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From Stochastic to Bit Stream Computing: Accurate
Implementation of Arithmetic Circuits and

Applications in Neural Networks
Ensar Vahapoglu and Mustafa Altun

Abstract—In this study, we propose a novel computing
paradigm “Bit Stream Computing” that is constructed on the
logic used in stochastic computing, but does not necessarily em-
ploy randomly or Binomially distributed bit streams as stochastic
computing does. Any type of streams can be used either stochastic
or deterministic. The proposed paradigm benefits from the area
advantage of stochastic logic and the accuracy advantage of
conventional binary logic. We implement accurate arithmetic
multiplier and adder circuits, classified as asynchronous or
synchronous; we also consider their suitability of processing
successive streams. The proposed circuits are simulated both
in gate level and in transistor level with AMS 0.35µm CMOS
technology to show the circuits’ potential for practical use. We
thoroughly compare the proposed adders and multipliers with
their predecessors in the literature, individually and in a neural
network application. Comparisons made in terms of area and
accuracy clearly favor the proposed designs. We believe that
this study opens up new horizons for computing that enables
us to implement much smaller yet accurate arithmetic circuits
compared to the conventional binary and stochastic ones.

Index Terms—Stochastic computing, bit stream computing,
arithmetic circuits, neural network.

I. INTRODUCTION

STOCHASTIC computing (SC), first brought forward in
1960s [2], [3], performs serial data processing with Bi-

nomially distributed bit streams. Each stream represents a
probability value, obtained as the number of 1 valued bits
over the total number of bits. Thus, it is possible to use n+1
different states with a single input/output, corresponding to
n + 1 different values ranging from 0/n to n/n where n is
the total number of bits in a stream. On the other hand, con-
ventionally a binary input/output has two states that are logic
0 or logic 1. This feature offers an important area advantage
for SC, especially for arithmetic operations. For example, a
single AND gate is used for stochastic multiplication. This is
illustrated in Fig. 1. Here, input streams have values of 1/2, so
an output value of 1/4 is expected. Although the correct result
can be achieved as in Fig. 1 a), it is not guaranteed for different
cases since 1’s and 0’s in streams are randomly positioned in
SC. Fig. 1 b) shows an erroneous result with an output value
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1/2 × 1/2 = 1/4

X1 ×  X2 = Y

0 1 10X1

1 0 10X2

Y 0 0 10

b)
1/2 × 1/2    0

X1 ×  X2    Y

1 1 00X2

X1 0 110
Y 0 0 00

Fig. 1: Stochastic multiplication with an AND gate having: a)
accurate results, and b) inaccurate results.
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Fig. 2: Average error percentage for an AND gate with respect
to the number of bits (n) in a stream; inputs probability values
are both 1/2.

of 0/4. Here, the relative standard error is 100%. Note that we
represent streams such that the bit on the leftmost is the first
to be processed.

Indeed, accurate (error-free) computation is impossible for
SC. Since streams should be always Binomially distributed, to
achieve zero error or zero standard deviation, infinite number
of bits are needed. Fig. 2 shows how the average error changes
with the number of bits for an AND gate having input values
of 1/2. Here, to achieve 10% and 1% errors, streams having
more than 100 and 1000 bits are needed that is not practical in
terms of the computing time. This explains why SC could not
become a real competitor to conventional computing although
it offers significant area advantage [4]. Low accuracy or long
computing times is the main obstacle in front of SC and the
main motivation of this study.

In this paper, we propose a novel computing paradigm “Bit
Stream Computing (BSC)” that is constructed on the logic
used in SC, but does not necessarily employ randomly or Bi-
nomially distributed input/output bit streams as SC does. Any
type of streams can be used either stochastic or deterministic.
The proposed paradigm benefits from the area advantage of
stochastic logic and the accuracy advantage of conventional
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Fig. 3: Examples of timing problems for a bit duration of X:
a) inverter has a delay of X, b) misalignment of inputs by X.

binary logic. With BSC, we successfully implement accurate
arithmetic multiplier and adder circuits.

Along with the accuracy issue that is kept on the agenda
since the birth of SC, there is another annoying difficulty for
SC as well as for BSC: timing problems. They happen mainly
due to undesirable changes in the duration of 1’s and 0’s in
a bit stream. Two examples are shown in Fig. 3. Here, time
duration of a bit is X. The problem in Fig. 3 a) is a result of
the fact that a logic gate can not have a delay equal and larger
than X. Indeed, depending on the used technology the delay
should generally be much smaller than X. Fig. 3 b) shows a
misalignment problem; if inputs were perfectly aligned, then
the output stream would have two 1 valued bits, but it does not
have any. Considering the severity of these and similar types
of timing problems, any circuit design technique developed
for SC or BSC should be justified with timing considerations.
For this purpose, we test the proposed circuits with transistor
level simulations.

A. Previous Works and Contributions

The mainstream solution to improve accuracy in SC is
manipulating input bit streams by either decreasing their
randomness or making them dependent/correlated. For this
purpose, pseudo-random and quasi-random number generators
are proposed [5], [6]. Pseudo-random generators generally use
LFSR’s (Linear Feedback Shift Register) that even allow to
produce desired orders of 0’s and 1’s resulting in perfect
accuracy [6]. Additionally, quasi-random generators producing
low-discrepancy bit streams can decrease error rates [7]. There
are also recent studies exploiting correlation for accuracy
[8], as well as using fully deterministic generators [9], [10].
In [9] and [10], accurate arithmetic operations are achieved.
Nevertheless, for all of these studies an input bit stream
generator is needed for each input. Therefore, the number of
generators are linearly dependent with the number of inputs,
and these generators generally consume a majority of the
circuit area. In [10], smaller deterministic generators than
random ones are used, but still each input should have its
own generator including a clock generation circuitry.

Another important drawback of the mentioned studies is that
they are not suitable for multi-level designs. Outputs of one
level can not be directly used as inputs of another level. For
example, outputs of two AND gates can not be directly used as
inputs of another AND gate. Outputs should be recreated to fit
the desired format, and this is quite costly. In [10] the authors
discuss this problem. The generated input signals, called as
PWM signals in the paper, loose their formation at the output.
They propose a solution for this, but it requires extra control
inputs, so new streams are needed to be generated. This does
not just worsens the design complexity, but it also decreases
the speed dramatically.

As opposed to the studies focusing on the generation of bit
streams in desired formats, our treatment BSC does only care
about the values carried by the streams, so any type of input
bit streams can be directly used. This eliminates the need of
specific stream generators. Furthermore, there is no extra cost
for multi-level designs; output streams of one level can be
directly used as inputs. In the literature, using the same logic,
an accurate adder is proposed in [11], called as Alaghi adder
in the paper. One of our two proposed synchronous adders is
quite similar to the Alaghi adder with additional considerations
for timing. Also we show that our adder can be generalized
for any number of inputs. Furthermore, along with the adders,
we propose two synchronous multipliers.

