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Exploiting Reversible Computing for
Latent-Fault-Free Error Detecting/Correcting

CMOS Circuits
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Abstract—Unlike conventional CMOS circuits, reversible circuits do not have latent faults, so faults occurring in internal circuit nodes
always result in an error at the output. This is a unique feature for online or concurrent fault tolerance and the main motivation of this
study with an aim of achieving highly efficient fault-tolerant CMOS logic circuits. For this purpose, we first implement fault-tolerant
reversible circuits. We develop two techniques to make a reversible circuit fault-tolerant by using multiple-control Toffoli gates. The first
technique is based on single parity preserving, and offers error detection for odd number of errors at the output. The second technique
is constructed on Hamming codes that results in circuits detecting any number of errors unless the number of errors at the output is the
order of d, or correcting (d− 1)/2 bit errors where d is the minimum Hamming distance between any pair of bit patterns. We select
d = 3 in this study. We also claim that 100% error detection is possible with conservative reversible gates such as a Fredkin gate. For
this purpose we develop a greedy synthesis algorithm that implements an arbitrary reversible function with multiple-control Fredkin
gates. As the next step, we utilize the proposed reversible circuits with conventional CMOS gates. This certainly approves the practical
use of the proposed techniques. The effectiveness of our techniques is demonstrated on benchmark circuits, implemented by both
reversible and CMOS gates, in terms of fault tolerance performances and area costs. Comparisons with the related studies in the
literature as well as with dual modular redundancy and triple modular redundancy based circuits clearly favor the proposed designs.

Index Terms—Fault-Tolerant CMOS; Reversible Logic Synthesis; Latent Fault; Error Detection and Correction.

F

1 INTRODUCTION

In the literature, research on reversible computing has been
mainly motivated by its low power capability that even
allows zero power dissipation in theory [1], [2], and its direct
relation with quantum computing constructed on unitary
matrix based reversible operations [3]. Our motivation is
different. We exploit fault tolerance capability of reversible
computing to detect faults concurrently. Reversible gates do
not have a “don’t care” condition, and correspondingly any
switching fault in a circuit node causing 0→1 or 1→0 tran-
sition should change the output logic values. Therefore, re-
versible circuits do not have latent switching faults, defined
as faults not causing an error at the output for the current
operation, but might be destructive for next operations. This
inference is based on two properties: 1) a reversible circuit
should satisfy one-to-one matching between its input and
output assignments, and 2) a subcircuit of a reversible circuit
is also reversible.

Different from reversible circuits, conventional CMOS
logic circuits do have “don’t care” conditions that results
in latent faults. Consider a NAND gate having two inputs
and an output. Suppose that a switching fault occurs in one
of its inputs. Considering all of the four input assignments,
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we see that only in 50% of the cases we see a change at
the output. It gets even worse for a three-input NAND gate;
here, only 25% of the switching faults cause a change at the
output. These low detection rates caused by latent faults
are problematic, especially in online or concurrent fault
tolerance for IoT and real-time applications as well as for
reliability-critical aerospace and military applications; any
problem should be immediately solved without necessarily
waiting for an error occurrence at the output. Also such
latent faults can ruin the used fault tolerance scheme [4]. For
example, consider a system using dual modular redundancy
(DMR) or triple modular redundancy (TMR). A permanent
latent fault in one of the replicas would disrupt the de-
tecting/correcting mechanism of DMR/TMR. To deal with
this problem, N-modular redundancy (NMR) and similar
techniques can be used [5], [6], [7]. However, these tech-
niques do not fully solve the problem due to the existence of
latent faults. Additionally, area cost increases significantly.
We show that our reversible circuit based solutions with
CMOS implementations are more efficient both in terms of
area and fault tolerance performances.

Further investigating the literature, we see many works
focusing on concurrent fault detection by the means of using
various coding schemes such as Berger codes [8], weight-
based codes [9], and Bose-Lin codes [10]. Even almost per-
fect fault detection (99.5% fault coverage) is achieved in [9].
However, this fault coverage is just for those observable at
the output, so latent faults are neglected. A similar treat-
ment is used in [11]. Also, there are some works partially
detecting and masking faults for the most susceptible nodes
in the logic network [12], [13]. Although these approaches
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are area-efficient, they offer poor fault coverage rates.
In contrary to the mentioned works, our approach do

consider latent faults by utilizing the reversible bijective
feature which allows faults occurring in any intermediate
node to be reflected at the output. We first aim at achieving
fault-tolerant reversible circuit implementations, and then
replacing reversible gates with their proposed CMOS coun-
terparts. Note that since CMOS gates are not reversible, our
final CMOS circuits are not reversible as well.

