
1

From Stochastic to Bit Stream Computing: Accurate
Implementation of Arithmetic Circuits and

Applications in Neural Networks
Ensar Vahapoglu and Mustafa Altun

Abstract—In this study, we propose a novel computing
paradigm “Bit Stream Computing” that is constructed on the
logic used in stochastic computing, but does not necessarily em-
ploy randomly or Binomially distributed bit streams as stochastic
computing does. Any type of streams can be used either stochastic
or deterministic. The proposed paradigm benefits from the area
advantage of stochastic logic and the accuracy advantage of
conventional binary logic. We implement accurate arithmetic
multiplier and adder circuits, classified as asynchronous or
synchronous; we also consider their suitability of processing
successive streams. The proposed circuits are simulated using the
Cadence Genus tool with TSMC 0.18µm CMOS technology. We
thoroughly compare the proposed adders and multipliers with
their predecessors in the literature, individually and in a neural
network application. Comparisons are made in terms of area,
speed, power, and accuracy. We believe that this study opens
up new horizons for computing that enables us to implement
much smaller yet accurate arithmetic circuits compared to the
conventional binary and stochastic ones.

Index Terms—Stochastic computing, bit stream computing,
arithmetic circuits, neural network.

I. INTRODUCTION

STOCHASTIC computing (SC), first brought forward in
1960s [2], [3], performs serial data processing with Bi-

nomially distributed bit streams. Each stream represents a
probability value, obtained as the number of 1 valued bits
over the total number of bits. Thus, it is possible to use n+1
different states with a single input/output, corresponding to
n + 1 different values ranging from 0/n to n/n where n is
the total number of bits in a stream. On the other hand, con-
ventionally a binary input/output has two states that are logic
0 or logic 1. This feature offers an important area advantage
for SC, especially for arithmetic operations. For example, a
single AND gate is used for stochastic multiplication. This is
illustrated in Fig. 1. Here, input streams have values of 1/2, so
an output value of 1/4 is expected. Although the correct result
can be achieved as in Fig. 1 a), it is not guaranteed for different
cases since 1’s and 0’s in streams are randomly positioned in
SC. Fig. 1 b) shows an erroneous result with an output value
of 0/4. Here, the relative standard error is 100%. Note that we

——————————————————————————————–
* This work is supported by the TUBITAK-1001 project #116E250 and

Istanbul Technical University BAP (ITU-BAP) project #40781.

* E. Vahapoglu and M. Altun are with the Department of Electronics and
Communication Eng., Istanbul Technical University, Istanbul, Turkey, 34469.

* E-mails: {vahapoglu, altunmus}@itu.edu.tr

* A preliminary version of this paper appeared in [1]

a)

1/2 × 1/2 = 1/4

X1 × X2 = Y

0 1 10X1

1 0 10X2

Y 0 0 10

b)
1/2 × 1/2 0

X1 × X2 Y

1 1 00X2

X1 0 110
Y 0 0 00

Fig. 1. Stochastic multiplication with an AND gate having: a) accurate results,
and b) inaccurate results.

0

5

10

15

20

25

30

35

4 8 16 32 64 128 256 512 1024

E
r
r
o
r

P

e
r
c
e
n

ta
g

e

Number of Bits

Fig. 2. Average error percentage for an AND gate with respect to the number
of bits (n) in a stream; inputs probability values are both 1/2.

represent streams such that the bit on the leftmost is the first
to be processed.

Indeed, SC cannot guarantee error-free computation due to
its random feature. Since streams are Binomially distributed, to
always achieve zero error, infinite number of bits are needed.
Fig. 2 shows how the average error changes with the number
of bits for an AND gate having input values of 1/2. Here,
to achieve 10% and 1% errors, streams having more than
100 and 1000 bits are needed that is not practical in terms
of the computing time. This explains why SC could not
become a real competitor to conventional computing although
it offers significant area advantage [4]. Low accuracy or long
computing times is the main obstacle in front of SC and the
main motivation of this study.

In this paper, we propose a novel computing paradigm “Bit
Stream Computing (BSC)”. Similar to SC, BSC uses unary
bit streams having time series of 0’s and 1’s, and the value
of a bit stream is calculated by the total number of 1 valued
bits over the total number of bits in the stream. Different from
SC, BSC does not necessarily employ randomly or Binomially
distributed input/output bit streams and accordingly the bit
stream values do not necessarily represent probability values.
For example, an AND gate is used for multiplication in SC

2

Ideal Real

0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1

a) b)

0 1 1 0 0 1 0 0

c)

Ideal Real Ideal Real

Fig. 3. Examples of timing problems caused by: a) slow processing, b) glitch,
and c) difference in rise and fall times.

because applying the logic AND operation to two independent
probability values p1 and p2 results in a probability value
p1×p2. However, an AND gate is not proper for multiplication
in BSC since it should be guaranteed in BSC that same
input values always result in same output values, and it is
not satisfied with an AND gate for multiplication. BSC does
not require any type of distribution for streams. In other
words, changing the orderings of 1’s and 0’s in input bit
streams should not alter output values. The proposed paradigm
benefits from the area advantage of stochastic logic and the
accuracy advantage of conventional binary logic. With BSC,
we successfully implement accurate arithmetic multiplier and
adder circuits.

Along with the accuracy issue that is kept on the agenda
since the birth of SC, there is another difficulty for SC as
well as for BSC: timing problems. They happen mainly due
to undesirable changes in the duration of 1’s and 0’s in a
bit stream. Three examples are given in Fig. 3 showing the
expected error-free and obtained erroneous signal forms. In
the first example in Fig. 3 a), the signal is not processed fast
enough; in the second example in Fig. 3 b), there is a glitch;
and in the third example in Fig. 3 c), the difference between
rise and fall times of the signal causes an error. Considering
the severity of these and similar types of timing problems,
any circuit design technique developed for SC or BSC should
be justified with timing considerations. For this purpose, we
test the proposed circuits with transistor level simulations by
considering the correctness of output signals with their values
as well as the integrity of the signals showing how close the
signals are to ideal forms.

A. Previous Works and Contributions

The mainstream solution to improve accuracy in SC is
manipulating input bit streams by either decreasing their
randomness or making them dependent/correlated. For this
purpose, pseudo-random and quasi-random number generators
are proposed [5], [6]. Pseudo-random generators generally use
LFSR’s (Linear Feedback Shift Register) that even allow to
produce desired orders of 0’s and 1’s resulting in perfect
accuracy [6]. Additionally, quasi-random generators producing
low-discrepancy bit streams can decrease error rates [7],
[8]. There are also recent studies exploiting correlation for
accuracy [9], as well as using fully deterministic generators
[10], [11]. In [10] and [11], accurate arithmetic operations are
achieved. Nevertheless, for all of these studies uncorrelated
or independent bit streams are needed for all inputs. This is
achieved either using a separate stream generator for each
input or sharing a generator for multiple inputs with extra
circuitries [5], [11]. Although the sharing allows some area

saving, still the total area needed to generate input streams is
linearly dependent with the number of inputs, and this area
consumes a majority of the circuit area.

Another important drawback of the mentioned studies is that
they are not suitable for multi-level designs. Outputs of one
level can not be directly used as inputs of another level. For
example, outputs of two AND gates can not be directly used as
inputs of another AND gate. Outputs should be recreated to fit
the desired format, and this is quite costly. In [11] the authors
discuss this problem. The generated input signals, called as
PWM signals in the paper, loose their formation at the output.
They propose a solution for this, but it requires extra control
inputs, so new streams are needed to be generated. This does
not just worsen the design complexity, but it also decreases
the speed dramatically.