All of the above mentioned designs with an aim of im-
proving accuracy, use clock signals so they are synchronous.
To eliminate the cost of synchronization, we also propose
asynchronous adders and multipliers mainly constructed on
delay elements. Another shortcoming of these designs is their
inability to process successive input bit streams; they are
assumed to perform one-time operations. To overcome this
shortcoming, we propose an adder and a multiplier that can
successively process input bit streams.

Apart from the mentioned shortcomings, underestimating
the timing problems is a general tendency in the literature.
These problems are indigenous to bit stream operations in
SC and BSC, and without solving them it is hard to claim
the feasibility of the proposed study. For example, in [10],
the authors claim to work with 1GHz input signals. Suppose
that 8 bit binary equivalent operations are performed, so
there should be at least 256 different values for streams.
Therefore, for the worst-case scenario to represent the value
of 1/256, a bit stream has a 1 valued bit with a duration of
1/(256 × 109) seconds. It means that the proposed circuits
should safely process 0.256 THz signals that does not seem
to be possible (recall the case in Fig. 3 a)). Therefore, much
slower operations should be used that also causes dramatic
area increase for this study (justified in the experimental results
section). Similar problems exist in almost all studies in the
literature; unless using bit streams with very low frequencies
such that duration a bit in a stream is much larger than the
circuit’s delay, the proposed designs do not work properly. For
this reason, we have designed all of the proposed circuits in
transistor level with timing simulations.

B. Overview

Total of three adders and three multipliers performing BSC
are proposed. While one adder and one multiplier are asyn-
chronous, the rest are synchronous. Among four synchronous
adders and multipliers, one adder and one multiplier are able
to process successive input bit streams. We evaluate all of
the proposed designs with their predecessors by performing
transistor level simulations with AMS 0.35µm CMOS technol-
ogy. The proposed circuits are also tested in a neural network
application.

The rest of paper is lined up as follows. Section II is com-
posed of definitions, explanations, and limitations for BSC.
In Section III and Section IV, we respectively introduce our
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asynchronous and synchronous circuits performing accurate
arithmetic operations. In Section V, we give experimental
results to evaluate the proposed circuits. Section VI concludes
this work with future directions.

II. PRELIMINARIES

We start with yellow a few definitions. We define bit width
as the time duration of a single bit in a stream, and stream
length as the number of bits in the stream.

Improving accuracy in SC has a fundamental limit as
explained in the following theorem.

Theorem 1. Consider a system with ideal elements performing
ideal SC. Accuracy of the system only depends on the expected
output values ze’s and the output stream lengths n.

Proof. In SC, ze can also be defined as the probability that
each output bit takes a logic 1 value. Therefore, each output bit
has a Bernoulli distribution and the output stream has Binomial
distribution (p = ze). The standard error (standard deviation)

and the relative error can be calculated as
√

p×(1−p)
n and√

(1−p)
p×n , respectively; both only depend on p = ze and n.

This relatively simple theorem tells us that 1) accurate
computation is impossible with SC that needs infinite stream
lengths; 2) increasing stream lengths, accordingly computing
times, X times results in a decrease in error values by only√
X times that is not efficient; and 3) in order to achieve

high accuracy, randomness in output bit streams should be
sacrificed.

Motivated by these inferences, we introduce a novel com-
puting paradigm “Bit Stream Computing (BSC)”. It benefits
the logic used in SC, but does not necessarily employ ran-
domly or Binomially distributed input/output bit streams as
SC does. Any type of streams can be used either stochastic
or deterministic. We perform accurate arithmetic addition
and multiplication operations with BSC by considering the
constraints given below. Note that since values of bit streams
are in the range of 0-1, addition should be scaled by averaging
the values. Throughout the paper we simply use the word
“addition” to refer “scaled addition” .

Lemma 1. Consider two input bit streams with lengths of n.
Suppose that the streams take n+ 1 values between 0/n and
n/n. Accurate addition of the inputs with BSC requires an
output bit stream with a minimum length of 2× n.

Proof. Consider a worst case scenario for which one input
takes the value of 1/n and the other one takes 0/n. The output
value should be 1/(2×n) that requires a length of 2×n.

Lemma 2. Consider two input bit streams with lengths of n.
Suppose that the streams take n+ 1 values between 0/n and
n/n. Accurate multiplication of the inputs with BSC requires
an output bit stream with a minimum length of n2.

Proof. Consider a worst case scenario for which both inputs
take the value of 1/n. The output value should be 1/n2 that
requires a length of n2.

           ..   .. .

n nn n

X1 X2 X3 X4
Input 1: 

           ...  ... ...

n nn n

Y1 Y2 Y3 Y4
Input 2: 

Output: 
Z1 Z3           ...... .     .... .  . .
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Z4

d

d

m-n+d

Fig. 4: Demonstration of processing successive input bit
streams.

Theorem 2. Consider a system performing BSC such that
input and output stream lengths are n and m, respectively
where n < m. If the system’s current reaction time or delay is
independent of the past, it cannot correctly process successive
input streams.

Proof. Suppose that the system has a delay of d bits (d may
be fractional). It means that after applying input bit streams,
the system needs to wait for a time duration of d bits to have
the first output bit. Consider two sets of successive input bit
streams. After the completion of the first set, the system needs
more time equivalent to m− n+ d bits to have the output in
full. However, we know that after the time duration of d bits,
the output starts to have the results for the second input set.
This is illustrated in Fig. 4. As a result, m− n+ d = d, and
m = n should be satisfied to obtain correct results.

Theorem 2 leads to two solutions for successive processing
of bit streams. The first one is controlling the system’s delay
sequentially. For example in Fig. 4, for the first, the second,
and the third set of input streams, the delay should be d, d+
m − n, and d + (2m − n) bits, respectively. Implementing
such a complex and sequential system certainly kills the area
advantage of BSC. The second solution is having same stream
lengths for the inputs and outputs. This solution is much better
not just for the area, but also for its suitability for multi-level
designs. In this study, we use the second solution.

Using same stream lengths might result in inaccurate out-
puts. From Lemma 1 and Lemma 2, we know that we cannot
achieve accurate addition and multiplication by using the same
lengths if input bit streams are in full resolution meaning that
they can take all possible values. For example, suppose that
input and output stream lengths are 16, and multiplication is
performed. If both inputs have values of 3/16, the correct result
should be 9/256 or 0.5625/16, but we can only get either 0/16
or 1/16 from the output, so there is an error. To minimize
the error, we round the output value to the nearest integer.
In this example, the rounded result is 1/16. Considering
this accuracy issue, we classify the proposed asynchronous
and synchronous circuits as “Semi-accurate” that achieves
successive stream processing and “Fully-accurate” that always
give correct results. This is illustrated in Fig. 5. Note that fully-
accurate ones do not apply aforementioned solution, i.e. they
are not proper for successive processing.
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PROPOSED ADDERS AND MULTIPLIERS WITH BSC

SYNCHRONOUS

Increasing 

Stream Length

n bit Inputs

m bit Outputs

Constant Stream 

Length

n bit Inputs

n bit Outputs

ASYNCHRONOUS

Increasing 

Stream Length

n bit Inputs

m bit Outputs

Constant Stream 

Length

Not Applicable

Fully-accurate Semi-accurate Fully-accurate

Fig. 5: Summary of the proposed adder and multiplier designs.