We develop two techniques to make a reversible circuit
fault-tolerant using multiple-control Toffoli gates. The first
technique is for error detection and based on single parity
preserving. The idea is preserving the input parity at the
output, so any odd number of errors at the output can be
detected by comparing input and output parities. This ap-
proach can be implemented in two possible ways. In the first
way, the desired circuit can be synthesized by solely using
custom parity-preserving building blocks that guarantees
global parity preservation. For this purpose, different gates,
such as Khan and Islam gates, are proposed [14], [15], [16],
[17]. Although these gates work properly in theory by as-
suming that they are internally fault-free, this is not the case
in practice. Indeed, these gates are generally too complex
and large to be hardly assumed as simple fault-free gates.
Therefore, any fault internally occurred in gate nodes rather
than interconnections between gates can violate their fault-
tolerant property. The second way of implementing parity-
preserving circuits is to add an extra input and an output
[18]. Although this approach offers better fault tolerance
compared to the first one, its implementation with reversible
gates is not given in the referred study and might cause
extremely large area overheads. In this regard, using the
same way, we introduce synthesis method that results in a
fault-tolerant reversible circuit with doubled area.

Our second technique can be used either for error de-
tection or for error correction. We exploit Hamming codes
to achieve detection of any numbers of error at the output
unless the number of errors is the order of d, or correction
of (d − 1)/2 bit errors where d is the minimum Hamming
distance between any pair of bit patterns. We select d = 3 in
this study. Indeed, the idea of using Hamming codes in fault
tolerance of reversible circuits is previously introduced in
[19], [20]. However, these studies focus on a constrained set
of circuits for encoding and decoding purposes rather than
presenting a generic method for converting any reversible
circuit to a fault-tolerant one. In this paper, we satisfy this.

We also claim that 100% error detection is possible with
conservative reversible gates such as a Fredkin gate. For
this purpose we develop a greedy synthesis algorithm that
implements an arbitrary reversible function with multiple-
control Fredkin gates. Our algorithm first converts the truth
table of a given function into a conservative form by adding
0 and 1 valued inputs and their corresponding outputs.
Then row by row synthesis is performed with Fredkin gates.
To our knowledge, there is no algorithm in the literature to
synthesize any given reversible function with Fredkin gates.
However, we realize that if we apply our initial conversion
technique to a given function as a pre-processing step, and
then the algorithm given in [21] could perform a synthesis
with only Fredkin gates. Nevertheless, the resulted area
results are generally much worse than those of ours.
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Fig. 1. Circuit representations of NOT, CNOT, Toffoli, MCT, and MPMCT.

• ••
. n-2 . n-2

• . .

× × ×
× × ×

Fredkin (F) MCF MPMCF

Fig. 2. Circuit representations of Fredkin (F), MCF, and MPMCF.

Apart from all of the mentioned studies, we utilize
the proposed reversible circuits with conventional CMOS
gates including NOT, NAND, and XOR gates to show
the circuits’ potential for practical use. The effectiveness
of our techniques is demonstrated on benchmark circuits,
implemented by both reversible and CMOS gates, in terms
of fault tolerance performances and area costs. Comparisons
with the related studies in the literature as well as with DMR
and TMR based circuits clearly favor the proposed designs.

The rest of paper is organized as follow. In Section 2,
we discuss basics of reversible logic and reversible cost
measures used in this paper. In Section 3, we develop two
techniques to make a reversible circuit fault-tolerant by
using single parity preserving and Hamming code based
approaches. Section 4 represents our synthesis technique
for 100% error detection using Fredkin gates. In Section
5, we show how to utilize the proposed reversible circuits
with CMOS logic gates. In Section 6, we give experimental
results to evaluate the proposed circuits. Finally, Section 7
concludes this work with future directions.