As opposed to the studies focusing on the generation of bit
streams in desired formats, our treatment BSC does only care
about the values carried by the streams, so any type of input
bit streams can be directly used. This eliminates the need of
specific stream generators. Furthermore, there is no extra cost
for multi-level designs; output streams of one level can be
directly used as inputs. In the literature, using the same logic,
an accurate adder is proposed in [12], called as Alaghi adder
in the paper. One of our two proposed synchronous adders is
quite similar to the Alaghi adder with additional considerations
for timing. Also we show that our adder can be generalized
for any number of inputs. Furthermore, along with the adders,
we propose two synchronous multipliers.

All of the above mentioned designs with an aim of im-
proving accuracy use clock signals, so they are synchronous.
To eliminate the cost of synchronization, we also propose
asynchronous adders and multipliers mainly constructed on
delay elements. Another shortcoming of these designs is their
inability to process successive input bit streams; they are
assumed to perform one-time operations. To overcome this
shortcoming, we propose an adder and a multiplier that can
successively process input bit streams.

Apart from the mentioned shortcomings, underestimating
the timing problems is a general tendency in the literature.
These problems are indigenous to bit stream operations in SC
and BSC, and without solving them it is hard to claim the
feasibility of the proposed study. For example, in [11], the
authors claim to work with 1 GHz clock signals to generate
pulses as input streams. Suppose that 8 bit binary equivalent
operations are performed, so there should be at least 256
different values for input streams. Therefore, for the worst case
scenario to represent the value of 1/256, a bit stream or a pulse
has a 1 valued bit with a duration of 1/(256×109) seconds. It
means that the proposed circuits should safely process 0.256
THz signals that does not seem to be possible (recall the case
in Fig. 3 a)). Therefore, much slower operations should be used
that also causes dramatic area increase for this study (justified
in the experimental results section).

Indeed, timing problems have high significance for any
computing paradigm using time series of bits including SC,
BSC, and bit serial computing. A general solution is using a
latch for each output of a circuit block, so time durations of
1 and 0 valued signals are kept close to expected ideal values

3

[13], [14]. Although this clock based timing is precise, it might
cause a considerably large area overhead and it is not suitable
for asynchronous designs. Another less precise solution is
using buffers [15]. Of course, increasing time durations of
bits also helps solving the timing problems at the cost of
decreased speed. Although, solutions to timing problems are
not in the scope of this paper, we at least aim to show the
timing performance of the proposed designs. For this reason,
we have designed all of the proposed circuits in transistor level
with timing simulations.

B. Overview

Three adders and three multipliers performing BSC are
proposed. Among the proposed six circuits, one adder and
one multiplier are asynchronous, and the rest four are syn-
chronous. Among the four synchronous circuits, one adder
and one multiplier are able to process successive input bit
streams. We evaluate all of the proposed designs with their
predecessors by performing simulations with TSMC 0.18µm
CMOS technology. The proposed circuits are also tested in a
neural network application.

The rest of paper is lined up as follows. Section II is com-
posed of definitions, explanations, and limitations for BSC. In
Section III and Section IV, we introduce our asynchronous
and synchronous circuits performing accurate arithmetic oper-
ations, respectively. In Section V, we give experimental results
to evaluate the proposed circuits. Section VI concludes this
work with future directions.

II. PRELIMINARIES

We start with a few definitions. We define bit duration as the
time duration of a single bit in a stream, and stream length
as the number of bits in the stream. We define accuracy as
an indicator of having correct or expected output values. For
example, having an output value of 1/6 for a multiplier with
input values of 1/2 and 1/3 is an accurate operation. For a
circuit block, an adder or a multiplier in this study, it is fully-
accurate if its operations are always correct, and it is semi-
accurate if its operations are sometimes correct.

Improving accuracy in SC has a fundamental limit as
explained in the following theorem.

Theorem 1. Consider a system with ideal elements performing
ideal SC. Accuracy of the system only depends on the expected
output values ze’s and the output stream lengths n.

Proof. In SC, ze can also be defined as the probability that
each output bit takes a logic 1 value. Therefore, each output bit
has a Bernoulli distribution and the output stream has Binomial
distribution (p = ze). The standard error (standard deviation)

and the relative error can be calculated as
√

p×(1−p)
n and√

(1−p)
p×n , respectively; both only depend on p = ze and n.

This relatively simple theorem tells us that 1) fully-accurate
computation is impossible with SC that needs infinite stream
lengths; 2) increasing stream lengths X times results in a
decrease in error values by only

√
X times which is not

efficient; and 3) in order to achieve high accuracy, randomness
in output bit streams should be sacrificed.

Motivated by these inferences, we introduce a novel com-
puting paradigm “Bit Stream Computing (BSC)” constructed
on the following three properties:

1) Unary bit streams having time series of 0’s and 1’s is
used;

2) The value of a bit stream is calculated by the total
number of 1 valued bits over the total number of bits in
the stream; and

3) For a circuit or system employing BSC, same input
values always result in same output values. In other
words, output values are independent of the orderings or
distributions of 1’s and 0’s in input bit streams unless
their values do not change.

Note that while SC satisfies the first two properties, bit serial
computing with binary weighted bits [13], [16] satisfies the
third property which is related to the accuracy of computing.
As a result, BSC benefits from the logic used in SC, but does
not necessarily employ randomly or Binomially distributed
input/output bit streams as SC does. This allows fully-accurate
computing with BSC.

We perform accurate arithmetic addition and multiplication
operations with BSC by considering the constraints given
below. Note that since values of bit streams are in the range
of 0-1, addition should be scaled by averaging the values.
For example, addition of two input values X1 and X2 results
in X1+X2

2 . Throughout the paper we simply use the word
“addition” to refer “scaled addition” .

Lemma 1. Consider two input bit streams with lengths of n.
Suppose that the streams take n+ 1 values between 0/n and
n/n. Accurate addition of the inputs with BSC requires an
output bit stream with a minimum length of 2× n.

Proof. Consider a worst case scenario for which one input
takes the value of 1/n and the other one takes 0/n. The output
value should be 1/(2×n) that requires a length of 2×n.

Lemma 2. Consider two input bit streams with lengths of n.
Suppose that the streams take n+ 1 values between 0/n and
n/n. Accurate multiplication of the inputs with BSC requires
an output bit stream with a minimum length of n2.

Proof. Consider a worst case scenario for which both inputs
take the value of 1/n. The output value should be 1/n2 that
requires a length of n2.

Theorem 2. Consider a system performing BSC such that
input and output stream lengths are n and m, respectively
where n < m. If the system’s current reaction time or delay is
independent of the past, it cannot correctly process successive
input streams.

Proof. Suppose that the system has a delay of d bits (d may
be fractional). It means that after applying input bit streams,
the system needs to wait for a time duration of d bits to have
the first output bit. Consider two sets of successive input bit
streams. After the completion of the first set, the system needs
more time equivalent to m− n+ d bits to have the output in

4

n nn n

X1 X2 X3 X4
Input 1:

n nn n

Y1 Y2 Y3 Y4
Input 2:

Output:
Z1 Z3

m

Z2

m mm

Z4

d

d

m-n+d

Fig. 4. Demonstration of processing successive input bit streams.

full. However, we know that after the time duration of d bits,
the output starts to have the results for the second input set.
This is illustrated in Fig. 4. As a result, m− n+ d = d, and
m = n should be satisfied to obtain correct results.