III. ASYNCHRONOUS ADDERS AND MULTIPLIERS

First, we clarify why we do not use constant stream lengths
for asynchronous circuits as stated in Fig. 5.

Lemma 3. Consider a system performing BSC with multiple
input streams being able take all different values from 0 to 1.
If output stream lengths should be larger than those of inputs
for full accuracy, there should be at least one case such that
a bit change in the input stream causes multiple bit changes
at the output stream.

Proof. The proof is by contradiction. Suppose that a bit change
in the input always results in at most one bit change at the
output. Then output and input stream lengths should be equal
for full accuracy that result in a contradiction.

A direct result of Lemma 3 is that in order to use same
input and output stream lengths for addition and multiplication
operations, information of input bits should be stored to be
used in the future. Since this sequential operation is costly for
asynchronous circuits, we do not design circuits with constant
stream lengths.

For our designs we should consider the following limitation.

Lemma 4. Consider a fully-accurate asynchronous system
performing BSC such that input and output stream lengths
are n and m, respectively where n < m. The system should
include at least m−n input/output nodes of its internal circuit
elements.

Proof. At the time the output has its nth bit, the remaining
m−n bits should be kept in the system that necessitates m−n
nodes. An asynchronous system does not allow to store and
reprocess the remaining information with less than m − n
nodes.

Considering arithmetic operations and their stream length
specifications previously given in Lemma 1 and Lemma 2,
we conclude that at least n and n2 − n nodes are needed for
fully-accurate adders and multipliers, respectively. Since logic
gates are used as circuit elements and inverters are the most-
area efficient ones, we use inverters as delay elements to keep
m−n bits in the system as stated in Lemma 4. By cascading
even number of inverters, we can achieve a desired delay. To
select a proper inverter structure, we consider three criteria:
1) its circuit area should be small in harmony with the area
advantage of BSC; 2) its rise and fall times should be small

b) c)

IN

VN

VP

VDD

OUT
IN

VN

VP

VDD

VDD

OUT
IN

VDD

OUT

a)

Fig. 6: Inverter as a delay element: a) conventional inverter,
b) NP-voltage controlled inverter, and c) its cascaded version
with a Schmitt trigger.

4 Bit 

Delay

X1: 2/4

X2: 1/4

Input-1:  1,1,0,0

Input-2:  1,0,0,0 0,0,0,0,1,0,0,0

1,1,0,0,1,0,0,0

( 2/4 +1/4 ) × 1/2 = 3/8

Output:1,1,0,0,0,0,0,0

(X1+X2)×1/2 : 3/8

Fig. 7: The proposed asynchronous adder; n = 4.

to preserve signal integrity; and 3) it should be controllable to
compensate for changes in delay values. Considering different
options, three inverter structures come forward, shown in Fig.
6. Delay control of the conventional inverter, shown in Fig. 6
a), can be achieved by VDD scaling. For better control, VN
and VP analog voltage inputs can be used as shown in Fig. 6
b). Additionally, to improve signal integrity, the NP controlled
inverter can be cascaded with a Schmitt trigger as shown in
Fig. 6 c) [12]. Among these three options, we prefer the first
conventional one for the sake of simplicity and area efficiency.

A. Increasing Stream Length: Fully-accurate Addition

The proposed adder includes a delay block and an OR gate
as shown in Fig. 7. The delay block is used to postpone one of
the inputs with a delay amount of the time duration of the input
stream that can be calculated as (input stream length n)×(bit
width). To satisfy this amount and Lemma 4, we need to use at
least n inverters if n is an even number, and n+1 inverters is
n is an odd number. As a result the area complexity is O(n).

B. Increasing Stream Length: Fully-accurate Multiplication

Accurate multiplication cannot be achieved unless each bit
in one of the input streams is multiplied with each and every
bit in the other one. Therefore, total of n2 operations are
needed, given that the inputs have n bits. We satisfy this by
applying delays to the input streams for 2n−1 different cases;
1 case for no delay, n−1 cases for delaying one of the inputs
more than the other one, and n − 1 cases for the opposite.
After making multiplications with AND gates, an OR gate is
used to combine the results. This is illustrated in Fig. 8 for
n = 3. Here, there are total of 5 cases corresponding to 5
AND gates. Fig. 9 shows the circuit structure.

In general for n bit inputs, the circuit is constructed in four
steps:
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Fig. 8: Elucidation of the proposed asynchronous multiplier
for 3 bit inputs.

1) The inputs are ANDed without any delay (corresponding
to the AND gate numbered 1 in Fig. 8).

2) Last n − i bits of Input-1 and first n − i bits of
Input-2 are ANDed successively for i = 1, 2, ..., n − 1,
corresponding to the AND gates numbered 2 and 3 in
Fig. 8. Total of n − 1 AND gates are used for these
operations with n−1 delay blocks for Input-1 and n−1
delay blocks for Input-2, corresponding to the 2 delay
blocks in the upper part and the 2 delay blocks in the
lower part of the circuit in Fig. 9.

3) First n − i bits of Input-1 and last n − i bits of Input-
2 are ANDed successively for i = n − 1, n − 2, ..., 1,
corresponding to the AND gates numbered 4 and 5 in
Fig. 8. Total of n − 1 AND gates are used for these
operations with n−1 delay blocks for Input-1 and n−1
delay blocks for Input-2, corresponding to the 2 delay
blocks in the upper part and the 2 delay blocks in the
lower part of the circuit in Fig. 9.

4) Outputs of the all 2n − 1 AND gates are ORed with a
2n−1 fan-in OR gate. The output of this OR gate gives
the accurate result.

Delay difference between the inputs of ith and i−1th AND
gates, representing the delay of the corresponding block, can
be generalized as follows:

For Input-1


0 i = 1

n− (i− 1) i = 2, 3, . . . , n

n i = n+ 1

i− (n+ 1) i = n+ 2, n+ 3, . . . , 2n− 1

For Input-2


0 i = 1

n− i i = 2, 3, . . . , n

−(n− 2) i = n+ 1

i− n i = n+ 2, n+ 3, . . . , 2n− 1

Note that (n + 1)th case for the second input has a negative
value meaning that it needs less delay than that of nth case
(see Fig. and Fig. 9).