2 PRELIMINARIES

While a conventional Boolean function always carries a one
bit information (0 or 1) that is independent of the number
of input bits, a reversible Boolean function carries informa-
tion with using the same number of input and output bits.
For reversible functions, each input bit combination results
in a unique output bit combination; the reverse of this is also
true because of the reversibility. This means that the input
values can be deduced by looking at the output values of
the reversible function. Bijection function in mathematics is
also a great example to understand reversibility. In these
functions, input and output sets have the same number of
elements and each element has only one counterpart in the
other set.
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TABLE 1
Quantum Cost of Reversible Gates

Bit Size Gate Name Quantum Cost
1 NOT 1
2 CNOT 1
3 Toffoli 5
n MCT 2n − 3

n (at least one negative MPMCT 2n − 3
and one positive control)
3 (all negative controls) MPMCT 6
n (all negative controls) MPMCT 2n − 1

3 Fredkin 7
n MPMCF Cost of MPMCT + 2

2.1 Basics of Reversible Circuits

A reversible function can be realized by a reversible circuit
consisting of reversible gates. In this study we use three
types of gates: MCT (Multiple Control Toffoli), MPMCT
(Mixed Polarity Multiple Control Toffoli), and MPMCF
(Mixed Polarity Multiple Control Fredkin). Definition of
gates are as follows, with corresponding symbols given in
Figure 1 and Figure 2 where symbols •, ◦, ⊕, and × denote
positive control, negative control, Toffoli target lines, and
Fredkin target lines, respectively.

• NOT: a 1-bit gate performing NOT operation.
• CNOT: a 2-bit gate performing 1 bit NOT operation

on its target bit iff its control bit is 1.
• Toffoli: a 3-bit gate performing 1 bit NOT operation

on its target bit iff its control bits are both 1.
• Multiple Control Toffoli: an n-bit gate, n =

1, 2, 3, 4, ..., performing 1 bit NOT operation on
its target bit iff all of its control bits are 1.

• Mixed Polarity Multiple Control Toffoli: an n-bit
gate, n = 1, 2, 3, 4, ..., performing 1 bit NOT
operation on its target bit iff all of its positive control
bits are 1 and all of its negative control bits are 0.

• Fredkin: a 3-bit gate performing swap operation on
its target bits iff its control bit is 1.

• Multiple Control Fredkin: an n-bit gate, n =
1, 2, 3, 4, ..., performing swap operation on its target
bits iff all of its control bits are 1.

• Mixed Polarity Multiple Control Fredkin: an n-bit
gate, n = 1, 2, 3, 4, ..., performing swap operation
on its target bits iff all of its positive control bits are
1 and all of its negative control bits are 0.

2.2 Area Costs of Reversible Circuits

For quantum cost, we use a measure given in [22], [23]
because it is the most commonly used and accepted one
compared to other measures in the literature [24], [25]. Table
1 summarizes the quantum costs used in this study. One can
also consider reversible cost or just simply gate count [26].
But this metric does not consider the complexity of a gate
including the bit sizes.

2.3 Fault Tolerance in Reversible Circuits

The following lemma demonstrates why reversible circuits
do not have latent switching faults. Such faults do not
immediately cause an error at the output for the current
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Fig. 3. Optimized 1-bit full adder.

operation, but they might be destructive for next operations
[27].

Lemma 1. A switching fault (0→1 or 1→0 transition) in a node
of a reversible circuit always results in a change/transition at the
output value.

Proof. The proof is by contradiction. Suppose that a tran-
sition in a node does not cause any change at the output.
Since subcircuit of a reversible circuit is also reversible, the
node can be considered as an input node of a reversible
circuit. Also we know that a reversible circuit has one-to-
one matching between its inputs and outputs, so a change
in an input should change the output. As a result, there is a
contradiction.

Consider a reversible circuit with inputs I1, I2,..., In and
outputs O1, O2,..., On. The circuit is parity preservative iff
I1 ⊕ I2 ⊕ ... ⊕ In=O1 ⊕ O2 ⊕ ... ⊕ On where ⊕ represents
an XOR logic operation. Also if a reversible circuit consists
of parity preservative gates such as Fredkin, Feynman, and
Peres gates then the circuit is parity preservative.

