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ABSTRACT Unlike conventional CMOS circuits, reversible circuits do not have latent faults, so faults
occurring in internal circuit nodes always result in an error at the output. This is a unique feature for
online or concurrent fault tolerance and the main motivation of this paper with an aim of achieving highly
efficient fault-tolerant CMOS logic circuits. For this purpose, we first implement fault-tolerant reversible
circuits. We develop two techniques to make a reversible circuit fault-tolerant by using multiple-control
Toffoli gates. The first technique is based on single parity preserving and offers error detection for odd
number of errors at the output. The second technique is constructed on Hamming codes, which results in
circuits detecting any number of errors unless the number of errors at the output is the order of d or correcting
(d − 1)/2 bit errors, where d is the minimum Hamming distance between any pair of bit patterns. We select
d = 3 in this paper. We also claim that 100% error detection is possible with conservative reversible gates,
such as a Fredkin gate. For this purpose, we develop a greedy synthesis algorithm that implements an arbitrary
reversible function with multiple-control Fredkin gates. As the next step, we utilize the proposed reversible
circuits with conventional CMOS gates. This certainly approves the practical use of the proposed techniques.
The effectiveness of our techniques is demonstrated on benchmark circuits, implemented by both reversible
and CMOS gates, in terms of fault tolerance performances and area costs. Comparisons with the related
studies in the literature as well as with dual-modular redundancy and triple-modular redundancy-based
circuits clearly favor the proposed designs.

INDEX TERMS Error detection and correction, fault-tolerant CMOS, latent fault, reversible logic synthesis.

I. INTRODUCTION
In the literature, research on reversible computing has been
mainly motivated by its low power capability that even allows
zero power dissipation in theory [1], [2], and its direct rela-
tion with quantum computing constructed on unitary matrix
based reversible operations [3]. Our motivation is different.
We exploit fault tolerance capability of reversible computing
to detect faults concurrently. Reversible gates do not have a
‘‘don’t care’’ condition, and correspondingly any switching
fault in a circuit node causing 0→1 or 1→0 transition should
change the output logic values. Therefore, reversible circuits
do not have latent switching faults, defined as faults not
causing an error at the output for the current operation, but
might be destructive for next operations. This inference is
based on two properties: 1) a reversible circuit should satisfy

one-to-one matching between its input and output assign-
ments, and 2) a subcircuit of a reversible circuit is also
reversible.

Different from reversible circuits, conventional CMOS
logic circuits do have ‘‘don’t care’’ conditions that results
in latent faults. Consider a NAND gate having two inputs
and an output. Suppose that a switching fault occurs in one
of its inputs. Considering all of the four input assignments,
we see that only in 50% of the cases we see a change at the
output. It gets even worse for a three-input NAND gate; here,
only 25% of the switching faults cause a change at the output.
These low detection rates caused by latent faults are problem-
atic, especially in online or concurrent fault tolerance for IoT
and real-time applications as well as for reliability-critical
aerospace and military applications; any problem should be
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immediately solved without necessarily waiting for an error
occurrence at the output. Also such latent faults can ruin
the used fault tolerance scheme [4]. For example, consider
a system using dual modular redundancy (DMR) or triple
modular redundancy (TMR). A permanent latent fault in
one of the replicas would disrupt the detecting/correcting
mechanism of DMR/TMR. To deal with this problem,
N-modular redundancy (NMR) and similar techniques can be
used [5]–[7]. However, these techniques do not fully solve the
problem due to the existence of latent faults. Additionally,
area cost increases significantly. We show that our reversible
circuit based solutions with CMOS implementations are
more efficient both in terms of area and fault tolerance
performances.

