge detector involves 10 2-input adder for Gx and Gy

calculations and one adder for norm calculation.
Secondly, JPEG encoding is based on DCT, which con-

verts the image in spatial domain into the frequency domain.
Important frequency components, whose number is R, are
then used to generate the JPEG code. Therefore, by increas-
ing R, image quality increases and the compression ratio
decreases. In JPEG encoding, multiplierless DCT such as
the one in [20] is preferred because the lossy compression
supports inaccurate computations. A multiplierless 8-point
DCT contains 16 adders. These 16 adders do not have to
execute with the same accuracy, because the high frequency
components are less important than the low frequency ones.

Finally, we investigate ConvNets. ConvNets are gaining
importance due to their capabilities in classification and
regression of big sized data, but they are computationally
expensive due to having millions of parameters [21]. Training
of these networks with classical CMOS ICs (CPU and GPU)
lasts for days. In order to cope with these time and area
related problems, advanced technologies based on neuro-
morphic architectures and [22] and in-memory computing
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[23] are proposed. Moreover, high level synthesis methods
such as [24] provide resource optimized convolutional neural
network designs. When these methods are combined with
approximate design methodologies, the logic utilization of
the system can be minimized for the target sytem perfor-
mance. So that, we applied the proposed approximate system
design technique on ConvNets which are composed of two
main computational parts. The first part is responsible for
feature extraction with its convolution layers and the second
part contains fully connected layers. Fully connected layers
use artificial neurons, which as basic computation units. An
artificial neuron calculates the weighted sum of its inputs
and applies a nonlinear function to the sum. Although, both
these weights and the coefficients in the convolution layers
are trainable, training the complete ConvNet is not favored
[26]. An alternative approach so called transfer learning is
efficient both in accuracy and training time. In transfer learn-
ing, convolutional filter layers of a pre-trained ConvNet is
adopted then fully connected layers are adapted for the target
application and re-trained. In implementation, convolutional
layers is more efficient to be hard-wired and fully connected
layers is built in a flexible manner in order to support re-
training. Therefore, a power efficient yet re-trainable Con-
vNet consisting of pre-trained CKs and a flexible FCN is
achieved.

III. SYSTEM-TO-CIRCUIT APPROXIMATE DESIGN
METHOD
The design method follows two reverse procedures: top-
down analysis and bottom-up construction as illustrated in
Figure 1 for ConvNets. Assume a system has N compu-
tational units, each having an error score denoted by Xi.
Regardless of the ultimate performance, which can vary as
PSNR, SNR, error rate etc., total computation cost of the
system can be minimized by using an optimizer, which is
given in Figure 2.

The optimization algorithm is meant to be run before
implementing the system. It is assumed that error scores of
single computation units (Xi) are available. The algorithm
selects the optimum set of computation units among the
availables. The optimizer is not embedded into the hardware
implementation. Since the algorithm is a part of design
methodology, it does not bring any area or time overhead
during run time.

The variables and functions in the algorithm are explained
on an accumulator example, in Figure 3. The system has
one input which is denoted with S1 and an output, So. The
input S1 may be noisy, with an additive white Gaussian noise
identified by N (µ1, σ1). Then, the SNR at the output can be
calculated as a function of µ1 and σ1. Accumulator output is
So =

∑M
m=1 S1(m). If the adder circuit in the accumulator

block is an exact adder, the SNR at the output is

SNRo =
Mµ1√
Mσ1

=
√
M × SNR1. (2)

The difference between the outputs of an exact and and
approximate accumulator is the noise added by the approx-
imate adder. Let’s model the additive noise from the adder
by a normal distribution: N (µa, σa). In order to obtain an
unbiased output, the mean of the adder noise, µa, has to be 0.
Then, using an approximate adder the output SNR is found
as

SNRo =
√
M

µ1√
σ2
1 + σ2

a

. (3)

If the input SNR is known, the approximation level of the
adder can be calculated for a target output SNR, which is
denoted as SNRt.