The following lemmas explain why we use a preserva-
tive gate based synthesis technique for 100% fault detection.

Lemma 2. Consider a reversible circuit consisting of only preser-
vative gates. For this circuit, 100% fault detection is possible.

Proof. Since a transition does not scatter to multi transitions
at the output. With XORing the outputs, one can always
detect the fault.

We select the Fredkin gate since it does not just preserve
the XOR of inputs, but it also preserves the arithmetic sum-
mation of the input values. Therefore, along with XORing
the outputs, one can also detect faults by counting the 1 or
0 valued outputs. Another reason of selecting the Fredkin is
its synthesis friendly simple structure.

3 MAKING A REVERSIBLE CIRCUIT FAULT-
TOLERANT

In this section, we discuss our methods to make a given
reversible circuit fault-tolerant in terms of error detection
and correction. In order to elaborate them, an optimized 1-
bit full adder synthesized in [20] is used as an example of a
given circuit. The circuit is shown in Figure 3.
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Fig. 4. A single parity fault-tolerant 1-bit full adder.

3.1 Single Parity based Error Detection
Single parity is basically based on the parity preservative
property. In order to satisfy the property for circuits consist-
ing of MCT or MPMCT gates which are not parity preserva-
tive gates, we add an extra bit line to a circuit and an extra
gate for each gate of the circuit. The added gate shares the
same control lines with those of the corresponding gate in
the original circuit, with its target always in the added line.
In this manner, we can satisfy parity preservative equation
by doubling the circuit area cost. Thus, we could detect odd
number of errors at the output. We elucidate our method
with the following example.

Example 1. Let’s make the full adder in Figure 3 fault-tolerant.
Firstly, we add an extra bit line “parity bit”. Then for each of
the four gates, we add an extra MCT gate. The resulted circuit is
shown in Figure 4.

Note that our method guarantees parity preserving
property not only for the given circuit, but also for any
subcircuit of it that can be used for determining the fault
places. This cannot be done with the conventional DMR
technique. Additionally, although area overheads are same
in DMR and our technique, the resulted DMR circuit is
not reversible, so there is no guarantee of keeping the fault
information at the output.

3.2 Hamming 3 based Error Detection and Correction
Basic idea of Hamming 3 encoding is based on the following
equations [28], [29].

p1 ⊕ d1 ⊕ d2 ⊕ d4 ⊕ d5 ⊕ d7 ⊕ ... = 0 (1)

p2 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6 ⊕ d7 ⊕ ... = 0 (2)

p4 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d8 ⊕ d9 ⊕ d10 ⊕ d11 ⊕ ... = 0 (3)

p8 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d8 ⊕ d9 ⊕ d10 ⊕ d11 ⊕ ... = 0 (4)

p16 ⊕ d12 ⊕ d13 ⊕ d14 ⊕ d15 ⊕ ... = 0 (5)

Constructed on these equations, we present our two-step
algorithm to make a reversible circuit fault-tolerant.

Input: A reversible circuit consisting of MPMCT gates hav-
ing n bit/data lines d1, d2, ..., dn.
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Fig. 5. Illustration of the algorithm for the given circuit in Figure 3: (a)
first gate is considered, and (b) the final form.

Output: A fault-tolerant circuit that can detect any number
of errors unless the number of errors at the output is the
order of 3, or correct 1 bit error at the output.

1) Finalize Equations 1-5 by considering n. Thus, the
needed parity lines are determined.

2) In order to satisfy the finalized equations, for each
gate add extra gates having the same controls as
those of the the corresponding gate and the targets
on the parity lines.

We elucidate our method with the following example.

Example 2. Again consider the full adder in Figure 3 as a given
circuit. By using the first step we obtain the finalized equations:

p1 ⊕ d1 ⊕ d2 ⊕ d4 = 0; (6)

p2 ⊕ d1 ⊕ d3 ⊕ d4 = 0; (7)

p4 ⊕ d2 ⊕ d3 ⊕ d4 = 0. (8)

In the second step, we start with the first gate on the left side.
Since it has a target bit on d1, by using Equations 6 and 7 we
should add two targets on p1 and p2. Therefore, two extra gates
are needed. This is illustrated in Figure 5 (a). After applying the
procedure for the second, third, and the fourth gates, we obtain the
final form as shown in Figure 5 (b).
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The area overhead of our method is more or less the
same with that of TMR. However, our method offers higher
error correction rates. Also while our method can correct or
detect errors, TMR is only for correction. Error detection
performance of our method is much better than that of
DMR. A final note is that similar to our single parity based
method, the proposed error detection/correction scheme is
valid for any subcircuit of the given circuit.