Investigating the literature further, we see many works
focusing on concurrent fault detection by the means of using
various coding schemes such as Berger codes [8], weight-
based codes [9], and Bose-Lin codes [10]. Even almost per-
fect fault detection (99.5% fault coverage) is achieved in [9].
However, this fault coverage is just for observable faults at
the output, so latent faults are neglected. A similar treatment
is used in [11]. Also, there are some works partially detecting
and masking faults for the most susceptible nodes in the
logic network [12], [13]. Although these approaches are area-
efficient, they offer poor fault coverage rates.

In contrary to the mentioned works, our approach do con-
sider latent faults by utilizing the reversible bijective feature
which allows faults occurring in any intermediate node to
be reflected at the output. We first aim at achieving fault-
tolerant reversible circuit implementations, and then replac-
ing reversible gates with their proposed CMOS counterparts.
Note that since CMOS gates are not reversible, our final
CMOS circuits are not reversible as well.

We develop two techniques to make a reversible circuit
fault-tolerant using multiple-control Toffoli gates. The first
technique is for error detection and based on single par-
ity preserving. The idea is preserving the input parity at
the output, so any odd number of errors at the output can
be detected by comparing input and output parities. This
approach can be implemented in two possible ways. In the
first way, the desired circuit can be synthesized by solely
using custom parity-preserving building blocks that guaran-
tees global parity preservation. For this purpose, different
gates, such as Khan and Islam gates, are proposed [14]–[16].
Although these gates work properly in theory by assum-
ing that they are internally fault-free, this is not the case
in practice. Indeed, these gates are generally too complex
and large to be hardly assumed as simple fault-free gates.
Therefore, any fault internally occurred in gate nodes rather
than interconnections between gates can violate their fault-
tolerant property. The second way of implementing parity-
preserving circuits is to add an extra input and an output [17].
Although this approach offers better fault tolerance compared
to the first one, its implementation with reversible gates is
not given in the referred study and might cause extremely
large area overheads. In this regard, using the same way,

we introduce synthesis method that results in a fault-tolerant
reversible circuit with doubled area in terms of reversible and
quantum cost.

Our second technique can be used either for error detec-
tion or for error correction. We exploit Hamming codes to
achieve detection of any number of errors at the output unless
the number of errors is the order of d , or correction of
(d − 1)/2 bit errors where d is the minimum Hamming
distance between any pair of bit patterns. We select d = 3
in this study. Indeed, the idea of using Hamming codes in
fault tolerance of reversible circuits is previously introduced
in [18] and [19]. However, these studies focus on a con-
strained set of circuits for encoding and decoding purposes
rather than presenting a generic method for converting any
reversible circuit to a fault-tolerant one. In this paper, we
satisfy this.

We also claim that 100% error detection is possible with
conservative reversible gates such as a Fredkin gate. For this
purpose we develop a greedy synthesis algorithm that imple-
ments an arbitrary reversible function with multiple-control
Fredkin gates. Our algorithm first converts the truth table of a
given function into a conservative form by adding 0 and 1 val-
ued inputs and their corresponding outputs. Then row by row
synthesis is performed with Fredkin gates. To our knowledge,
there is no algorithm in the literature to synthesize any given
reversible function with Fredkin gates. However, we realize
that if we apply our initial conversion technique to a given
function as a pre-processing step, and then the algorithm
given in [20] could perform a synthesis with only Fredkin
gates. Nevertheless, the resulted area results are generally
much worse than those of ours.

Apart from all of the mentioned studies, we utilize the
proposed reversible circuits with conventional CMOS gates
including NOT, NAND, and XOR gates to show the circuits’
potential for practical use. The effectiveness of our techniques
is demonstrated on benchmark circuits, implemented by both
reversible and CMOS gates, in terms of fault tolerance perfor-
mances and area costs. Comparisons with the related studies
in the literature as well as with DMR and TMR based circuits
clearly favor the proposed designs.

