Student ID:

Date: 24/12/2021

EHB205E Introduction to Logic Design MIDTERM II

Duration: 120 Minutes
Grading: 1) 20%, 2) 20%, 3) 25%, 4) 35%
Exam is in closed-notes and closed-books format; calculators are allowed
For your answers please use the space provided in the exam sheet
GOOD LUCK!

1) Consider Boolean functions $\boldsymbol{f}_{\mathbf{1}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right)=\sum(0,1,3,5,6,7)$ and $\boldsymbol{f}_{2}\left(\boldsymbol{x}_{4}, \boldsymbol{x}_{5}, \boldsymbol{x}_{6}\right)=\sum$ ($2,3,4,5,6,7$). Implement $f=f_{1}+f_{2}$ using two 3-to-8 decoders and minimal number of twoinput NOR gates.
2) Consider a 6-to-1 multiplexer having inputs $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}, \mathrm{I}_{5}$; select input $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$; and the output OUT.
If $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}\right)=(0,0,0)$ then OUT $=\mathrm{I}_{0}$;
If $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}\right)=(0,0,1)$ then OUT $=\mathrm{I}_{1}$;
If $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}\right)=(0,1,0)$ then OUT $=\mathrm{I}_{2}$;
If $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}\right)=(0,1,1)$ then OUT $=\mathrm{I}_{3}$;
If $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}\right)=(1,0,0)$ then OUT $=\mathrm{I}_{4}$;
If $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}\right)=(1,0,1)$ then $\mathrm{OUT}=\mathrm{I}_{5}$.
Implement this 6-to-1 multiplexer multiplier using minimal number of 2-to-1 multiplexers.
3) Consider a sequential circuit shown below.

a) For which input values of M, N, and G , outputs \mathbf{P} and \mathbf{Q} hold their previous values?
b) Obtain a minimal sum-of-products (SOP) expressions for \mathbf{P} and \mathbf{Q} in terms of M, N, and G as well as the previous values of P and Q .
4) Consider a flip-flop consisting of four NAND gates, shown below. Suppose that each of the NAND gates has a delay of $\mathbf{2 n s}$. Suppose that initial values of \mathbf{Q} and Q^{\prime} are 0 and 1 , respectively. Sketch the waveforms at the outputs \mathbf{Q} and \mathbf{Q}^{\prime} if the input signals A and CLK shown below are applied.