3.3 Simplified Single Parity and Hamming 3
For our methods introduced in the last two subsections, we
add extra gates with their controls on parity bits. Here, we
show that we can reduce the area overheads of the proposed
techniques by investigating added gate pairs in adjacent
stages, separated by dashed red lines in figures. We have
two cases for simplification: 1) gates and their locations
are identical such that both gates have the same target and
control bit lines; and 2) one of the gates shares all control and
target lines of the other one, plus having one extra control.
For the first case, we remove both gates since switching a
parity bit twice results in no change. For the second case,
we remove the gate having one less control lines, and keep
the other gate with negating its extra control. The reason
is that a change in a parity occurs only if all of the shared
controls are active and the extra control is inactive.

Figure 6 shows an example of simplification applied to
the circuit in Figure 5. For the first two stages, there are
two gates satisfying the second case. This is illustrated by
Figure 6 (a). Also in the third and the fourth stages, there is
a similar case. As a result, the simplified circuit is obtained
as shown in Figure 6 (b).

4 PERFECT ERROR DETECTION WITH FREDKIN
GATES

From Lemma 2 given in the preliminaries section, we know
that 100% error detection is possible with Fredkin gates. For
this purpose we develop a greedy synthesis algorithm that
implements an arbitrary reversible function with MPMCF
gates. Our algorithm has four steps as follows.

Input: A reversible function with its truth table having n
inputs and n outputs.
Output: A reversible circuit consisting of MPMCF gates that
implements the given function.

1) Make the given truth table conservative by adding
0 and 1 valued inputs and their corresponding out-
puts.

• For each row of the truth table, find the dif-
ference value as the number of 1’s in each
output row minus the number of 1’s in the
corresponding input row.

• The number of added 1 valued inputs is the
highest positive value of the difference, and
the number of added 0 valued inputs is the
absolute of the lowest negative value of the
difference.

• Based on the added input values, the output
values must be set in a way to achieve same
number of 1’s in each input/output row of the
truth table.
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Fig. 6. Simplification: (a) locating proposer gate pairs of adjacent first
and second stages; and (b) the final form of the simplified circuit.

2) Sort input and output columns of the table by con-
sidering the the number 1’s in descending order.

3) Determine the unmatched bits between inputs and
outputs for each row of the table.

4) Start from the row having the smallest unmatched
bits, assign MPMCF gates row by row.

• Select controls of MPMCF gates such that the
gate only changes the bits in the correspond-
ing row, without disturbing other rows. In the
worst-case scenario, this is satisfied by using
all bits controls except the two target bits.

• The number of used MPMCF gates in a row
is the number of unmatched bits over two.

As an example, we again use the reversible full-adder
circuit in Figure 3 and its truth table; n = 4. Steps of the
algorithm is summarized in Figure 7. First we determine the
difference values, shown in Figure 3 (a). Since the highest
positive value is 2, we add two 1 valued inputs In1 and In2
as well as the corresponding outputs On1 and On2. This
is illustrated in Figure 7 (b). Note that since there is no
negative difference value, we do not need to add 0 valued
inputs. After performing sorting, we map MPMCF gates as
shown in Figure 7 (c) and (d).