Theorem 2 leads to two solutions for successive processing
of bit streams. The first one is controlling the system’s delay
sequentially. For example in Fig. 4, for the first, the second,
and the third set of input streams, the delay should be d, d+
m − n, and d + (2m − n) bits, respectively. Implementing
such a complex and sequential system certainly kills the area
advantage of BSC. The second solution is having same stream
lengths for the inputs and outputs. This solution is much better
not just for the area, but also for its suitability for multi-level
designs. In this study, we use the second solution.

Using same stream lengths might result in inaccurate out-
puts. From Lemma 1 and Lemma 2, we know that we cannot
achieve accurate addition and multiplication by using the same
lengths if input bit streams are in full resolution meaning that
they can take all possible values. For example, suppose that
input and output stream lengths are 16, and multiplication is
performed. If both inputs have values of 3/16, the correct result
should be 9/256 or 0.5625/16, but we can only get either 0/16
or 1/16 from the output, so there is an error. To minimize
the error, we round the output value to the nearest integer.
In this example, the rounded result is 1/16. Considering this
accuracy issue, we classify the proposed asynchronous and
synchronous circuits as semi-accurate with constant stream
lengths and fully-accurate with increasing stream lengths. This
is illustrated in Fig. 5. Note that fully-accurate ones are not
proper for successive processing.

III. ASYNCHRONOUS ADDERS AND MULTIPLIERS

First, we clarify why we do not use constant stream lengths
for asynchronous circuits as stated in Fig. 5. Different from
fully-accurate adders and multipliers with increasing stream
lengths, semi-accurate adders and multipliers with constant
stream lengths do not always have a change in their output
values if one of the input values changes. Therefore using
a constant stream length needs decision making of whether
or not changing the output value or correspondingly whether
or not changing the output bits. This requires to store and
reuse of previously processed input bits in current operations,
done with sequential circuits, and it is costly for asynchronous

PROPOSED ADDERS AND MULTIPLIERS WITH BSC

SYNCHRONOUSASYNCHRONOUS

 Increasing

stream length

 Fully-accurate

Not Applicable

 Constant

stream length

 Semi-accurate

 Increasing

stream length

 Fully-accurate

 Constant

stream length

 Semi-accurate

Adder Multiplier Adder Multiplier Adder Multiplier

Fig. 5. Summary of the proposed adder and multiplier designs.

circuits. Therefore, we do not design asynchronous circuits
with constant stream lengths.

As an example, consider an adder performing BSC with a
constant stream length of four. Suppose that applying input
values 0/4 & 0/4, 0/4 & 1/4, and 1/4 & 1/4 result in output
values of 0/4, 0/4, and 1/4, respectively. Consider input streams
1,0,0,0 and 0,0,0,1. Here, the adder should store the informa-
tion of the first received 1 without assigning any 1 to output
bits until processing the last input bits, so there is a store and
reuse operation. At the end the output stream becomes 0,0,0,1.

For our designs we should also consider the following
limitation.

Lemma 3. Consider a fully-accurate asynchronous system
performing BSC such that it has input streams with lengths
of n and an output stream with a length of m where n < m.
The system should consist of circuit elements having total of
more than m− n outputs.

Proof. At the time the output has its nth bit, the remaining
m−n bits should be kept in the system that necessitates m−n
outputs excluding the output of the system. As an example,
suppose that n = 2 and m = 4, and the system consists of
inverters. Here, we need at least three outputs necessitating
three inverters.

Considering arithmetic operations and their stream length
specifications previously given in Lemma 1 and Lemma 2,
using Lemma 3 we conclude that more than n and n2 − n
outputs are needed for fully-accurate adders and multipliers,
respectively, where n is the length of input streams. Since
we use inverters as circuit elements to achieve desired delay
values, more than n and n2 − n inverters are needed for
for fully-accurate adders and multipliers, respectively. Another
restriction is that the number inverters should be even to
prevent negation at the outputs.

To select a proper inverter structure, we consider three crite-
ria: 1) its circuit area should be small in harmony with the area
advantage of BSC; 2) its rise and fall times should be small
to preserve signal integrity; and 3) it should be controllable to
compensate for changes in delay values. Considering different
options, three inverter structures come forward, shown in Fig.
6. Delay control of the conventional inverter, shown in Fig.
6 a), can be achieved by VDD scaling. For better control,

5

b) c)

IN

VN

VP

VDD

OUT
IN

VN

VP

VDD

VDD

OUT
IN

VDD

OUT

a)

Fig. 6. Inverter as a delay element: a) conventional inverter, b) NP-voltage
controlled inverter, and c) its cascaded version with a Schmitt trigger.

4 Bit

Delay

X1: 2/4

X2: 1/4

Input-1: 1,1,0,0

Input-2: 1,0,0,0 0,0,0,0,1,0,0,0

1,1,0,0,1,0,0,0

(2/4 +1/4) × 1/2 = 3/8

Output:1,1,0,0,0,0,0,0

(X1+X2)×1/2 : 3/8

Fig. 7. The proposed asynchronous adder with inputs having four bits (n =
4).

VN and VP analog voltage inputs can be used as shown in
Fig. 6 b). Additionally, to improve signal integrity, the inverter
in 6 b) can be cascaded with a Schmitt trigger as shown in
Fig. 6 c) [17]. Among these three options, we prefer the first
conventional one for the sake of simplicity and area efficiency.

A. Increasing Stream Length: Fully-accurate Addition

The proposed adder includes a delay block and an OR gate
as shown in Fig. 7. The delay block is used to postpone one
of the inputs with a delay amount of the time duration of the
input stream that can be calculated as (input stream length
n)×(bit duration). To satisfy this amount and Lemma 3, we
need to use at least n+1 inverters if n is an odd number, and
n + 2 inverters if n is an even number. As a result the area
complexity is O(n).

B. Increasing Stream Length: Fully-accurate Multiplication

Accurate multiplication cannot be achieved unless each bit
in one of the input streams is multiplied with each and every
bit in the other one. Therefore, total of n2 operations are
needed where n is the input stream length. We satisfy this
by applying delays to the input streams for 2n − 1 different
cases; 1 case for no delay, n − 1 cases for delaying one of
the inputs more than the other one, and n − 1 cases for the
opposite. After making multiplications with AND gates, an
OR gate is used to combine the results. This is illustrated in
Fig. 8 for n = 3. Here, there are total of 5 cases corresponding
to 5 AND gates. Fig. 9 shows the circuit structure.

In general for n bit inputs, the circuit is constructed in four
steps:

1) The inputs are ANDed without any delay (corresponding
to the AND gate numbered 1 in Fig. 8).

2) Last n − i bits of Input-1 and first n − i bits of
Input-2 are ANDed successively for i = 1, 2, ..., n − 1,

ACCURATE

RESULT

Y Z
A B C
X

A B C
Y ZX0

0

A B C
Y ZX00
0 0

A B C
Y ZX 0

0

A B C
Y ZX 0 0

0 0

DELAY
0
0
2
3
3
5
6
4
7
6

1

2

3

4

5

Fig. 8. Elucidation of the proposed asynchronous multiplier for 3 bit inputs.