As a result, the delay blocks offer total of n2 − (n − 1)
and n2 − (n) bit delays for Input-1 and Input-2, respectively.
Therefore, we need at least ≈ 2n2 inverters to realize the delay
blocks, so the area complexity is O(n2).

IV. SYNCHRONOUS ADDERS AND MULTIPLIERS

The proposed asynchronous circuits are easy to design
with delay controllability features. However, their area quickly

2 Bit 

Delay

1 Bit 

Delay

Input-1

3 Bit 

Delay

1 Bit 

Delay

1 Bit 

Delay

1 Bit 

Delay

3 Bit 

Delay

1 Bit 

DelayInput-2

Output5

2

3

4

1

X1

X2

 X1 × X2

Fig. 9: The circuit structure of the proposed asynchronous
multiplier for 3 bit inputs.

grows with the input stream length n; for high n values the
circuits become inefficiently large. Also, they cannot process
successive input streams. To solve these problems, we proceed
to synchronous designs. The existence of auxiliary signals
allows to keep and process the information carried by streams
with binary digits. Indeed, the resulting circuits are hybrid with
processing both streams and binary digits.

We have two classes for the proposed synchronous designs
that have increasing and constant stream lengths. While the
former one is fully-accurate, similar to the proposed asyn-
chronous ones, the latter one concedes slight errors with an im-
portant plus of being able to process successive input streams.
As a result, we propose four adders and multipliers that are
thoroughly explained in the following four subsections.

A. Increasing Stream Length: Fully-accurate Addition

We mainly use the same approach as we previously use
for our asynchronous adder: one of the input streams waits
until all bits of the other one is processed. Instead of using an
asynchronous delay block as in Fig. 7, we use synchronous
blocks to store the input information in binary format that is
more area efficient especially for large stream lengths.

Fig. 10 shows the proposed adder for an input stream length
n = 8; X1 and X2 represent the input values ranging between
0/8 and 8/8. Note that the stream length of the output should
be 16 for accurate operation as previously stated in Lemma
1. The proposed adder first turns X1 into a binary format via
the counter. After the completion of the counting process, the
register saves the information in the output of the counter.
Then, binary to stream converting is done by the multiplexer.
Finally, addition is performed with an OR gate.

Even though the 8 bit stream corresponds to 3 bit binary
resolution, the counter and the register are both selected 4 bit
to be able to represent all 9 values between 0/8 and 8/8.
Also, that is the reason why OR gates are used before the
multiplexer. The largest binary value coming from the register
is 1000 (R3 = 1) that should produce 1’s for all bits in the
stream at the output of the multiplexer. To do so, R3 is ORed
with other R’s.

For the multiplexer, along with the 4 inputs I0, ..., I3 coming
from the register, there is one more input I4 used to make the
output of the multiplexer logic 0 for a time duration of n bits,
needed to process the input stream coming from Input-2. Table
I shows the relation between the data inputs, the selection
inputs, and the output of the multiplexer. All selection inputs
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I4 
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Fig. 10: The proposed synchronous fully-accurate adder for 8
bit inputs.

TABLE I: Relation between the selection inputs and the output
of the 5:1 multiplexer in Fig. 10

SELECTION INPUTS OUTPUT
S3 S2 S1 S0 Equivalence Duration
0 0 0 0 I0 1 bit
0 0 0 1 I3 1 bit
0 0 1 X I1 2 bit
0 1 X X I2 4 bit
1 X X X I4 8 bit

D Q

Q

S0 

D Q

Q

S1 

D Q

Q

S2 

D Q

Q

S3 

CLK TRIG

Fig. 11: The generation circuitry of the auxiliary signals in
Fig. 10

are actually clock signals with 50% duty cycles. They can be
generated from a single CLK input via frequency division with
flip-flops, as shown in Fig. 11. Additionally, the TRIG input
of the register is selected as S3.

If the input streams have n bits, the counter and the register
should be log2 n + 1 bit, and the multiplexer should have
log2 n+2 data inputs and log2 n+1 selection inputs. Also, all
auxiliary signals could be generated from a frequency divider
circuit consisting of log2 n+1 successive flip-flops. As a result,
the area complexity is O(log n).

B. Increasing Stream Length: Fully-accurate Multiplication

Consider two input bit streams with lengths of n. As
mentioned earlier, accurate multiplication requires n2 bitwise
operations that is in compatible with Lemma 2. We satisfy
this by repeating one of the streams n times, and by repeating
each bit of the other stream n times. An example for n = 4
is shown in Fig. 12. Note that the orders of 0’s and 1’s in the
input streams are not reflected to the repeated streams; after
the counting process, we only have the information of the input
values X1 and X2, not the orderings. In the example, both of
the input streams are treated as (0,1,1,1) since X1 = X2.

The circuit implementation of the proposed multiplier for
n = 4 is given in Fig. 13. The counting and reconversion
circuitry is nearly same with the one in Fig. 10. The only
difference is the number of inputs in multiplexers (one less),
because there is no need to wait for one of the streams as we
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Fig. 12: The proposed multiplication scheme for 4 bit inputs.
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Fig. 13: The proposed fully-accurate synchronous multiplier
for 4 bit inputs.

do for the adder. The selection inputs of the upper multiplexer
(S0, S1) are 4 times faster than those of the lower ones (S2,
S3). Additionally, the TRIG-1 input can be selected as the
negated form of S2, and the TRIG-2 input is the negated form
of the two times slowed version of S3. Therefore, all auxiliary
inputs can be generated from a single clock signal by using a
frequency divider circuit having 5 successive flip-flops.

Analyzing the scalability of the proposed multiplier, we see
that the counters and registers should be log2 n+1 bit, while
the multiplexer should have log2 n + 1 inputs. Furthermore,
log2 n+2 successive flip-flops needed to generate all required
auxiliary signals. Therefore, the area complexity is O(log n).

C. Constant Stream Length: Semi-accurate Addition

Addition in BSC is having an average of the input values
X1 and X2, and for the constant stream length, this can be
performed with bit-by-bit averaging of the input stream bits.
However, since the average of 1 valued and 0 valued bits
results in 0.5 and it can not be represented with a single
output bit, carry is needed to store the information. Table II
shows the truth table for such a solution. A circuit suiting
Table II should operate as desired. Fig. 14 shows the circuit
implementation of the proposed adder. It works as follows: if
the input values X1 and X2 are both even or both odd, then
the result is correct; otherwise the result is the rounded version
of the correct result with an error distance of 0.5/n where n
is the input stream length. Fig. 15 shows two examples for
the proposed addition operation giving erroneous and accurate
results. Since the circuit area is constant, independent of n, the
area complexity is O(1).