The rest of paper is organized as follow. In Section 2,
we discuss basics of reversible logic and reversible cost
measures used in this paper. In Section 3, we develop two
techniques to make a reversible circuit fault-tolerant by
using single parity preserving and Hamming code based
approaches. Section 4 represents our synthesis technique
for 100% error detection using Fredkin gates. In Section 5,
we show how to utilize the proposed reversible circuits with
CMOS logic gates. In Section 6, we give experimental results
to evaluate the proposed circuits. Finally, Section 7 concludes
this work with future directions.

II. PRELIMINARIES
While a conventional Boolean function always carries a one
bit information (0 or 1) that is independent of the number of
input bits, a reversible Boolean function carries information
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FIGURE 1. Circuit representations of NOT, CNOT, Toffoli, MCT, and MPMCT.

FIGURE 2. Circuit representations of Fredkin (F), MCF, and MPMCF.

with using the same number of input and output bits. For
reversible functions, each input bit combination results in
a unique output bit combination; the reverse of this is also
true because of the reversibility. This means that the input
values can be deduced by looking at the output values of the
reversible function. Bijection function in mathematics is also
a great example to understand reversibility. In these functions,
input and output sets have the same number of elements and
each element has only one counterpart in the other set.

A. BASICS OF REVERSIBLE CIRCUITS
A reversible function can be realized by a reversible circuit
consisting of reversible gates. In this study we use three types
of gates: MCT (Multiple Control Toffoli), MPMCT (Mixed
Polarity Multiple Control Toffoli), and MPMCF (Mixed
Polarity Multiple Control Fredkin). Definition of gates are
as follows, with corresponding symbols given in Figure 1
and Figure 2 where symbols •, ◦, ⊕, and × denote positive
control, negative control, Toffoli target lines, and Fredkin
target lines, respectively.
• NOT: a 1-bit gate performing NOT operation.
• CNOT: a 2-bit gate performing 1 bit NOT operation on
its target bit iff its control bit is 1.

• Toffoli: a 3-bit gate performing 1 bit NOT operation on
its target bit iff its control bits are both 1.

• Multiple Control Toffoli: an n-bit gate, n = 1, 2,
3, 4, . . ., performing 1 bit NOT operation on its target
bit iff all of its control bits are 1.

• Mixed Polarity Multiple Control Toffoli: an n-bit gate,
n = 1, 2, 3, 4, . . ., performing 1 bit NOT operation on
its target bit iff all of its positive control bits are 1 and
all of its negative control bits are 0.

• Fredkin: a 3-bit gate performing swap operation on its
target bits iff its control bit is 1.

TABLE 1. Quantum cost of reversible gates.

• Multiple Control Fredkin: an n-bit gate, n =

1, 2, 3, 4, . . ., performing swap operation on its target
bits iff all of its control bits are 1.

• Mixed PolarityMultiple Control Fredkin: an n-bit gate,
n = 1, 2, 3, 4, . . ., performing swap operation on its
target bits iff all of its positive control bits are 1 and all
of its negative control bits are 0.

B. AREA COSTS OF REVERSIBLE CIRCUITS
For quantum cost, we use a measure given in [21]
and [22] because it is the most commonly used and accepted
one compared to other measures in the literature [23], [24].
Table 1 summarizes the quantum costs used in this study.
One can also consider reversible cost or just simply gate
count [25]. But this metric does not consider the complexity
of a gate including the bit sizes.

C. FAULT TOLERANCE IN REVERSIBLE CIRCUITS
The following lemma demonstrates why reversible circuits do
not have latent switching faults. Such faults do not immedi-
ately cause an error at the output for the current operation, but
they might be destructive for next operations [26].
Lemma 1: A switching fault (0→1 or 1→0 transition)

in a node of a reversible circuit always results in a
change/transition at the output value.