2 Bit

Delay

1 Bit

Delay

Input-1

3 Bit

Delay

1 Bit

Delay

1 Bit

Delay

1 Bit

Delay

3 Bit

Delay

1 Bit

DelayInput-2

Output5

2

3

4

1

X1

X2

 X1 × X2

Fig. 9. The circuit structure of the proposed asynchronous multiplier for 3
bit inputs.

corresponding to the AND gates numbered 2 and 3 in
Fig. 8. Total of n − 1 AND gates are used for these
operations with n−1 delay blocks for Input-1 and n−1
delay blocks for Input-2, corresponding to the 2 delay
blocks in the upper part and the 2 delay blocks in the
lower part of the circuit in Fig. 9.

3) First n − i bits of Input-1 and last n − i bits of Input-
2 are ANDed successively for i = n − 1, n − 2, ..., 1,
corresponding to the AND gates numbered 4 and 5 in
Fig. 8. Total of n − 1 AND gates are used for these
operations with n−1 delay blocks for Input-1 and n−1
delay blocks for Input-2, corresponding to the 2 delay
blocks in the upper part and the 2 delay blocks in the
lower part of the circuit in Fig. 9.

4) Outputs of the all 2n − 1 AND gates are ORed with a
2n−1 fan-in OR gate. The output of this OR gate gives
the accurate result.

Delay difference between the inputs of ith and i−1th AND
gates, representing the delay of the corresponding block, can
be generalized as follows:

For Input-1

0 i = 1

n− (i− 1) i = 2, 3, . . . , n

n i = n+ 1

i− (n+ 1) i = n+ 2, n+ 3, . . . , 2n− 1

For Input-2

0 i = 1

n− (i− 2) i = 2, 3, . . . , n

−(n− 2) i = n+ 1

i− n i = n+ 2, n+ 3, . . . , 2n− 1

Note that (n + 1)th case for the second input has a negative
value meaning that it needs less delay than that of nth case
(see Fig. 8 and Fig. 9).

As a result, the delay blocks offer total of n2 − (n − 1)
and n2 − (n) bit delays for Input-1 and Input-2, respectively.

6

Therefore, we need at least ≈ 2n2 inverters to realize the
delay blocks regarding that each delay block should have even
number of inverters. The area complexity is O(n2).

IV. SYNCHRONOUS ADDERS AND MULTIPLIERS

The proposed asynchronous circuits are easy to design
with delay controllability features. However, their area quickly
grows with the input stream length n; for high n values the
circuits become inefficiently large. Also, they cannot process
successive input streams. To solve these problems, we proceed
to synchronous designs. The existence of auxiliary signals
allows to keep and process the information carried by streams
with binary digits. Indeed, the resulting circuits are hybrid with
processing both streams and binary digits.

We have two classes for the proposed synchronous designs
that have increasing and constant stream lengths. While the
former one is fully-accurate, similar to the proposed asyn-
chronous ones, the latter one concedes slight errors with an im-
portant plus of being able to process successive input streams.
As a result, we propose four adders and multipliers that are
thoroughly explained in the following four subsections.

A. Increasing Stream Length: Fully-accurate Addition

We mainly use the same approach as we previously use
for our asynchronous adder: one of the input streams waits
until all bits of the other one is processed. Instead of using an
asynchronous delay block as in Fig. 7, we use synchronous
blocks to store the input information in binary format that is
more area efficient especially for large stream lengths.

Fig. 10 shows the proposed adder for an input stream length
n = 8; X1 and X2 represent the input values ranging between
0/8 and 8/8. Note that the stream length of the output should
be 16 for accurate operation as previously stated in Lemma
1. The proposed adder first turns X1 into a binary format via
the counter. After the completion of the counting process, the
register saves the information in the output of the counter.
Then, binary to stream converting is done by the multiplexer.
Finally, addition is performed with an OR gate.

Even though the 8 bit stream corresponds to 3 bit binary
resolution, the counter and the register are both selected 4 bit
to be able to represent all 9 values between 0/8 and 8/8.
Also, that is the reason why OR gates are used before the
multiplexer. The largest binary value coming from the outputs
of the register R3R2R1R0 is 1000 that should produce 1’s for
all bits in the stream at the output of the multiplexer. To do
so, R3 is ORed with other R’s.

For the multiplexer, along with the 4 inputs I0, ..., I3 coming
from the register, there is one more input I4 used to make the
output of the multiplexer logic 0 for a time duration of n bits,
needed to process the input stream coming from Input-2. Table
I shows the relation between the data inputs, the selection
inputs, and the output of the multiplexer. All selection inputs
are actually clock signals with 50% duty cycles. They can be
generated from a single CLK input via frequency division with
flip-flops, as shown in Fig. 11. Additionally, the TRIG input
of the register is selected as S3.

X1

C0
C1
C2
C3

4 Bit Up

Counter

IN

X2

(X1+X2) / 2

OUT

5:1 MUX

I0
I1
I2
I3

S0 S1 S2 S3

R0
R3
R1
R3
R2
R3
R3

R0
R1
R2
R3

4 Bit

Register
I0
I1
I2
I3 TRIG

Bit

Stream to

Binary

Storing in

Binary

Format

Binary to

Bit

Stream

I4

Input-1

Input-2

Output

Fig. 10. The proposed synchronous fully-accurate adder for 8 bit inputs.

TABLE I
RELATION BETWEEN THE SELECTION INPUTS AND THE OUTPUT OF THE

5:1 MULTIPLEXER IN FIG. 10

SELECTION INPUTS OUTPUT
S3 S2 S1 S0 Equivalence Duration
0 0 0 0 I0 1 bit
0 0 0 1 I3 1 bit
0 0 1 X I1 2 bit
0 1 X X I2 4 bit
1 X X X I4 8 bit

D Q

Q

S0

D Q

Q

S1

D Q

Q

S2

D Q

Q

S3

CLK TRIG

Fig. 11. The generation circuitry of the auxiliary signals in Fig. 10

If the input streams have n bits, the counter and the register
should be log2 n + 1 bit, and the multiplexer should have
log2 n+2 data inputs and log2 n+1 selection inputs. Also, all
auxiliary signals could be generated from a frequency divider
circuit consisting of log2 n+1 successive flip-flops. As a result,
the area complexity is O(log n).

B. Increasing Stream Length: Fully-accurate Multiplication

Consider two input bit streams with lengths of n. As
mentioned earlier, accurate multiplication requires n2 bitwise
operations that is in compatible with Lemma 2. We satisfy
this by repeating one of the streams n times, and by repeating
each bit of the other stream n times. An example for n = 4
is shown in Fig. 12. Note that the orders of 0’s and 1’s in the
input streams are not reflected to the repeated streams; after
the counting process, we only have the information of the input
values X1 and X2, not the orderings. In the example, both of
the input streams are treated as (0,1,1,1) since X1 = X2.

The circuit implementation of the proposed multiplier for
n = 4 is given in Fig. 13. The counting and reconversion
circuitry is nearly same with the one in Fig. 10. The only
difference is the number of inputs in multiplexers (one less),
because there is no need to wait for one of the streams as we
do for the adder. The selection inputs of the upper multiplexer
(S0, S1) are 4 times faster than those of the lower ones (S2,
S3). Additionally, the TRIG-1 input can be selected as the
negated form of S2, and the TRIG-2 input is the negated form
of the two times slowed version of S3. Therefore, all auxiliary

7

Counting and

Reconversion

Input-1: 1,1,0,1 0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1

12/16 = 3/4

0,0,0,0,0,1,1,1,0,1,1,1,0,1,1,1

 X1 × X2
Counting and

Reconversion

Input-2: 1,1,1,0 0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1

X2: 3/4 12/16 = 3/4

 X1 × X2
 3/4 × 3/4 = 9/16

Output

X1: 3/4

Fig. 12. The proposed multiplication scheme for 4 bit inputs.