5 CMOS LOGIC IMPLEMENTATIONS

Our algorithms given in Section 3 result in reversible circuits
with MPMCT and MPMCF gates. We show how to convert
these gates into CMOS gate based realizations.
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(a)

(b)

Difference

A B Cin d1 Aout Bout S Cout Value

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 1 0 1

0 1 1 0 0 1 0 1 0

1 0 0 0 1 1 1 0 2

1 0 1 0 1 1 0 1 1

1 1 0 0 1 0 0 1 0

1 1 1 0 1 0 1 1 0

Input Output

A B Cin d1 In1 In2 Aout Bout S Cout On1 On2

0 0 0 0 1 1 0 0 0 0 1 1

0 0 1 0 1 1 0 0 1 0 1 1

0 1 0 0 1 1 0 1 1 0 0 1

0 1 1 0 1 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1 1 0 0 0

1 0 1 0 1 1 1 1 0 1 0 1

1 1 0 0 1 1 1 0 0 1 1 1

1 1 1 0 1 1 1 0 1 1 1 1

Input Output

Fredkin

In1 In2 Cin B A d1 On1 On2 S Bout Cout Aout Needed

1 1 0 0 0 0 1 1 0 0 0 0 0

1 1 1 0 0 0 1 1 1 0 0 0 0

1 1 1 1 1 0 1 1 1 0 1 1 1

1 1 1 1 0 0 1 1 0 1 1 0 1

1 1 1 0 1 0 1 0 0 1 1 1 2

1 1 0 1 1 0 1 1 0 0 1 1 1

1 1 0 1 0 0 1 0 1 1 0 0 1

1 1 0 0 1 0 0 0 1 1 0 1 3

Input Output
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S
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(d)

3
rd

 row 4
th
 row

Fig. 7. Steps of the algorithm (a)-(b) first step; (c) second and third steps;
and (d) fourth step.

Consider a conventional NAND gate. Since three input
combinations are mapped to a single logical 1 value, the
information regarding to a possible fault at one of the inputs
can be lost. The same problem occurs in NOR, OR, and
AND gates. This is indeed related to “don’t care” conditions.
On the other hand, NOT, XOR, and XNOR gates perfectly
satisfy the awareness of an input fault. However, they do not
form a universal set. We use NAND, XOR, and NOT gates
for realizations such that any internal node of the resulted
CMOS logic circuit should be an input of an XOR or a NOT
gate. Also if an inverter is driving a NAND gate then we
replace the inverter with a cascaded inverter pair in a loop
to prevent “don’t care” conditions. As a result, we guarantee
of eliminating any latent switching faults at the nodes.
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Fig. 8. CMOS gate implementations for (a) a MCT gate, and (b) a
MPMCT gate.
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Fig. 9. CMOS gate implementation of a MPMCF gate.

Gate implementations of an MCT gate is shown in Figure
8 (a). For an MPMCT, we only add cascaded inverter pairs to
the inputs having negative controls. This is shown in Figure
8 (b). Figure 9 shows the implementation for a MPMCF gate.
Again in case of having negative controls, we add cascaded
inverter pairs to the corresponding inputs.

Note that since CMOS logic is one directional, these
implementations are not fully reversible anymore. They
implement the reversible functions proceeding only from
inputs to outputs.

6 EXPERIMENTAL RESULTS

We use reversible benchmarks from [30]. We evaluate our
methods in terms of area cost, power cost and fault tolerance
performance. We consider three measures for area costs:
1) reversible cost, 2) quantum cost, and 3) CMOS cost.
As previously explained in the preliminaries section, for
reversible cost we basically use reversible gate counts, and
for quantum cost we use a measure in Table 1. For CMOS
cost, we report an estimation of occupied die area using
TSMC 0.18 µ m technology. Beside that CMOS estimated
power values are also reported. CMOS area and power
results are obtained using the Genus tool in Cadence.

For fault tolerance analysis, in each try we inject a ran-
domly placed switching fault into a circuit node that causes
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TABLE 2
Area Comparison Between TBS Technique And Our Proposed

Synthesis Technique.

Approach

Proposed
Synthesis Technique
Reversible-Quantum

Cost

[31]
TBS Technique

Reversible-Quantum
Cost

Single Parity 8-20 18-110
Hamming 3 12-32 124-5025

a bit flip, and check the resulted output errors. Detection
and correction rates represent the ratio of the number of
tries where errors are detected/corrected at the output to
the total number of tries, using a Monte Carlo method. For
the single parity scheme, errors are detected iff they occur
in odd numbers at the output. And for the Hamming coded
scheme, all of the errors are detected/corrected except those
occurring in numbers multiplicand of d. In our study d is 3.