Note that our circuit in Fig. 14 has a quite similar perfor-
mance compared to the scaled adder in [11]. However, with our
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TABLE II: Transition table of the proposed adder

Carry Input-1 Input-2 Output Carry-new
X 0 0 0 Carry
X 0 1 Carry Carry
X 1 0 Carry Carry
X 1 1 1 Carry

Output

Input-1

Q

Q
SET

CLR

D

Input-1

Input-2

Input-2

CLK

Carry

CarryInput-1 (X1)
Input-2 (X2)

(X1+X2)/2

Carry-new

Fig. 14: The proposed semi-accurate synchronous adder for
two inputs.

 

Input-1:   1, 1, 1, 0

Input-2:   0, 1, 0, 1

Output:    0, 1, 1, 0

1   1   0   1

 

a)
Error

 

Input-1:   1, 1, 1, 0

Input-2:   0, 1, 1, 1

Output:    0, 1, 1, 1

1   1   1   0

b)
No ErrorCarry: Carry:

Fig. 15: Examples for the proposed addition operation: a)
X1 = 3/4 and X2 = 2/4, and b) X1 = 3/4 and X2 = 3/4.
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Fig. 16: The proposed semi-accurate synchronous adder for
four inputs.

 

Input-1:   1, 1, 0, 0

Output:    1, 1, 0, 0

a)

2/4 × 3/4 = 6/16   2/4 

× 3

Carry:        -1  -2  -2  -2 

Input-2

Error

 

Input-1:   1, 1, 0, 0

Output:    1, 0, 0, 0

b)

2/4 × 2/4 = 1/4 

× 2 Input-2

Carry:        -2   0   0   0      No Error

Fig. 17: Examples for the proposed multiplication approach:
a) X1 = 2/4 and X2 = 3/4, and b) X1 = 2/4 and X2 = 2/4.

point of view, we can generalize our adder for any i number
of inputs. In our design, at first the input bits are counted
in parallel, and the result is added to the carry which has
an initial value of i/2 to eliminate probable negative carry
values. If the carry is larger than i, the output becomes 1,
and i is subtracted from the carry. Otherwise, the output is 0.
Fig. 16 shows i = 4 version where “Parallel Counter” simply
counts 1’s in the input streams, and “Binary Adder & Output”
first adds the current carry value to the output of the counter,
then determines the output and updates the carry value with
aforementioned process steps.
D. Constant Stream Length: Semi-accurate Multiplication

We fundamentally use the same approach as we use for
addition considering that multiplication is the repeated version
of addition. Suppose that input bit streams represent values
X1 = a/n and X2 = b/n where n is the length of the streams.
If we add b copies of the first stream, or a copies of the second,
we can achieve multiplication by using bit-by-bit averaging

0,1,1,1,0,0,0,1

1,0,0,0,0,0,1,0
Regeneration

1,1,1,1,0,0,0,0

0,1,0,0,0,1,0,0

In1(8)=4/8:  

In2(8)=2/8:  

:RegIn1(8)  

:RegIn2(8)  

Output = 4/8 × 2/8 = 1/8 :
AND 

0,1,0,0,0,0,0,0

a)

Output = 3/8 × 7/8 = 21/64   3/8 :

0,1,0,1,0,0,0,1

1,1,0,1,1,1,1,1
Regeneration

1,1,1,0,0,0,0,0

1,1,1,1,0,1,1,1

In1(8)=3/8:  

In2(8)=7/8:  

:RegIn1(8)  

:RegIn2(8)  

AND 
1,1,1,0,0,0,0,0

b)

Fig. 18: The regeneration of input streams with Algorithm 1
with outputs giving a) no error, and b) optimal error.

with a carry. Different from the addition operation for which
rounding to the nearest integer can be always satisfied with
positive carry values, the multiplication operation with optimal
error performance should have both positive and negative carry
values between −0.5n and +0.5n. Thus, we make the error
distance upper bounded by 0.5/n. Note that if we only used
positive carries, this upper bound would be 1/n.

Fig. 17 elucidates our multiplication scheme for 4 bit inputs.
For example in Fig. 17 a), the first operation is adding three 1’s
with a result of 3; then 3/4 is rounded to the nearest integer
that is 1 as the output, and the carry with a value of -1 is
transferred to the next bit operation for which three 1’s and
the carry results in 2/4 that is rounded to 1 (it could have
been rounded to 0 also) with a carry of -2 as an error.

Instead of directly implementing the flow in Fig. 17 that
requires to first process Input-2, and then depending on the
value of it, process Input-1, we process Input-1 and Input-
2 separately. Thus, we can treat the inputs simultaneously by
regenerating them with independent circuitries. We still satisfy
the overall flow in Fig. 17 by achieving a faster, less complex,
and smaller multiplier circuit. In fact, regeneration of input
signals to achieve better accuracy has been previously used
in[1] and [9]. They manipulate the input streams to achieve
100% accuracy at the output. However, these works produce
larger output stream lengths than input ones that results in
serious problems, as discussed in Section II.

For the proposed multiplication scheme, we regenerate
input streams such that one of them is lined up in a way
to process all 1’s first and then all 0’s, and the other one
is used as a multiplicand. In every bit-by-bit operation, the
multiplicand is added to the carry. Algorithm 1 demonstrates
the steps regenerating input streams of In1(n) and In2(n) as
RegIn1(n) and RegIn2(n), respectively. The generation of
RegIn1(n) is quite simple: first all 1’s, then all 0’s. However,
RegIn2(n) is generated with a more complex way. For each
iteration, number of 1’s in In2(n) is added to Carry. If new
Carry is larger than or equal to n/2, it is subtracted by n and
RegIn2(i) becomes 1, otherwise RegIn2(i) becomes 0. Note
that for the first iteration Carry = 0.

Fig. 18 shows two examples for the regenerations of input
bit streams. The multiplication operation is completed by AND
operation of the regenerated streams. In Fig. 18 a), since the
expected output value of 1/8 can be represented with 8 bits,
the accurate output value of 1/8 is obtained. On the other hand,
in Fig. 18 b), the expected output value of 21/64 cannot be
represented accurately with 8 bits. Therefore, the output gives
the nearest possible value of 3/8.

Fig. 19 shows a circuit to realize Algorithm 1. It has
three exactly same 4-bit up counters. Each has an input INi;
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Algorithm 1 Regeneration of Inputs for Optimal Error Per-
formance in Constant Stream Multiplication
1: procedure REGIN(In1(n),In2(n))=(RegIn1(n),RegIn2(n)) . Regeneration

of n-bit Input Streams
2: SumIn1← sum(In1)
3: SumIn2← sum(In2)
4: Carry ← 0
5: for i← 1, n do
6: if i ≤ SumIn1 then . Determining ith bit of the 1st

Regenerated Input
7: RegIn1(i)← 1
8: else
9: RegIn1(i)← 0

10: end if
11: Carry ← Carry + SumIn2 . Addition of Multiplicand to

the Carry
12: if Carry ≥ n/2 then . Determining ith bit of the 2nd

Regenerated Input
13: RegIn2(i)← 1
14: Carry ← Carry − n
15: else
16: RegIn2(i)← 0
17: end if
18: end for
19: end procedure

four output ports Cij and their negates CijB ; and four clear
and four preset inputs CLRi and PREi, respectively. For
simplicity, unused ports are not generally shown in the circuit.
That is why counters look different though they are exactly
same. Similarly, each of the three identical registers has four
inputs Iij ; four outputs Rij and their negates RijB ; and
clear and clock inputs CLR and CLK (CLK or TRIG),
respectively. Again unused ports are not shown.