The optimizer’s objective function is dominated by the
circuit requirements. The cost of a computational unit in a
particular realization is a function of its error score as in
P (Xi). In our example, total arithmetic power consumption
of the accumulator is equal to the power consumption of the
adder: P1. On exact and and 6 different approximate adders
of 8-bit each are implemented on FPGA and their power
consumption is analysed in Figure 4. Each approximate adder
has a different error score, represented by its precision, σi.
Therefore, they each have a different power consumption
as shown by black dots in the figure. Mean error of each
approximate adder is 0, since signed addition is considered
in this example. Exact adder in this implementation setting
consumes 2.1µW and has an error score of 0. The function
P (·) determines the relationship between the accuracy and
the cost of the arithmetic block. This function can give power
consumption, transistor count, LUT count etc. and it has
to be estimated within the circuit conditions. The objective
function is derived using fitting these 3 types of curves to
the data points: 1. linear, 2. second order polynomial and 3.
rational with nominator and denominator degrees of 0 and 1.
Objective function is related with the error score as

1) P (i) = −0.1886 × σi + 1.621 with a curve fitting
RMSE of 0.3136,

2) P (i) = 0.041 × σ2
i + −0.4892 × σi + 1.847 with a

curve fitting RMSE of 0.2247,
3) P (i) = 3.443/(σi + 1.686) with a curve fitting RMSE

of 0.07845.
The main optimizer constraint is derived from the con-

tribution of each computational unit to the ultimate score.
In the constraint BX≤ b, b and B denote the maximum
amount of tolerable error and the projection of error scores
to the ultimate error, respectively. The variables l and u
represent the lower and upper bound for error scores of
the computational units. For the accumulator example, the
constraint can be derived from (3). The constants M , σ1, and
µ1 forms the matrix B. Moreover, b will become 1/SNRt, so
that SNRo ≤ SNRt.

In order to clearly see the effect of objective function
on this algorithm, assume the white noise contribution is

discarded from the system, so SNRo becomes

√
M

σa
. After the

algorithm is run, an optimum σa value is found. The adder
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FIGURE 1. Illustration of our design methodology on ConvNets.

Minimize:
∑N

i=1 P (Xi)
Subject to: BX ≤ b X = [X1, X2, ...XN ]T

X ≥ LB
X ≤ UB
Xi ∈ R , 1 ≤ i ≤ N .

FIGURE 2. Optimization algorithm.

FIGURE 3. A simple accumulator example explaining the approximate design
method.

FIGURE 4. Power consumption of an exact and 6 approximate adders are
plotted versus their error scores.

to be implemented is selected as the one with the closest
precision. In this example, all objective functions return the
same approximate adder for the same target SNR. For a
different application where the computation units are not very
far from each other in terms of accuracy, selecting a non-
linear objective function may improve the overall circuit cost
reduction.

The optimization goal is to minimize the circuit cost,
which can be power consumption, area or any other asset.
Moreover, ultimate system performance such as MSE, SNR,
PSNR, classification error etc. determines the optimizer
constraint. Above explained optimization algorithm can be
applied to many systems, when the circuit cost metric and
ultimate system performance metric are translated into objec-
tive function and constraint, respectively. The link between
objective and constraint is built through the computational
circuits which allow trading off system performance with
circuit cost. In the following section, case studies with dif-
ferent cost and performance metrics are investigated. In the
showcases, a Matlab solver with dual-simplex algorithm is
used. Runtime varies with the complexity of the circuit. In
the case studies given in the following section, runtime of the
solver on Matlab is under a second.

IV. CASE STUDIES
In the rest of the paper, we demonstrate our algorithm on
three different case studies summarized in Table 1. In the
optimizer, the objective function and the constraints are
driven by circuit cost and the target performance of the sys-
tem, respectively. Sobel edge detection and JPEG encoding
cases use multiplierless convolutions and additions, so that
the computational units are multiple adders for these cases.
The system performance, PSNR in these cases, has to be
written in terms of adder accuracies. Power consumption
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TABLE 1. Summary of case studies

Case studies Circuit cost Computational
units

Ultimate system perf.

Sobel edge de-
tector

Power consp. Adder Filtered image PSNR

JPEG encoding
and decoding

Power consp. Adder Decoded image PSNR

ConvNet - Fea-
ture Extraction

Area (LUT count) Multiple conv.
kernels

MSE

ConvNet - Fully
connected layers

Area (LUT count) Artificial neuron Classification rate

FIGURE 5. Six different approximate implementations of Sobel edge detector.

and area utilization of approximate adders increase with
their accuracy. Therefore, power consumption is also derived
in terms of adder accuracy. To minimize the total power
consumption, we find the best combination of approximate
adders as explained in [25]. For the third case study, we
investigate ConvNets under two parts. Firstly, we implement
multiple convolution kernels with approximate coefficients
in minimum area, yet achieving a target Mean Square Error
(MSE). Secondly, we minimize area of a FCN using our
optimizer and approximate neurons.