Proof: The proof is by contradiction. Suppose that a
transition in a node does not cause any change at the output.
Since subcircuit of a reversible circuit is also reversible,
the node can be considered as an input node of a reversible
circuit. Also we know that a reversible circuit has one-to-
one matching between its inputs and outputs, so a change
in an input should change the output. As a result, there is a
contradiction. �

Consider a reversible circuit with inputs I1, I2,. . . , In and
outputs O1, O2,. . . , On. The circuit is parity preservative iff
I1 ⊕ I2 ⊕ . . .⊕ In = O1 ⊕ O2 ⊕ . . .⊕ On where⊕ represents
anXOR logic operation. Also if a reversible circuit consists of
parity preservative gates such asFredkin,Double-Feynman,
and Swap gates then the circuit is parity preservative.
The following lemmas explain why we use a preservative

gate based synthesis technique for 100% fault detection.
Lemma 2: Consider a reversible circuit consisting of only

preservative gates. For this circuit, 100% fault detection is
possible.
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FIGURE 3. Optimized 1-bit full adder.

FIGURE 4. A single parity fault-tolerant 1-bit full adder.

Proof: Since a transition does not scatter to multi transi-
tions at the output. With XORing the outputs, one can always
detect the fault. �
We select the Fredkin gate since it does not just preserve

the XOR of inputs, but it also preserves the arithmetic sum-
mation of the input values. Therefore, along with XORing
the outputs, one can also detect faults by counting the 1 or
0 valued outputs. Another reason of selecting the Fredkin is
its synthesis friendly simple structure.

III. MAKING A REVERSIBLE CIRCUIT FAULT-TOLERANT
In this section, we discuss our methods to make a given
reversible circuit fault-tolerant in terms of error detection and
correction. In order to elaborate them, an optimized 1-bit full
adder synthesized in [19] is used as an example of a given
circuit. The circuit is shown in Figure 3.

A. SINGLE PARITY BASED ERROR DETECTION
Single parity is basically based on the parity preservative
property. In order to satisfy the property for circuits consisting
of MCT or MPMCT gates which are not parity preservative
gates, we add an extra bit line to a circuit and an extra
gate for each gate of the circuit. The added gate shares the
same control lines with those of the corresponding gate in
the original circuit, with its target always in the added line.
In this manner, we can satisfy parity preservative equation
by doubling the circuit area cost. Thus, we could detect odd
number of errors at the output. We elucidate our method with
the following example.
Example 1: Let’s make the full adder in Figure 3 fault-

tolerant. Firstly, we add an extra bit line ‘‘parity bit’’. Then
for each of the four gates, we add an extra MCT gate. The
resulted circuit is shown in Figure 4.

Note that ourmethod guarantees parity preserving property
not only for the given circuit, but also for any subcircuit of it

that can be used for determining the fault places. This cannot
be done with the conventional DMR technique. Additionally,
although area overheads are same in DMR and our technique,
the resulted DMR circuit is not reversible, so there is no
guarantee of keeping the fault information at the output.

B. HAMMING 3 BASED ERROR DETECTION AND
CORRECTION
Basic idea of Hamming 3 encoding is based on the following
equations [27], [28].

p1 ⊕ d1 ⊕ d2 ⊕ d4 ⊕ d5 ⊕ d7 ⊕ . . . = 0 (1)

p2 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6 ⊕ d7 ⊕ . . . = 0 (2)

p4 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d8 ⊕ d9 ⊕ d10 ⊕ d11 ⊕ . . . = 0 (3)

p8 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d8 ⊕ d9 ⊕ d10 ⊕ d11 ⊕ . . . = 0 (4)

p16 ⊕ d12 ⊕ d13 ⊕ d14 ⊕ d15 ⊕ . . . = 0 (5)

Constructed on these equations, we present our two-step
algorithm to make a reversible circuit fault-tolerant.

Input: A reversible circuit consisting of MPMCT gates
having n bit/data lines d1, d2, . . . , dn.
Output: A fault-tolerant circuit that can detect any number

of errors unless the number of errors at the output is the order
of 3, or correct 1 bit error at the output.

1) Finalize Equations 1-5 by considering n. Thus,
the needed parity lines are determined.