Inputs IN1 and IN2 are first counted by up counters. The
information of IN1 is saved in the 4-bit register and then
inversely loaded to the next 4-bit up counter via the CLRi

and PREi inputs generated from TRIG, R1j , and R1jB . The
signals CLRi and PREi are connected to the CLEAR and
PRESET inputs of the corresponding D-FF in the counter to
transfer the inversion of the saved information in the register to
the counter after the counting in the first counter is completed.
This means that the counter starts to count from inversion
of saved information instead of from “0000”. Then the most
significant bit (MSB) of the counter C23 and negated version
of other bits, C2iB for i = 0, 1, 2, determine REG IN1.
If the counter output is between 0111 and 1110, REG IN1

becomes 1; otherwise it becomes 0. For instance, for the case
of X1 = 5/8, the saved information is 0101 and the transferred
information is 1010. So, the counter starts from 1010 and
arrives at 1111 after 5 clock cycles, which means first 5 bits
of REG IN1 are 1 and the rest are 0. Thus, we generate
REG IN1 with an up counter and some logic circuit instead
of a costly digital comparator.

The saved information of IN2 in the 4 bit register is
summed with the previous sum in each clock cycle by a binary
addition block so-called “No Carry Adder” which excludes the
MSB (or final carry) of a classical binary adder. This summa-
tion performs the operation Carry ← Carry + SumIn2 in
the line 11 of Algorithm 1. In other words, the inputs of the
undermost register corresponds to Carry. Note that Carry
varies between [−n/2, n/2]. To get rid of negative numbers,
we start Carry from n/2, instead of 0, and shift the interval

to [0, n] by starting the undermost register from 01..0, instead
of from 00...0. Thus, if the MSB of the output of No Carry
Adder is 1, which means the unshifted and shifted carries
are larger than n/2 and n, respectively, REG IN2 becomes
1. Otherwise, Carry is not large enough to produce 1, so
REG IN2 becomes 0. Furthermore, the MSB of the input
of the undermost register is always zero to implement the
subtraction in the line 14 of Algorithm 1. If REG IN2 is 1
then it means that Carry ≥ n, so Carry should be subtracted
by n, i.e. MSB should be turned into 0. On the other hand,
REG IN2 = 0 does not require any change in Carry, so the
MSB should be again 0.

The circuitry to generate auxiliary inputs TRIG and CLR
is also added in Fig. 19. Essentially, CLR is the slightly
delayed version of TRIG, because registers using TRIG
signal need to save the outputs of the leftmost counters before
they are cleared. The proposed design in Fig. 19 can be
generalized for n bit inputs. Counters, registers, and binary
adders should be log2 n+1 bit. Additionally, 2× (log2 n+1)
AND gates are needed for producing CLR and PRE signals,
and log2n successive flip-flops are used in auxiliary signal
generation. As a result, the area complexity becomes O(log n).

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed six circuits:
• Asynchronous Increasing Stream-length Adder (AISA),
• Asynchronous Increasing Stream-length Multiplier (AISM),
• Synchronous Increasing Stream-length Adder (SISA),
• Synchronous Increasing Stream-length Multiplier (SISM),
• Synchronous Constant Stream-length Adder (SCSA), and
• Synchronous Constant Stream-length Multiplier (SCSM).
The results are grouped in the following four subsections. In
the first one, we present transistor level simulation results with
an aim of showing that the proposed circuits work properly and
accurately in practice. Second subsection includes transistor
level delay results for the proposed design and their counter-
parts in the literature. In the third and the fourth subsections,
we thoroughly compare the proposed adders and multipliers
with those in the literature, individually and in a neural
network application, respectively. In these two subsections,
we perform gate level simulations by considering area and
accuracy.

A. Transistor Level Evaluations for Accuracy

We perform simulations with the AMS 0.35µm CMOS
technology in Cadence environment. We test the proposed
adders and multipliers for different input bit widths ranging
between 0.5ns and 10ns. Input values are selected such that the
expected output value is around 1/2 that can be considered as
the worst-case scenario for accuracy. Input stream lengths are
selected as 8 for all simulations. Two performance metrics
are considered: 1) integrity of the output signal, and 2)
correctness of the obtained output value. To elaborate, consider
an expected output stream 1, 0, 1, 1, 0, 0, 0, 1 with a bit width
is 1ns. Also suppose that from simulations, we obtain 1 valued
bit widths of 1.1ns, 2.1ns, and 0.4ns; ideally it should be
1ns, 2ns, and 1ns, respectively. For the first metric, we first
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Fig. 19: The proposed semi-accurate synchronous multiplier for 8 bit inputs.

TABLE III: Integrity and correctness results of the proposed adders and multipliers (INT:Integrity, COR:Correctness)

Bit Width AISA AISM SISA SISM SCSA SCSM
INT COR INT COR INT COR INT COR INT COR INT COR

0.5ns 87.8% 100% 91.8% 100% 31.8% 37.5% 0% 0% 56.9% 50% 0% 0%
0.75ns 95.3% 100% 85.2% 97.1% 87.5% 100% 85.7% 100% 95.6% 100% 0% 0%

1ns 92.5% 100% 58.4% 60% 90.5% 100% 89.2% 100% 95.5% 100% 0% 0%
2ns N/A N/A N/A N/A 95.4% 100% 94.6% 100% 97.8% 100% 66.9% 75%

10ns N/A N/A N/A N/A 99.1% 100% 98.9% 100% 98.2% 100% 94.8% 100%
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Fig. 20: Transistor level simulation results for a) AISA with
0.5ns bit width, b) SISA with 0.750ns bit width, and c) SCSM
with 2ns bit width. Red solid lines and green dashed lines
represent real and expected outputs, respectively.

calculate absolute deviations of 0.1ns, 0.1ns, and 0.6ns, then

relative deviations 0.1ns/1ns, 0.1ns/2ns, and 0.6/1ns, and
finally the average deviation of 25% is obtained that results
in 75% signal integrity. For the second metric, we first obtain
the ratios of the obtained output bit widths over the given bit
width. For this example, the ratios are 1.1ns/1ns, 2.1ns/2ns,
and 0.4/1ns. Then we round them to the nearest integers, as 1,
2, and 0 for the example. Finally we have the obtained output
value of 3/8 with 75% correctness.