A. SOBEL EDGE DETECTOR
We first derive the objective function then the constraints.
Firstly, error score of an adder i is εi, which is defined as
the mean of error distance between the actual and expected
sums of the approximate adder. The adders are represented
with X = [X1, X2, . . .X11]T , such that each adder is one
of the four different types: Xi ∈ ε0, ε1, ε2, ε3. The adder
with ε0 is an exact adder and it covers the largest area as
well as it consumes the most power among other approximate
adders. Power consumption of adders are denoted by pi. A
relationship, pi = mεi + n, between ε = [εi] and p = [pi]
is estimated with Least Mean Squares algorithm. As a result,
the objective function is a linear function of adder errors.

The system output is an image with an ultimate perfor-
mance expectation of certain PSNR which is a function of
MSE, thus each pixel has equally important contribution to
PSNR. Therefore, the optimizer’s constraint is formed with
b being the target MSE and B = [1/S1, 1/S2, . . .1/S11],
where Si is the output size of the adder Xi. The method

FIGURE 6. Power (red on the right axis) and PSNR (blue on the left axis) of
an approximate DCT is compared with an exact DCT.

is tested for 35 dB PSNR and 40 dB PSNR targets. The
system is built and tested with famous images: Lena, Baboon,
Cameraman and Barbara. Actual average PSNR versus logic
power consumption is plotted in Figure 5. Since the edge
detector requires 11 adders, and there are 4 different types
of adders, there are 411 possible implementations. Instead of
comparing more than 4 million implementations, we com-
pared our optimizer’s solutions with standard implementa-
tions. On the blue line of Figure 5, we see the systems
where all 11 adders are identical, either exact or one of the
3 approximate adders. Fully exact implementation is spotted
on the upper-right corner of the figure, where both PSNR
and power consumption are at their maximum. The blue
line forms a border, any implementation that falls under this
line is more power efficient. When the adders are selected
with our optimizer, the performance of the system remains
below this line. That means, our optimized power saving
systems provide higher PSNR for the same amount of power
in comparison to nonoptimal systems.

B. JPEG ENCODING AND DECODING
Unlike the previous case study for Sobel edge detector, each
output of the approximate DCT unevenly contributes to the
ultimate performance criteria, PSNR. The objective function
is to minimize the total computational power consumption of
the DCT module in a JPEG encoder. Moreover, the constraint
b changes with the target compression ratio, or number of
encoded frequency components, R. Therefore, computations
to find the high frequency components are assigned a lower
weight while writing the constraint equation.

In Figure 6, performance of approximate DCTs is com-
pared with an exact DCT. In the approximate designs, max-
imum 1 dB PSNR loss is allowed, after decoding. In other
words, quality constraint for this application is 1 dB PSNR
tolerance. Since PSNR is also a function of R, the optimizer
is run to find the most power efficient implementation. Exact
implementation is not changed with R, so that its power
consumption is stable at 17 mW, which is the maximum
value in the figure. On the other hand, power consumption
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is decreased by approximate implementation, as shown by
with the red lines. With the given quality constraint, power
consumption can be reduced by 15.8% to 25.12%. PSNR of
exact and approximate implementations are given with blue
lines.

C. CONVOLUTIONAL NEURAL NETWORK
We investigate convolutional kernels and fully connected
network separately.

1) CK - Implementing multiple convolution kernels with
different accuracies
The weights of pre-trained CKs are not changed, thus they
can be hardwired. As a simplified case study, we implement
multiple convolution kernels processing the same image, as
illustrated in Figure 7. As the frame slides over the input
image, one pixel has to be multiplied with kernel coefficients
of Gaussian, Sharpening, and Edge filters at position (x, y),
denoted asWG

(x,y),W
S
(x,y), andWE

(x,y), respectively. For each
coefficient, we have a multiplier block (MB) where the only
input is a pixel value and the output are this pixel multiplied
by different constants. If we can approximate the convolution
coefficients, we can minimize the total MB area. To do
so, we modify multiple coefficient multiplication (MCM)
optimization [27] to assign different amount of error on every
coefficient in the MB.