6.1 Fault Tolerance with Reversible Gates
For our single parity and Hamming 3 based methods, we
directly use the synthesized benchmarks from [30]. Then we
make them fault-tolerant. In the literature, to our knowl-
edge, there is no similar study. As we discuss in the intro-
duction section, although there are different fault-tolerant
approaches proposed for reversible circuits, they lack im-
plementations with reversible gates. If we implement them
with the known reversible synthesis techniques suitable
for don’t care inputs (error detection/correction necessarily
requires don’t care conditions), then the area costs become
excessively large. Table 2 shows an example for a reversible
1-bit full adder synthesized with our techniques and with
the transformation based synthesis (TBS) technique [31].
Since area costs of TBS are much larger (even worse for
larger benchmarks), we do not add further results of TBS
in the following tables.

Area costs and error detection/correction rates of the
proposed methods are shown in Table 3. By examining
Table 3, we can conclude that for the Hamming 3, the
simplification almost always reduces the area costs with a
slight decrease in error detection/correction. On the other
hand, for the single parity, the simplification causes a major
decrease in error detection, so it might not be preferable.
That is due to losing parity preservative feature of the
simplified stages. Another inference is that in average our
single parity and Hamming 3 based techniques make the
original circuit area two and three times larger, respectively.
This is similar to DMR and TMR area costs. One important
point is that detection rates of the single parity method is as
good as those for the Hamming 3 based method.

6.2 Fault Tolerance with CMOS Gates
To show practical usage of the proposed techniques, we
perform CMOS implementations with NOT, NAND, and
XOR-2 gates as explained in Section 5. Here, we extensively
apply our techniques in comparison with DMR and TMR
solutions to reversible benchmark functions by reporting
area and power results.

Results are shown in Table 4. Since the single parity can
only detect faults, we compare it with the DMR scheme. In

most cases, the single parity has much higher error detection
rates with similar or better area and power consumption
in comparison to the DMR scheme. Since the Hamming 3
technique has a correction capability, we compare it with the
TMR scheme. Again in most cases, the Hamming 3 proposes
a better performance in both area cost and the error correc-
tion rates. However, power consumption of the Hamming
3 is generally more than that of the TMR. On average, the
single parity consumes 8.2% less power and 59.4% less area
in comparison to the DMR. Also, the Hamming 3 consumes
32.5% more power and 56.6% less area compared to the
TMR.

6.3 Fault Tolerance with Fredkin Gates

Since Fredkin gate is a conservative gate and if a circuit
is synthesized using only this gate it will yield 100% error
detection. In the literature, synthesis with Fredkin gates
has not been proposed. However, by making any truth
table conservative and then performing Fredkin Enabled
TBS scheme using the Mathias’s approach [21], we can
have a circuit constructed on just Fredkin gates. The results
shown in Table 5, clearly favor our synthesis technique for
each of the three area cost measures as well as for power
consumption.

7 CONCLUSION

In this study, we have proposed methods to achieve latent-
fault-free and error detecting/correcting CMOS circuits. For
this purpose, we first implement fault-tolerant reversible
circuits. Since our methods to make a reversible circuit fault-
tolerant would not disturb the original circuit, it yields
smaller area overhead in comparison to any other syn-
thesis technique in the literature. Next, we convert our
reversible circuits to CMOS realizations, and then compare
our methods with conventional DMR and TMR techniques.
On the quest to achieve perfect error detection, we also
develop a greedy synthesis algorithm that implements an
arbitrary reversible function with multiple-control Fredkin
gates. As a future work, we aim to find a better, with much
smaller CMOS area, Fredkin or other conservative gate
based synthesis technique to achieve 100% error detection
and correction.
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TABLE 3
Reversible-Quantum Costs and Error Detection and Correction Rates of the Proposed Hamming 3 and Single Parity based Methods

Benchmark
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Hamming 3
Reversible-
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Simplified

Hamming 3
Reversible-
Quantum

Cost

Proposed
Single
Parity

Reversible-
Quantum

Cost
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Simplified

Single Parity
Reversible-
Quantum

Cost

Proposed
Hamming 3

Detection
Rate

Proposed
Simplified

Hamming 3
Detection

Rate

Proposed
Hamming 3
Correction

Rate
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Hamming 3
Correction

Rate

Proposed
Single
Parity

Detection
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Single
Parity

Detection
Rate
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