X1

C0
C1
C2

3 Bit Up

Counter

IN

 X1 × X2

OUT

3:1 MUX

I0
I1
I2

S0 S1

R0
R2
R1
R2

R0
R1
R2

3 Bit

Register

TRIG-1

I0
I1
I2 R2

C0
C1
C2

3 Bit Up

Counter

IN

R3
R5
R4
R5

R3
R4
R5

3 Bit

Register

TRIG-2

I0
I1
I2 R5 X2

OUT

3:1 MUX

I0
I1
I2

S2 S3

Counting and Reconversion

Input-1

Input-2

Output

Fig. 13. The proposed fully-accurate synchronous multiplier for 4 bit inputs.

inputs can be generated from a single clock signal by using a
frequency divider circuit having 5 successive flip-flops.

Analyzing the scalability of the proposed multiplier, we see
that the counters and registers should be log2 n+1 bit, while
the multiplexer should have log2 n + 1 inputs. Furthermore,
log2 n+2 successive flip-flops needed to generate all required
auxiliary signals. Therefore, the area complexity is O(log n).

C. Constant Stream Length: Semi-accurate Addition

Addition in BSC is having an average of the input values
X1 and X2, and for the constant stream length, this can be
performed with bit-by-bit averaging of the input stream bits.
However, since the average of 1 valued and 0 valued bits
results in 0.5 and it can not be represented with a single
output bit, carry is needed to store the information. Table II
shows the truth table for such a solution. A circuit suiting
Table II should operate as desired. Fig. 14 shows the circuit
implementation of the proposed adder. It works as follows: if
the input values X1 and X2 are both even or both odd, then
the result is correct; otherwise the result is the rounded version
of the correct result with an error distance of 0.5/n where n
is the input stream length. Fig. 15 shows two examples for
the proposed addition operation giving erroneous and accurate
results. Since the circuit area is constant, independent of n, the
area complexity is O(1).

Note that our circuit in Fig. 14 has a quite similar perfor-
mance compared to the scaled adder in [12]. However, with our
point of view, we can generalize our adder for any i number
of inputs. In our design, at first the input bits are counted
in parallel, and the result is added to the carry which has
an initial value of i/2 to eliminate probable negative carry
values. If the carry is larger than i, the output becomes 1,

TABLE II
TRANSITION TABLE OF THE PROPOSED ADDER

Carry Input-1 Input-2 Output Carry-new
X 0 0 0 Carry
X 0 1 Carry Carry
X 1 0 Carry Carry
X 1 1 1 Carry

Output

Input-1

Q

Q
SET

CLR

D

Input-1

Input-2

Input-2

CLK

Carry

CarryInput-1 (X1)
Input-2 (X2)

(X1+X2)/2

Carry-new

Fig. 14. The proposed semi-accurate synchronous adder for two inputs.

Input-1: 1, 1, 1, 0

Input-2: 0, 1, 0, 1

Output: 0, 1, 1, 0

1 1 0 1

a)
Error

Input-1: 1, 1, 1, 0

Input-2: 0, 1, 1, 1

Output: 0, 1, 1, 1

1 1 1 0

b)
No ErrorCarry: Carry:

Fig. 15. Examples for the proposed addition operation: a) X1 = 3/4 and
X2 = 2/4, and b) X1 = 3/4 and X2 = 3/4.

Output

C_Pre0

2 Bit Register

I5
I6
CLK

O5
O6

Parallel Counter
I1

I3
I4

I2
O0

O2
O1

Input-1
Input-2
Input-3
Input-4

I10

I12

I20

I11 Out

S1
S0

I21

Binary Adder
& Output

C_Pre1

C_New0
C_New1

C_Pre0
C_Pre1

Fig. 16. The proposed semi-accurate synchronous adder for four inputs.

and i is subtracted from the carry. Otherwise, the output is 0.
Fig. 16 shows i = 4 version where “Parallel Counter” simply
counts 1’s in the input streams, and “Binary Adder & Output”
first adds the current carry value to the output of the counter,
then determines the output and updates the carry value with
aforementioned process steps. Note that the structure coincides
with modular parallel incrementers in the work [18] through
using its carry-out and sum as output and updated carry values,
respectively.

D. Constant Stream Length: Semi-accurate Multiplication

We fundamentally use the same approach as we use for
addition considering that multiplication is the repeated version
of addition. Suppose that input bit streams represent values
X1 = a/n and X2 = b/n where n is the length of the streams.
If we add b copies of the first stream, or a copies of the second,
we can achieve multiplication by using bit-by-bit averaging
with a carry. Different from the addition operation for which
rounding to the nearest integer can be always satisfied with
positive carry values, the multiplication operation with optimal
error performance should have both positive and negative carry
values between −0.5n and +0.5n. Thus, we make the error
distance upper bounded by 0.5/n. Note that if we only used
positive carries, this upper bound would be 1/n.

8

Algorithm 1 Regeneration of Inputs for Optimal Error Per-
formance in Constant Stream Multiplication
1: procedure REGIN(In1(n),In2(n))=(RegIn1(n),RegIn2(n)) . Regeneration

of n-bit Input Streams
2: SumIn1← sum(In1)
3: SumIn2← sum(In2)
4: Carry ← 0
5: for i← 1, n do
6: if i ≤ SumIn1 then . Determining ith bit of the 1st

Regenerated Input
7: RegIn1(i)← 1
8: else
9: RegIn1(i)← 0

10: end if
11: Carry ← Carry + SumIn2 . Addition of Multiplicand to

the Carry
12: if Carry ≥ n/2 then . Determining ith bit of the 2nd

Regenerated Input
13: RegIn2(i)← 1
14: Carry ← Carry − n
15: else
16: RegIn2(i)← 0
17: end if
18: end for
19: end procedure

Fig. 17 elucidates our multiplication scheme for 4 bit inputs.
For example in Fig. 17 a), the first operation is adding three 1’s
with a result of 3; then 3/4 is rounded to the nearest integer
that is 1 as the output, and the carry with a value of -1 is
transferred to the next bit operation for which three 1’s and
the carry results in 2/4 that is rounded to 1 (it could have
been rounded to 0 also) with a carry of -2 as an error.

Instead of directly implementing the flow in Fig. 17 that
requires to first process Input-2, and then depending on the
value of it, process Input-1, we process Input-1 and Input-
2 separately. Thus, we can treat the inputs simultaneously
by regenerating them with independent circuitries. We still
satisfy the overall flow in Fig. 17 by achieving a faster, less
complex, and smaller multiplier circuit. In fact, regeneration of
input signals to achieve better accuracy has been previously
used in [1] and [10]. They manipulate the input streams to
achieve 100% accuracy at the output. However, these works
produce larger output stream lengths than input ones that
causes problems in processing successive input streams, as
discussed in Section II.

For the proposed multiplication scheme, we regenerate
input streams such that one of them is lined up in a way
to process all 1’s first and then all 0’s, and the other one
is used as a multiplicand. In every bit-by-bit operation, the
multiplicand is added to the carry. Algorithm 1 demonstrates
the steps regenerating input streams of In1(n) and In2(n) as
RegIn1(n) and RegIn2(n), respectively. The generation of
RegIn1(n) is quite simple: first all 1’s, then all 0’s. However,
RegIn2(n) is generated with a more complex way. For each
iteration, number of 1’s in In2(n) is added to Carry. If new
Carry is larger than or equal to n/2, it is subtracted by n and
RegIn2(i) becomes 1, otherwise RegIn2(i) becomes 0. Note
that for the first iteration Carry = 0.