We use same size (5 × 5) filters with the characteristics
of Gaussian, Sharpening, and Edge filters. If we synthesize
2 different filters with 8-bit coefficients from each group, we
need 2424 LUTs on a Spartan6 FPGA. In order to reduce the
LUT count, approximate MBs are generated. There are n2

MBs in Figure 7. Each of them has three constant multipliers,
in this example. The proposed MBs are biased, because all
input and coefficients are non-negative numbers. So that, the
optimization algorithm’s constraint is a function of MB mean
error and the target system performance is used as filtered
image mean error. In generation process, we let the filter
coefficients deviate as ∆Wx,y , where ∆Wx,y is in ±e. Then,
assuming the mean of the image and coefficient deviation are
Î , and ˆ∆W , respectively, the mean of the additive error a
pixel is p̂ = 9 × Î × ˆ∆W for convolution kernels with 9
non-zero coefficients. With the above assumption, mean error
on filtered image, t is equal to mean error on a pixel. The
optimization algorithm selects error margins eG, eS , and eE

for the Gaussian, Sharpening, and Edge filter coefficients. In
the optimization algorithm’s constraint, BX ≤ b, becomes[
9× Î , 9× Î , 9× Î

]T
·
[

ˆ∆WG, ˆ∆WS , ˆ∆WE
]
≤
[
tG, tS , tE

]T
(4)

The circuit cost is derived as a function of ∆̂W , by using
constant multiplier implementation results. In order to gen-
erate data to plot Figure IV-C1, 8-bit constant multipliers
(CMs) with coefficients c ∈ [0255] are implemented. Logic
utilization of each implementation is recorded as Costc. An
approximate CM for original coefficient corig is the CM

TABLE 2. 4 settings with different error margin (e) on coefficients are tested.
Performance of the system is given on each filter group as well as the overall
system, per setting. error margin on settings A,B, and C are 2,4, and 8
respectively. On setting D, error margins are 2,4, and 8 for Gaussian,
Sharpening, and Edge filters, respectively.

Mean error on filtered image
Setting Gaussian Sharpening Edge Mean over all

A 0.4206 0.0697 0.1952 0.2285
B 1.5011 0.1287 0.1790 0.6029
C 5.6418 4.1688 1.4628 3.7578
D 1.1122 1.7787 0.6042 1.165

implementation with minimum cost in its neighbourhood.
Thus:

capprox = argminc([Costc]), c ∈ [c− e, c+ e] (5)

For error margin e ∈ [0 100], average of CM cost over
all possible coefficients (0-255) is plotter in Figure IV-C1.
Therefore, error margin e is calculated using the optimization
algorithm. Then, we run MCM optimization using Settings
A-D with different error margins on the coefficients and
reported the corresponding mean error between the approx-
imate filter image and the desired image per filter group in
Table 2. Settings A-C assign same amount of coefficient error
to different filter groups, whereas in setting D the coefficients
corresponding to coefficient errors are grouped according to
the filter type. We gain 60.15% to 80.87% area saving in
CK implementation, as given in Figure 9. Moreover, we can
reduce the area consumption without aggressively changing
the filter characteristics. This is possible due to grouping the
multiplicands according to their maximum tolerable error. As
a result, MCM optimization with grouped errors allows us to
reduce the area of convolutional layers, proving the idea that
the convolutional filters are better to be grouped [28], [29].

2) FCN - estimating error scores from target classification
rate
In this work, the neurons with 8-bit inputs, I , and 8-bit
weights, W , are designed to be configured for 3 approxi-
mation grades: i. approximate adder + approximate multi-
plier, ii. exact adder + approximate multiplier, iii. full exact
implementation. Since a multiplier consumes more power
and area than adder circuits, we do not consider using ex-
act multipliers with approximate adders. We use the same
approximate adders as the ones in the previous cases. We
use shift-add approach for multiplication in [18]. Shift-add
approach depends on decomposition of products. In Figure
10, W is decomposed into two parts which are denoted by
LSB and MSB. Each decomposition is carried on MultLevel1
block, where I is shifted by an amount that is determined
by LSB or MSB part of W. MSB product is shifted by the
bit length of the LSB part and the decomposed products are
summed. In order to balance the computation time of FCNs
with CKs as well as to provide more area for CKs, we prefer
an accumulator at the output of the multiplier. The accumu-
lator output is passed through nonlinear ReLu function as in
AlexNet ; ReLu does not require any arithmetic block. We
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FIGURE 7. M n × n convolution kernels are implemented as n2 M-tab multiplier blocks.