Table III shows the transistor level accuracy results of
the proposed circuits for various bit width values. Except
for SCSM, all of the proposed circuits can work for a bit
width equal to or smaller than 1ns, so the operating fre-
quency of 1GHz can be achievable. Actually this is quite
expected regarding the complex connections and feedbacks
of the architecture of SCSM. To achieve so, it needs to be
thoughtfully optimized for the given operating frequency to
get rid of any possible timing errors and skews. Note that
the proposed asynchronous circuits do a better job in small
bit widths, thanks to their simple and delay block based
structures. However, since increase in the bit width requires
more delay, and after a certain point it cannot be achieved
with the controlling mechanism (in our case, VDD scaling),
additional hardware in terms of extra inverters is needed. That
is why for bit widths of 2ns and 10ns, the proposed circuits
fail.

Fig. 20 shows the expected and the real output signal forms
for three different cases. While the output signal has a good
alignment in Fig. 20 a), Fig. 20 b) and c) show undesirable
glitches and shifts.

Note that we evaluate the circuits for only 8 bit inputs as a
simple case to show the potential of the proposed circuits for
practical use. Larger input stream lengths could be considered,
but since larger lengths make our circuits more complicated
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TABLE IV: Delay Comparison of Adders

Adders
ICD

(ns) for
16 bits

ICD
(ns) for
8 bits

SD
SD (ns) for
n = 8 and
W = 2ns

Ripple Carry Adder 1.80 1.44 NA NA
[9] 4.86 4.08 (n2+n)×W 144
[6] 3.56 2.94 (n2+n)×W 144
[11] 1.17 1.17 n×W 16

AISA 0.15 0.15 2× n×W 32
SISA 3.85 3.31 3× n×W 48
SCSA 1.17 1.17 n×W 16

TABLE V: Delay Comparison of Multipliers

Multipliers
ICD

(ns) for
16 bits

ICD
(ns) for
8 bits

SD
SD (ns) for
n = 8 and
W = 2ns

Array Multiplier 3.39 2.67 NA NA
[9] 4.70 3.92 (n2+n)×W 144
[6] 3.40 2.78 (n2+n)×W 144

AISM 0.15 0.15 n2 ×W 128
SISM 3.85 3.31 (n2+n)×W 144
SCSM 5.19 4.29 2× n×W 32

with systematic timing design strategies needed to be followed,
we consider this as a future work. However, it is not hard to
predict that for larger input stream lengths our asynchronous
designs would have again quite successful outcomes, mainly
because the architectures are quite straightforward. This is also
true for SCSA, due to its scalable architecture. However, other
synchronous designs, especially SCSM, circuits are getting
more complex for larger stream lengths, so they may become
more prone to timing errors.

B. Transistor Level Evaluations for Delay

We carry out delay simulations for our designs along with
their stochastic and binary counterparts in the literature. Again
we use the AMS 0.35µm CMOS technology in Cadence envi-
ronment. To evaluate the results more efficiently, we separate
the results into two forms: “Inherent Circuit Delay (ICD)” and
“Stream Delay (SD)”. Let bit width and stream length defined
in Section II be represented as W and n, respectively. As a
conventional measure, ICD is the worst case total propagation
delay of a given circuit. It does not depend on W , however
it may grow with n for non-scalable designs. On the other
hand, SD is a delay measure specific for BSC/SC designs, not
applicable (NA) for binary designs. It is the time difference
between the beginning of input streams and the end of the
output stream with an assumption of zero propagation delay.
As a result, the total delay of the system can be calculated as
the sum of total ICD and SD.

Table IV and V show the delay simulation results of the
proposed adder and multiplier designs and their rivals in the
literature. They include ICD’s for input stream lengths of 8 and
16 (4 and 5 binary bits). Examining the results, we see that
our asynchronous designs have the best performance for ICD.
Furthermore, SD formulas are given as functions of n and W .
Finally, the rightmost columns show the exact amounts of SD’s
where n = 8 and W = 2ns. Examining the results, we see
that our constant stream designs have the best performance for
SD. Note that for any BSC/SC design, SD’s overwhelmingly
dominate the total delay. In fact, this domination is valid
for any meaningful values of n and W , which means that

TABLE VI: Transistor counts (TC) of the used logic compo-
nents

INV NAND NOR XOR D Flip-
flops

Half
Adder

Full
Adder

TC 2 4 4 12 12 18 28

considering only SD’s is a convenient and fair enough way to
analyze delay behavior of BSC/SC designs.

C. Gate Level Evaluations for Area

In comparisons, we consider three studies offering accurate
stochastic operations that are based on clock division [9], using
LFSR’s [6], and PWM signals [10]. We also consider conven-
tional binary ripple carry adder and array multiplier circuits.
In order to make fair comparisons, we take into account the
signal forms at the inputs and the outputs. All of the proposed
six circuits with BSC use streams as inputs and outputs.
However, since the proposed synchronous designs do already
make stream-to-binary conversion via counters and registers,
they can be directly used for binary-to-stream computing with
even smaller circuit sizes. There is an exception for Input-
2 of SISA, whose overhead is also considered. Moreover,
the studies [9] and [6] use binary inputs and stream outputs;
to make them perform stream-to-stream computing, counters
and registers can be added to the inputs, that is why their
stream-to-stream cases are more costly than their binary-to-
stream counterparts. On the other hand, since the study [10]
uses analog inputs and it is not straightforward to make such
conversions, we separately evaluate it.

Obtained by using the values in Table VI, in Table VII and
Table VIII, we compare transistor counts of the circuits. We
consider different input levels; for example, the input level
of 32 corresponds to 5 binary inputs or a stream having a
length of 32. Examining the numbers in Table VII, we see
that the proposed adders overwhelm the others in their cat-
egories “binary-to-stream” and “stream-to-stream”. In overall
comparisons binary ripple carry adder, AISA, and SCSA come
forward; AISA and SCSA gives the best results for small
and large input levels, respectively. However, considering that
SCSA is not fully-accurate, the conventional ripple carry adder
is still an important contender. Similar derivations can be
observed from Table VIII for the multipliers that even gives
more favorable results for the proposed circuits. One thing
worth to mention is that the transistor counts are excessively
high for the analog-to-stream computing. This happens due to
the high area cost of the signal generators or ring oscillators
used in the paper [10]; they are implemented with inverter
chains. In our calculations, we select a bit width of 1ns that
requires 33× n inverters in generators where n is the stream
length and the number 33 is obtained by considering the
inverter delay values for the AMS 0.35µm CMOS technology
in Cadence environment. Note that the area cost can be
reduced by decreasing the bit width. However, there is a lower
bound for this, and it should be determined by transistor level
simulations and detailed timing analysis. We believe that our
assumption of using a bit width of 1ns is quite fair, even
more than fair. Another way of decreasing the transistor counts
would be using a different oscillator topology.
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TABLE VII: Transistor count comparison of adders
Binary-to-Binary Binary-to-Stream Stream-to-Stream Analog-to-Stream