Fig. 18 shows two examples for the regenerations of input
bit streams. The multiplication operation is completed by AND
operation of the regenerated streams. In Fig. 18 a), since the
expected output value of 1/8 can be represented with 8 bits,

Input-1: 1, 1, 0, 0

Output: 1, 1, 0, 0

a)

2/4 × 3/4 = 6/16 2/4

× 3

Carry: -1 -2 -2 -2

Input-2

Error

Input-1: 1, 1, 0, 0

Output: 1, 0, 0, 0

b)

2/4 × 2/4 = 1/4

× 2 Input-2

Carry: -2 0 0 0 No Error

Fig. 17. Examples for the proposed multiplication approach: a) X1 = 2/4
and X2 = 3/4, and b) X1 = 2/4 and X2 = 2/4.

0,1,1,1,0,0,0,1

1,0,0,0,0,0,1,0
Regeneration

1,1,1,1,0,0,0,0

0,1,0,0,0,1,0,0

In1(8)=4/8:

In2(8)=2/8:

:RegIn1(8)

:RegIn2(8)

Output = 4/8 × 2/8 = 1/8 :
AND

0,1,0,0,0,0,0,0

a)

Output = 3/8 × 7/8 = 21/64 3/8 :

0,1,0,1,0,0,0,1

1,1,0,1,1,1,1,1
Regeneration

1,1,1,0,0,0,0,0

1,1,1,1,0,1,1,1

In1(8)=3/8:

In2(8)=7/8:

:RegIn1(8)

:RegIn2(8)

AND
1,1,1,0,0,0,0,0

b)

Fig. 18. The regeneration of input streams with Algorithm 1 with outputs
giving a) no error, and b) optimal error.

the accurate output value of 1/8 is obtained. On the other hand,
in Fig. 18 b), the expected output value of 21/64 cannot be
represented accurately with 8 bits. Therefore, the output gives
the nearest possible value of 3/8.

Fig. 19 shows a circuit to realize Algorithm 1. It has
three exactly same 4-bit up counters. Each has an input INi;
four output ports Cij and their negates CijB ; and four clear
and four preset inputs CLRi and PREi, respectively. For
simplicity, unused ports are not generally shown in the circuit.
That is why counters look different though they are exactly
same. Similarly, each of the three identical registers has four
inputs Iij ; four outputs Rij and their negates RijB ; and
clear and clock inputs CLR and CLK (CLK or TRIG),
respectively. Again unused ports are not shown.

Inputs IN1 and IN2 are first counted by up counters. The
information of IN1 is saved in the 4-bit register and then
inversely loaded to the next 4-bit up counter via the CLRi

and PREi inputs generated from TRIG, R1j , and R1jB . The
signals CLRi and PREi are connected to the CLEAR and
PRESET inputs of the corresponding D-FF in the counter to
transfer the inversion of the saved information in the register to
the counter after the counting in the first counter is completed.
This means that the counter starts to count from inversion
of saved information instead of from “0000”. Then the most
significant bit (MSB) of the counter C23 and negated version
of other bits, C2iB for i = 0, 1, 2, determine REG IN1.
If the counter output is between 0111 and 1110, REG IN1

becomes 1; otherwise it becomes 0. For instance, for the case
of X1 = 5/8, the saved information is 0101 and the transferred
information is 1010. So, the counter starts from 1010 and
arrives at 1111 after 5 clock cycles, which means first 5 bits
of REG IN1 are 1 and the rest are 0. Thus, we generate
REG IN1 with an up counter and some logic circuit instead
of a costly digital comparator. Note that in order to eliminate
latency hit, regenerated signals are delayed by extra flip-flops.
Eventually, the circuit gives its first output bit 2 clock cycles
after getting the last input bits.

The saved information of IN2 in the 4 bit register is
summed with the previous sum in each clock cycle by a binary

9

C0
C1
C2
C3

4 Bit Up Counter

IN1

CLR

R0
R1
R2
R3

4 Bit Register
I0
I1
I2
I3 TRIG

O0
O1
O2

4 Bit No

Carry Adder

I10

I12

I11

I20

I22

I21

I13

I23

O3
R4
R5
R6
R7

4 Bit Register

CLKCLR

I4
I5
I6
I7

NCA0
NCA1
NCA2 NCA0

NCA1
NCA2

C10
C11
C12
C13

4 Bit Up Counter

IN1

CLR

R10
R11
R12
R13

4 Bit Register

I10
I11
I12
I13

R10B
R11B
R12B
R13B

TRIG

TRIG
R10

TRIG
R11

TRIG
R12

TRIG
R13

CLR0

CLR1

CLR2

CLR3

TRIG
R10B

TRIG
R11B

TRIG
R12B

TRIG
R13B

PRE0

PRE1

PRE2

PRE3

C20
C21
C22
C23

4 Bit Up

Counter

IN2

CLR0

CLR1

CLR2

CLR3

PRE0

PRE1

PRE2

PRE3

C20B
C21B
C22B
C23B

X1
Input-1

Input-2
X2

D Q

Q

S0

S0B

D Q

Q

S1

S1B

CLK

CLK
S0

S1
TRIG

TRIG CLR

S2

D Q

Q

S2

S2B

Auxiliary Signal Generation

CLK

0

C22B
C21B
C20B

C23

REG_IN2

REG_IN1

REG_IN2
 X1 × X2
Output

C23B
C22

C21
C20

Fig. 19. The proposed semi-accurate synchronous multiplier for 8 bit inputs.

addition block so-called “No Carry Adder” which excludes the
MSB (or final carry) of a classical binary adder. This summa-
tion performs the operation Carry ← Carry + SumIn2 in
the line 11 of Algorithm 1. In other words, the inputs of the
undermost register corresponds to Carry. Note that Carry
varies between [−n/2, n/2]. To get rid of negative numbers,
we start Carry from n/2, instead of 0, and shift the interval
to [0, n] by starting the undermost register from 01..0, instead
of from 00...0. Thus, if the MSB of the output of No Carry
Adder is 1, which means the unshifted and shifted carries
are larger than n/2 and n, respectively, REG IN2 becomes
1. Otherwise, Carry is not large enough to produce 1, so
REG IN2 becomes 0. Furthermore, the MSB of the input
of the undermost register is always zero to implement the
subtraction in the line 14 of Algorithm 1. If REG IN2 is 1
then it means that Carry ≥ n, so Carry should be subtracted
by n, i.e. MSB should be turned into 0. On the other hand,
REG IN2 = 0 does not require any change in Carry, so the
MSB should be again 0.

The circuitry to generate auxiliary inputs TRIG and CLR
is also added in Fig. 19. Essentially, CLR is the slightly
delayed version of TRIG, because registers using TRIG
signal need to save the outputs of the leftmost counters before
they are cleared. The proposed design in Fig. 19 can be
generalized for n bit inputs. Counters, registers, and binary
adders should be log2 n+1 bit. Additionally, 2× (log2 n+1)
AND gates are needed for producing CLR and PRE signals,
and log2n successive flip-flops are used in auxiliary signal
generation. As a result, the area complexity becomes O(log n).