FIGURE 8. Mean area utilization of an approximate 8-bit constant multiplier
with a sweep on error margin.

start with a restriction that each layer is composed of only
one type of neuron. Therefore, the objective function is to
minimize the cost of total FCN defined as

∑L
i=1NiP (Ai),

where L is the number of layers in FCN. The layer i has
Ni neurons with an approximation error modelled by Ai.
Cost of a neuron is P (·). Neurons with different amount of
approximation introduced above are implemented on FPGA
and power consumptions are measured by XPA tool. This
way, a linear objective function is obtained.

In order to write the constraints, classification performance
has to be converted into computation noise. The constraint

FIGURE 9. Area and error results of multiple CK implementation optimized
with 4 different settings.

is to keep the difference between classification error of an
exact network, eb and the ultimate classification error rate,
et, after approximate implementation within a certain limit.
In binary classification, a correct classification occurs if one
output is above a certain threshold and the other output is
below, ideally 1 and -1, respectively. Therefore, if the output
of the neurons are close to the threshold, computation error
may cause classification error. In other words, the decision
boundary is based on the output distributions of neurons.
Distribution of a perfectly functioning output neuron does
not intersect with the distribution of others. Size of this
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FIGURE 10. Master multiplier architecture is combined with an accumulator.

FIGURE 11. Approximate FCN optimization results: (a) 2 class Iris dataset, (b) 2-10 class MNIST dataset.

intersection region is correlated with the error rate. We let
the intersection region grow by adding computation noise
to the neurons. A neuron in a hidden or output layer i,
receives erroneous inputs, and calculate their weighted sum
with a computation error. Assuming the computation error is
normally distributed, total noise at the input of a neuron is
averaged out by the number of its inputs. Therefore, Hi+1,
error contribution of layer i+ 1, depends on the neuron type
of layers i and i+ 1, as given with

Hi+1 = Ai+1 +
Ai√
2Ni

. (6)

Error contribution of the output layer and eb constitutes the
classification error rate, et. Approximation error can vary
between eb and et. If the approximation error model is
standard deviation, as further be used in this work, then the
constraint of the model optimizer is formed as

Hi+1 ≤
1

nc
‖
√
et − eb‖. (7)

Tolerated error region is scaled inversely proportional to the
number of classes, nc. We demonstrate optimized FCN in
two famous datasets: Iris and MNIST [30]. Two classes of
Iris is used to train a network with 5 and 20 neurons in hidden
layers. We run our optimizer varying the target error rate from
1% to 30%. Cost of an exact network is normalized to 1.
The normalized cost of the proposed networks are plotted
in Figure 11.a. Our optimized results occupy 8% to 37%
less area than the exact network. We compared our results
to brute force search results, in red line. Brute force search

compares the area costs of 64 different implementations,
which takes 5 hours to implement only (without testing or
verification) on FPGA using Xilinx ISE tools. According to
the brute-force search, 31% to 40% area reduction is possible
with approximate implementation. It should be noted that our
optimized networks always achieve the target classification
performance.

A network with 10 and 20 neurons in hidden layers is
trained for 2-10 classes in MNIST dataset. Their baseline
error changes between 1.2% and 7.8%. For each network,
the optimizer is run with a maximum 10% classification error
constraint as well as a brute force search is done to find the
most area efficient network satisfying the same constraints.
As shown in Figure 11.b, our proposed FCN provides cost
reduction, yet error rate is still smaller than the target. If
the proposed optimization method is combined with a high
level synthesis method in [24], resource utilization can be
optimized in terms of both memory and logic.

V. CONCLUSION
In summary, we bring approximate circuit design methods
and system analysis techniques together to implement quality
scalable yet cost efficient systems. To successfully employ
approximate circuits in systems of different scales, the trade-
offs between circuit costs and system’s output quality are
modelled as a linear program. Moreover, architectures that
efficiently use approximate circuits are proposed for different
applications. These applications include image processing
and artificial neural networks. The formulation is tested
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with systems used in edge detection, image compression,
and ConvNets, showing the widespread applicability of the
proposed technique. As a future work, a circuit aware approx-
imate system framework assisted automated circuit synthesis
would highly increase system design efficiency. Therefore,
combining this method with circuit design tools is a substan-
tial step on approximate design automation area. Moreover,
many systems include various components with different cost
considerations. For example, RF components of a system is
usually the most power consuming part whereas the digi-
tal processor is the most area consuming one. These cost
definitions should be incorporated within the optimizer to
satisfy multiple design constraints on approximate SoC or
NoC systems, as another future work.
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