Input Levels / Ripple Carry [9] [6] SISA SCSA [9] [6] AISA SISA SCSA [10]
Stream Length Adder

8 84 446 250 184 186 638 394 22 224 66 1637
16 112 602 346 230 226 842 538 38 280 66 3221
32 140 770 454 276 266 1058 694 70 336 66 6389
64 168 950 574 322 306 1286 862 134 392 66 12725

128 196 1142 706 368 346 1526 1042 262 448 66 25397
256 224 1346 850 414 386 1778 1234 518 504 66 50741

TABLE VIII: Transistor count comparison of multipliers
Binary-to-Binary Binary-to-Stream Stream-to-Stream Analog-to-Stream

Input Levels / Array [9] [6] SISM SCSM [9] [6] AISM SISM SCSM [10]
Stream Length Multiplier

8 408 318 226 198 306 510 370 376 390 498 4784
16 688 430 314 262 394 670 506 1272 502 634 17984
32 1040 550 414 326 482 838 654 4600 614 770 69728
64 1464 678 526 390 570 1014 814 17400 726 906 274592
128 1960 814 650 454 658 1198 986 67576 838 1042 1089824
256 2528 958 786 518 746 1390 1170 266232 950 1178 4342304

TABLE IX: Qualitative comparison of adders and multipliers
Delay Accuracy Area Successive Multi-level

Processing Design
Conventional Excellent Excellent Moderate Good Excellent

Binary
[9] Moderate Excellent Poor Poor Moderate
[6] Moderate Excellent Moderate Poor Moderate
[10] Moderate Excellent Poor Poor Poor

AISA/AISM Moderate Excellent Moderate Poor Excellent
SISA/SISM Moderate Excellent Good Poor Excellent

SCSA/SCSM Moderate Good Good Excellent Excellent
Conventional Poor Poor Excellent Excellent Excellent

Stochastic

We also evaluate the aforementioned methods qualitatively
in Table IX. We consider delay as the total computing time in-
cluding the time duration of the output stream and the circuit’s
internal delay. We also consider area and accuracy as well
as compatibility for processing successive input streams and
multi-level design. Examining the results, we see that certain
attributes need to be considered before choosing a suitable
adder/multiplier. When all criteria are equally important, the
conventional binary and the proposed SCSA/SCSM are fairly
competent. However, when accuracy and area are the most
important factors, the proposed SISA/SISM comes forward.
The conventional stochastic seems to be the best in terms of
the area since it uses a 2-to-1 multiplexer for addition and an
AND gate for multiplication. However if we considered the
costly random number generators, needed for SC, then the area
cost of SC would even become the worst. Additionally, the
proposed circuits are not satisfactory for the delay criterion;
indeed this is valid for any circuit processing bit streams.

D. Evaluations within Neural Networks

To further evaluate the proposed circuits, we choose a neural
network because it mainly consists of adders and multipliers,
and it does not require perfect accuracy. We use a trained
database PENDIGIT which is a set of handwritten digits
[13]. It has 16 different input features corresponding to 16
perceptrons in the input layer of the neural network. There is
also one hidden layer having 100 perceptrons. Obviously the
output layer has 10 perceptrons to represent 10 digits. Except
for the conventional implementation of the network with
binary multipliers and adders, in each layer binary input values
and their weights are multiplied with the binary-to-stream

multipliers, and then they are summed in pairs with stream-
to-stream adders. After that by first using stream-to-binary
converters (just counters), all processes up to the next layer
are implemented with conventional binary circuits. Because
this part is same for all of the compared studies/techniques,
we do not consider its area cost.

In comparisons, we consider four different implementation
techniques of adders and multipliers. The first one offers the
most area efficient accurate adders and multipliers among
the studies considered in Table VII and Table VIII [6]. The
second one uses adders very similar to the proposed SCSA,
and conventional stochastic multipliers (AND gates) [11]. The
third one uses conventional binary ripple carry adders and
array multipliers, and finally the fourth technique employs
conventional stochastic adders (2-to-1 multiplexers) and mul-
tipliers (AND gates). For the conventional stochastic circuits,
randomly distributed input streams are needed. Therefore,
binary-to-stream multipliers need one LFSR and digital com-
parators as twice as the multipliers. As stated in [3], one LFSR
is enough for input streams, thanks to the low correlations
between shifted streams. Additionally, each stream-to-stream
adder needs a digital comparator for the generation of 0.5
valued stream for the select input of the multiplexer; again
one LFSR is adequate for all adders.

Table X gives the results. The proposed implementations are
clearly the best ones in terms of accuracy and circuit area. Of
course, if we did not consider the costs of stochastic number
generators, [11] and the conventional stochastic would have
much smaller transistor counts. However, this would not be a
fair comparison.

VI. CONCLUSION

We introduce a novel computing paradigm “Bit Stream
Computing (BSC)” that benefits from the area advantage of
stochastic logic and the accuracy advantage of conventional
binary logic. The experimental results to evaluate the proposed
adders and multiplier approve the efficiency of BSC in terms
of area and accuracy. As a future work, we will perform more
detailed simulations followed by fabrications by considering
area, delay, power, and accuracy with timing variations. In our
transistor-level simulations, we see that the proposed circuits
properly work up to around a bit width of 1ns; we aim to
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TABLE X: Transistor counts of all adders and multipliers used in a neural network with PENDIGIT database (TC:Transistor
Count, MR:Misclassification Rate)

Input Levels [11] [6] SISA-SISM SCSA-SCSM Conventional Binary Conventional Stochastic
TC MR TC MR TC MR TC MR TC MR TC MR

8 0.92M 56.77% 1.71M 7.64% 1.03M 7.64% 0.88M 31.3% 1.27M 7.64% 0.95M 69.4%
16 1.18M 24.84% 2.43M 2.89% 1.34M 2.89% 1.11M 7.60% 2.08M 2.89% 1.26M 47.9%
32 1.46M 9.63% 3.23M 2.60% 1.66M 2.60% 1.34M 3.00% 3.06M 2.60% 1.60M 25.6%
64 1.76M 4.04% 4.14M 2.63% 1.97M 2.63% 1.57M 2.80} 4.24M 2.63% 1.97M 11.8%
128 2.08M 3.12% 5.13M 2.54% 2.28M 2.54% 1.80M 2.60% 5.60M 2.54% 2.36M 6.00%
256 2.43M 2.84% 6.22M 2.57% 2.60M 2.57% 2.03M 2.54% 7.15M 2.57% 2.78M 3.87%

improve this. More generally, we aim to introduce a new
circuit design methodology specifically developed for BSC.

Another direction is testing the proposed circuits in large
area electronics including organic and flexible circuits that
should have relatively small number of transistors. The con-
ventional binary logic is not suitable for this; we comment
that the proposed circuits performing BSC can be.
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