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed six circuits:
• Asynchronous Increasing Stream-length Adder (AISA),
• Asynchronous Increasing Stream-length Multiplier (AISM),
• Synchronous Increasing Stream-length Adder (SISA),
• Synchronous Increasing Stream-length Multiplier (SISM),
• Synchronous Constant Stream-length Adder (SCSA), and
• Synchronous Constant Stream-length Multiplier (SCSM).
We present simulation results using the Cadence Genus tool
with TSMC 0.18µm CMOS technology. The results are

grouped in the following three subsections. In the first one,
we thoroughly compare the proposed adders and multipliers
with their predecessors in the literature. Comparisons are
made in terms of area, speed, power, and accuracy. In the
second subsection, we further evaluate the proposed circuits
by considering timing problems and their effects on signal
forms of output streams. We also test the circuits’ abilities to
be used in successive processing and multi-level designs. In the
third subsection, we use the proposed adders and multipliers
as well as their counterparts in the literature to implement
a fully-connected neural network. Comparisons are made in
terms of area and misclassification rates of the networks.

A. Area, Speed, and Power Evaluations

We evaluate the designs using Cadence Genus Synthesis
Tool with TSMC 0.18 µm CMOS digital library. We make
the tool automatically generate area, speed, and power results
of the proposed and compared designs. In comparisons, we
consider three studies offering accurate stochastic operations
that are based on clock division [10], using LFSR’s [6],
and PWM signals [11]. We also consider conventional binary
ripple carry adder and array multiplier circuits. In order to
make fair comparisons, we take into account the signal forms,
classified as binary, stream, and analog, at the inputs and
the outputs. All of the proposed six circuits with BSC use
streams as inputs and outputs. However, since the proposed
synchronous designs do already make stream-to-binary con-
version via counters and registers, they can be directly used
for binary-to-stream computing with even smaller circuit sizes.
There is an exception for Input-2 of SISA, whose overhead is
also considered. Moreover, the studies [10] and [6] use binary
inputs and stream outputs; to make them perform stream-to-
stream computing, counters and registers can be added to the
inputs, that is why their stream-to-stream cases are more costly
than their binary-to-stream counterparts.

On the other hand, since the study [11] uses analog inputs
and it is not straightforward to make such conversions, we
separately evaluate it. The designs in [11] essentially include
analog comparators, ramp generators, and clock generators.

10

TABLE III
PERFORMANCE COMPARISON OF ADDERS

Binary-to-Binary Binary-to-Stream Stream-to-Stream Analog-to-Stream
Input Levels / Ripple Carry [10] [6] SISA SCSA [10] [6] AISA SISA SCSA [11]
Stream Length Adder

A
re

a
(u
m

2
) 8 361 2006 1128 1084 1247 3798 3441 83 1084 276 153

16 594 2709 1611 1417 1580 5036 4813 136 1417 276 233
32 745 3401 2119 1726 1991 6331 6529 242 1726 276 393
64 978 4186 2709 2059 2323 7668 8022 446 2059 276 712

128 1222 4982 3308 2403 2679 9017 9582 872 2403 276 1351
256 1560 5744 3951 2771 3413 10377 11245 1723 2771 276 2628

M
ax

Fr
eq

.
(G

H
z)

8 3.10 0.93 1.05 0.94 0.87 0.90 0.86 29.4 0.94 1.33 23.5
16 2.26 0.88 1.00 0.84 0.78 0.88 0.87 29.4 0.85 1.33 26.1
32 2.17 0.83 0.98 0.75 0.66 0.83 0.83 29.4 0.78 1.33 27.7
64 1.73 0.81 0.94 0.69 0.60 0.79 0.81 29.4 0.72 1.33 28.5

128 1.71 0.81 0.96 0.63 0.57 0.78 0.78 29.4 0.67 1.33 29.0
256 1.69 0.79 0.91 0.58 0.53 0.77 0.78 29.4 0.60 1.33 29.2

Po
w

er
(u
W

) 8 15.8 281 265 185 271 941 993 2.66 511 60.9 5.3
16 21.1 378 340 247 315 1153 1315 4.58 593 60.9 8.2
32 29.6 473 423 283 363 1400 1612 8.41 712 60.9 14
64 35.2 556 513 336 400 1638 1984 16.1 815 60.9 25.5

128 42.1 660 609 367 426 1874 2256 31.4 965 60.9 48.5
256 55.3 730 686 403 518 2127 2573 62.1 1183 60.9 94.5

TABLE IV
PERFORMANCE COMPARISON OF MULTIPLIERS

Binary-to-Binary Binary-to-Stream Stream-to-Stream Analog-to-Stream
Input Levels / Array [10] [6] SISM SCSM [10] [6] AISM SISM SCSM [11]
Stream Length Multiplier

A
re

a
(u
m

2
) 8 943 1633 953 1357 2328 3426 3266 2025 3253 4179 313

16 2084 2197 1402 1868 3098 4524 4603 7540 4317 5471 978
32 3585 2784 1863 2378 3790 5714 6273 28743 5505 6586 2586
64 5424 3441 2421 2889 4540 6923 7735 108953 6611 7938 13911

128 7706 4074 2972 3422 5345 8109 9246 435916 7740 9288 ****
256 10407 4685 3600 3980 6316 9318 10895 1740494 9158 10771 ****

M
ax

Fr
eq

.
(G

H
z)

8 1.84 0.94 1.12 0.94 0.85 0.91 0.86 14.7 0.81 0.84 23.5
16 1.24 0.89 1.08 0.92 0.75 0.89 0.87 14.7 0.77 0.81 26.1
32 1.00 0.84 1.06 0.84 0.77 0.83 0.83 14.7 0.73 0.76 27.7
64 0.83 0.81 1.04 0.80 0.76 0.79 0.81 14.7 0.71 0.75 28.5

128 0.76 0.81 1.00 0.74 0.76 0.78 0.78 14.7 0.68 0.74 29.0
256 0.69 0.80 0.99 0.68 0.73 0.77 0.78 14.7 0.62 0.73 29.2

Po
w

er
(u
W

) 8 19.4 302 265 259 522 916 246 64.2 861 1192 11.1
16 57.4 381 340 341 660 1178 344 252 1085 1501 35.1
32 125 482 423 431 817 1398 406 996 1317 1765 129
64 217 571 513 501 895 1631 485 3918 1548 2127 501

128 356 698 609 600 1045 1880 587 15961 1769 2367 ****
256 509 755 686 661 1222 2078 643 62679 2100 2667 ****

With the assumption that clock generators predominate over
the other blocks (especially for longer stream lengths), we
prefer to synthesize them only. Clock generators are mainly
inverter chains. Thus, for the designs in [11] and our asyn-
chronous designs, we use shortest possible inverter chains
regarding given stream lengths.

We report area, maximum frequency, and power results in
Table III and Table IV for adders and multipliers, respectively.
Maximum frequency (fmax) numbers are directly related
to worst case delay values to represent how fast the design
are. Note that one can obtain the minimum bit duration as
1/fmax. Power values are generated using 500 MHz clock
frequency at which all designs work properly. We consider
different input levels; for example, the input level of 32
corresponds to 5 binary inputs or a stream having a length
of 32.

Examining the numbers in Table III, we see that the pro-
posed adders mostly overwhelm the others in their categories
“binary-to-stream” and “stream-to-stream”. Even for values in
categories, “binary-to-binary” and “analog”, there are always

better values in our designs. Similarly, in Table IV, our designs
generally give the best results with an exception that in the
category “binary-to-stream”, the study [6] gives slightly better
results.