2) In order to satisfy the finalized equations, for each gate
add extra gates having the same controls as those of the
corresponding gate and the targets on the parity lines.

We elucidate our method with the following example.
Example 2: Again consider the full adder in Figure 3 as a

given circuit. By using the first step we obtain the finalized
equations:

p1 ⊕ d1 ⊕ d2 ⊕ d4 = 0; (6)

p2 ⊕ d1 ⊕ d3 ⊕ d4 = 0; (7)

p4 ⊕ d2 ⊕ d3 ⊕ d4 = 0. (8)

In the second step, we start with the first gate on the left side.
Since it has a target bit on d1, by using Equations 6 and 7 we
should add two targets on p1 and p2. Therefore, two extra
gates are needed. This is illustrated in Figure 5 (a). After
applying the procedure for the second, third, and the fourth
gates, we obtain the final form as shown in Figure 5 (b).

The area overhead of our method is more or less the same
with that of TMR. However, our method offers higher error
correction rates. Also while our method can correct or detect
errors, TMR is only for correction. Error detection perfor-
mance of our method is much better than that of DMR.
A final note is that similar to our single parity based method,
the proposed error detection/correction scheme is valid for
any subcircuit of the given circuit.

C. SIMPLIFIED SINGLE PARITY AND HAMMING 3
For our methods introduced in the last two subsections,
we add extra gates with their controls on parity bits. Here,
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FIGURE 5. Illustration of the algorithm for the given circuit in Figure 3:
(a) first gate is considered, and (b) the final form.

we show that we can reduce the area overheads of the pro-
posed techniques by investigating added gate pairs in adjacent
stages, separated by dashed red lines in figures. We have
two cases for simplification: 1) gates and their locations are
identical such that both gates have the same target and control
bit lines; and 2) one of the gates shares all control and target
lines of the other one, plus having one extra control. For the
first case, we remove both gates since switching a parity bit
twice results in no change. For the second case, we remove
the gate having one less control lines, and keep the other gate
with negating its extra control. The reason is that a change in
a parity occurs only if all of the shared controls are active and
the extra control is inactive.

Figure 6 shows an example of simplification applied to
the circuit in Figure 5. For the first two stages, there are two
gates satisfying the second case. This is illustrated by Figure 6
(a). Also in the third and the fourth stages, there is a similar
case. As a result, the simplified circuit is obtained as shown
in Figure 6 (b).

IV. PERFECT ERROR DETECTION WITH FREDKIN GATES
From Lemma 2 given in the preliminaries section, we know
that 100% error detection is possible with Fredkin gates. For
this purpose we develop a greedy synthesis algorithm that

FIGURE 6. Simplification: (a) locating proposed gate pairs of adjacent
first and second stages; and (b) the final form of the simplified circuit.

implements an arbitrary reversible function with MPMCF
gates. Our algorithm has four steps as follows.

Input: A reversible function with its truth table having
n inputs and n outputs.

Output: A reversible circuit consisting of MPMCF gates
that implements the given function.

1) Make the given truth table conservative by adding 0 and
1 valued inputs and their corresponding outputs.

• For each row of the truth table, find the difference
value as the number of 1’s in each output row
minus the number of 1’s in the corresponding input
row.

• The number of added 1 valued inputs is the highest
positive value of the difference, and the number of
added 0 valued inputs is the absolute of the lowest
negative value of the difference.

• Based on the added input values, the output values
must be set in a way to achieve same number of 1’s
in each input/output row of the truth table.

2) Sort input and output columns of the table by consider-
ing the number 1’s in descending order.

3) Determine the unmatched bits between inputs and out-
puts for each row of the table.

VOLUME 6, 2018 74479
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FIGURE 7. Steps of the algorithm (a)-(b) first step; (c) second and third
steps; and (d) fourth step.

4) Start from the row having the smallest unmatched bits,
assign MPMCF gates row by row.

• Select controls of MPMCF gates such that the gate
only changes the bits in the corresponding row,
without disturbing other rows. In the worst-case
scenario, this is satisfied by using all bits controls
except the two target bits.

• The number of used MPMCF gates in a row is the
number of unmatched bits over two.

As an example, we again use the reversible full-adder
circuit in Figure 3 and its truth table; n = 4. Steps of the
algorithm is summarized in Figure 7. First we determine the

FIGURE 8. CMOS gate implementations for (a) a MCT gate, and
(b) a MPMCT gate.

TABLE 2. Area comparison between TBS technique and our proposed
synthesis technique.

difference values, shown in Figure 3 (a). Since the highest
positive value is 2, we add two 1 valued inputs I n1 and I n2
as well as the corresponding outputs O n1 and O n2. This is
illustrated in Figure 7 (b). Note that since there is no negative
difference value, we do not need to add 0 valued inputs.
After performing sorting, we map MPMCF gates as shown
in Figure 7 (c) and (d).

V. CMOS LOGIC IMPLEMENTATIONS
Our algorithms given in Section III result in reversible circuits
with MPMCT and MPMCF gates. We show how to convert
these gates into CMOS gate based realizations.

Consider a conventional NAND gate. Since three input
combinations aremapped to a single logical 1 value, the infor-
mation regarding to a possible fault at one of the inputs
can be lost. The same problem occurs in NOR, OR, and
AND gates. This is indeed related to ‘‘don’t care’’ con-
ditions. On the other hand, NOT, XOR, and XNOR gates
perfectly satisfy the awareness of an input fault. However,
they do not form a universal set. We use NAND, XOR, and
NOT gates for realizations such that any internal node of
the resulted CMOS logic circuit should be an input of an
XOR or a NOT gate. Also if an inverter is driving a NAND
gate then we replace the inverter with a cascaded inverter
pair in a loop to prevent ‘‘don’t care’’ conditions. As a result,
we guarantee of eliminating any latent switching faults at the
nodes.

Gate implementations of an MCT gate is shown
in Figure 8 (a). For an MPMCT, we only add cascaded
inverter pairs to the inputs having negative controls. This is
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TABLE 3. Reversible-quantum costs and error detection and correction rates of the proposed hamming 3 and single parity based methods.

FIGURE 9. CMOS gate implementation of a MPMCF gate.

shown in Figure 8 (b). Figure 9 shows the implementation
for a MPMCF gate. Again in case of having negative con-
trols, we add cascaded inverter pairs to the corresponding
inputs.

Note that since CMOS logic is one directional, these imple-
mentations are not fully reversible anymore. They imple-
ment the reversible functions proceeding only from inputs to
outputs.

VI. EXPERIMENTAL RESULTS
We use reversible benchmarks from [29]. We evaluate our
methods in terms of area cost, power cost and fault tolerance
performance. We consider three measures for area costs: 1)
reversible cost, 2) quantum cost, and 3) CMOS cost. As pre-
viously explained in the preliminaries section, for reversible

cost we basically use reversible gate counts, and for quantum
cost we use a measure in Table 1. For CMOS cost, we report
an estimation of occupied die area using TSMC 0.18 µm
technology. Beside that CMOS estimated power values are
also reported. CMOS area and power results are obtained
using the Genus tool in Cadence.

For fault tolerance analysis, in each try we inject a ran-
domly placed switching fault into a circuit node that causes
a bit flip, and check the resulted output errors. Detection
and correction rates represent the ratio of the number of
tries where errors are detected/corrected at the output to the
total number of tries, using Monte Carlo simulation. For the
single parity scheme, errors are detected iff they occur in
odd numbers at the output. And for the Hamming coded
scheme, all of the errors are detected except those occurring in
numbers multiplicand of d. In our study d is 3. And correction
rate for Hamming coded scheme is the ratio of single fault at
the output to the total number of trials.

A. FAULT TOLERANCE WITH REVERSIBLE GATES
For our single parity and Hamming 3 based methods,
we directly use the synthesized benchmarks from [29]. Then
we make them fault-tolerant. In the literature, to our knowl-
edge, there is no similar study. As we discuss in the intro-
duction section, although there are different fault-tolerant
approaches proposed for reversible circuits, they lack imple-
mentations with reversible gates. If we implement them with
the known reversible synthesis techniques suitable for don’t
care inputs (error detection/correction necessarily requires
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TABLE 4. CMOS Area-Power Costs and Error Detection and Correction Rates of the Proposed Hamming 3 and Single Parity Methods as well as for DMR
and TMR.

TABLE 5. Area and power costs of Fredkin synthesis techniques with 100 % error detection.

don’t care conditions), then the area costs become exces-
sively large. Table 2 shows an example for a reversible
1-bit full adder synthesized with our techniques and with the
transformation based synthesis (TBS) technique [30]. Since
area costs of TBS are much larger (even worse for larger
benchmarks), we do not add further results of TBS in the
following tables.

Area costs and error detection/correction rates of the pro-
posed methods are shown in Table 3. By examining Table 3,
we can conclude that for the Hamming 3, the simplification
almost always reduces the area costs with a slight decrease in
error detection/correction. On the other hand, for the single

parity, the simplification causes a major decrease in error
detection, so it might not be preferable. That is due to losing
parity preservative feature of the simplified stages. Another
inference is that on average our single parity and Hamming
3 based techniques make the original circuit area two and
three times larger, respectively. One important point is that
detection rates of the single parity method is as good as those
for the Hamming 3 based method.

B. FAULT TOLERANCE WITH CMOS GATES
To show practical usage of the proposed techniques, we per-
form CMOS implementations with NOT, NAND, and
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XOR-2 gates as explained in Section V. Here, we extensively
apply our techniques in comparison with DMR and TMR
solutions to reversible benchmark functions by reporting area
and power results.

Results are shown in Table 4. Since the single parity can
only detect faults, we compare it with the DMR scheme.
In most cases, the single parity has much higher error detec-
tion rates with similar or better area and power consumption
in comparison to the DMR scheme. Since the Hamming
3 technique has a correction capability, we compare it with
the TMR scheme. Again in most cases, the Hamming 3 pro-
poses a better performance in both area cost and the error
correction rates. However, power consumption of the Ham-
ming 3 is generally more than that of the TMR. On average,
the single parity consumes 8.2% less power and 59.4% less
area in comparison to the DMR. And, the Hamming 3 con-
sumes 32.5% more power and 56.6% less area compared to
the TMR.

C. FAULT TOLERANCE WITH FREDKIN GATES
Since Fredkin gate is a conservative gate and if a circuit
is synthesized using only this gate it will yield 100% error
detection. In the literature, synthesis with Fredkin gates has
not been proposed. However, by making any truth table con-
servative and then performing Fredkin Enabled TBS scheme
using the Soeken’s approach [20], we can have a circuit con-
structed on just Fredkin gates. The results shown in Table 5,
clearly favor our synthesis technique for each of the three area
cost measures as well as for power consumption.

VII. CONCLUSION
In this study, we have proposed methods to achieve latent-
fault-free and error detecting/correcting CMOS circuits. For
this purpose, we first implement fault-tolerant reversible
circuits. Since our methods to make a reversible circuit
fault-tolerant would not disturb the original circuit, it yields
smaller area overhead in comparison to any other syn-
thesis technique in the literature. Next, we convert our
reversible circuits to CMOS realizations, and then compare
our methods with conventional DMR and TMR techniques.
On the quest to achieve perfect error detection, we also
develop a greedy synthesis algorithm that implements an
arbitrary reversible function with multiple-control Fredkin
gates. As a future work, we aim to find a better, with much
smaller CMOS area, Fredkin or other conservative gate based
synthesis technique to achieve 100% error detection and
correction.
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