With regard to the power and speed performances of com-
pared works, we can also comment on the energy consump-
tions. The studies [6], [10] and the proposed SISA and SISM
circuits have longer output streams, i.e. longer processing
times. Therefore, the consumed energy becomes crucially
high, compared to SCSA and SCSM circuits having non-
increasing output stream lengths. For instance, 256-stream-
length SCSM’s need 256 times less processing time and
approximately 128 times less energy even in the worst case.

Note that fmax values given in Table III and Table IV
are obtained using worst case delay conditions, so at this
frequency values or smaller ones in one clock cycle one
can guarantee correct logical functionality of the circuits.
However, it does not mean that we always achieve correct
output streams, obtained in many successive clock cycles,
regarding the timing problems previously mentioned in Fig. 3.

11

V
 (V

)

0.0

.4

.8

1.2

1.6

2.0

time (ns)
2.0 4.0 6.0 8.0 10

Transient Response

a)

V
 (

V
)

0.0

.4

.8

1.2

1.6

2.0

time (ns)
5.0 7.5 10.0 12.5 15.0 17.5

Transient Response

b)
Fig. 20. Output signal forms for a) AISA with 0.5ns bit duration, and b) SISA
with 0.75ns bit duration. Red solid lines and green dashed lines represent real
and expected outputs, respectively.

For example, the problems given in Fig. 3 a) and c), happen in
multi clock cycles, so they do not have any affect in obtaining
fmax values. Here, further timing investigations are needed
and done in the following subsection.

B. Timing Evaluations

We perform simulations with 0.18µm CMOS technology
in Cadence environment. We test the proposed adders and
multipliers for different input bit durations ranging between
0.5ns and 10ns; recall that a bit duration is defined as the time
duration of a bit in streams. Input values are selected such that
the expected output value is around 1/2 that can be considered
as the worst case scenario for accuracy. Input stream lengths
are selected as 8 for all simulations. Two performance metrics
are considered: 1) integrity of the output signal to represent
how much the obtained timing durations of 1 valued bits
match with the ideal ones, and 2) correctness of the obtained
output value to represent how much the obtained values match
with the expected output values. To elaborate, consider an
expected output stream 1, 0, 1, 1, 0, 0, 0, 1 with a bit duration
is 1ns. Also suppose that from simulations, we obtain 1 valued
bit durations of 1.1ns, 2.1ns, and 0.4ns; ideally it should be
1ns, 2ns, and 1ns, respectively. For the first metric, we first
calculate absolute deviations of 0.1ns, 0.1ns, and 0.6ns, then
relative deviations 0.1ns/1ns, 0.1ns/2ns, and 0.6/1ns, and
finally the average deviation of 25% is obtained that results in
75% signal integrity. For the second metric, we first obtain the
ratios of the obtained output bit durations over the given bit
duration. For this example, the ratios are 1.1ns/1ns, 2.1ns/2ns,
and 0.4/1ns. Then we round them to the nearest integers, as 1,
2, and 0 for the example. Finally we have the obtained output
value of 3/8 with 75% correctness.

Table V shows the transistor level results of the proposed
circuits for various bit duration values. Note that 0% integrity

values corresponds to 100% or more deviations in durations,
and they do not necessarily results in 0% correctness values.
Also note that 100% integrity corresponds to an ideal case,
so it is not possible in our simulations. All of the proposed
circuits can work for a bit duration equal to or smaller than
2ns, so the operating frequency of 500MHz can be achievable.
Note that the proposed asynchronous circuits do a better
job in small bit durations, thanks to their simple and delay
block based structures. However, since increase in the bit
duration requires more delay, and after a certain point it
cannot be achieved with the controlling mechanism (in our
case, VDD scaling), additional hardware in terms of extra
inverters is needed. That is why for bit durations of 2ns and
10ns, the proposed circuits fail. Indeed we can generally claim
that the proposed asynchronous and synchronous designs are
proper for high speeds (≥ 1GHz) and low speeds (≤ 1GHz),
respectively.

Fig. 20 shows the expected and the real output signal forms
for three different cases. While the output signal has a good
alignment in Fig. 20 a), Fig. 20 b) shows undesirable timing
problems. Checking the corresponding values in Table V, we
have 86% integrity and 100% correctness for the signal in Fig.
20 a), and 0% integrity and 62.5% correctness for the signal
in Fig. 20 b).

We also carry out PVT (Process-Voltage-Temperature) sim-
ulations over the proposed designs. As corners, we use 5
different MOSFET process models, 2 different temperatures
(0◦C and 80◦C), and supply voltage values 10% below and
above the ideal one. Among 20 corners, we select the one
with worst correctness numbers. Table VI lists the results. We
see that even in the extreme conditions, the proposed circuits
perform satisfactorily. While these conditions cause a decrease
in correctness of the asynchronous designs, they force the
synchronous designs to work in lower speeds.

Note that we evaluate the circuits for only 8 bit inputs
as a simple case to show the potential of the proposed
circuits for practical use. Larger input stream lengths could be
considered. However, since larger lengths make our circuits
more complicated with systematic timing design strategies
needed to be followed, we consider this as a future work.
However, it is not hard to predict that for larger input stream
lengths our asynchronous designs would have again quite
successful outcomes, mainly because the architectures are
quite straightforward. This is also true for SCSA, due to
its scalable architecture. However, other synchronous designs,
especially SCSM, circuits are getting more complex for larger
stream lengths, so they may become more prone to timing
errors.

We also evaluate the aforementioned methods qualitatively
in Table VII. Here, the latency criteria is the total processing
time of receiving the output streams that is highly related
to stream lengths. The conventional stochastic is the worst
in latency considering that it needs relatively large stream
lengths to obtain decent accuracy, previously shown in Fig. 2.
The proposed circuits as well as the compared studies using
deterministic streams perform better in this regard. However,
the conventional binary is the best due to its parallel processing
feature. For the accuracy criteria, all of the fully-accurate

12

TABLE V
INTEGRITY AND CORRECTNESS RESULTS OF THE PROPOSED ADDERS AND MULTIPLIERS (INT:INTEGRITY, COR:CORRECTNESS)

Bit Duration AISA AISM SISA SISM SCSA SCSM
INT COR INT COR INT COR INT COR INT COR INT COR

0.5ns 86% 100% 70.3% 87.5% 0% 0% 0% 0% 0% 0% 0% 0%
0.75ns 85.5% 100% 64.7% 81.1% 0% 62.5% 71.6% 75% 0% 0% 54% 50%

1ns 85.2% 100% 66% 81.1% 90.8% 100% 99.1% 100% 0% 0% 93% 50%
2ns N/A N/A N/A N/A 97% 100% 99.6% 100% 98% 100% 80% 100%

10ns N/A N/A N/A N/A 99.1% 100% 99.9% 100% 99.6% 100% 99.5% 100%
TABLE VI

INTEGRITY AND CORRECTNESS RESULTS OF THE PROPOSED ADDERS AND MULTIPLIERS WITH PVT SIMULATIONS (INT:INTEGRITY,
COR:CORRECTNESS)

Bit Duration AISA AISM SISA SISM SCSA SCSM
INT COR INT COR INT COR INT COR INT COR INT COR

0.5ns 77.7% 87.5% 50.7% 68.8% 0% 0% 0% 0% 0% 0% 0% 0%
0.75ns 74.2% 87.5% 58.3% 75% 0% 0% 0% 0% 0% 0% 0% 0%

1ns 72.4% 87.5% 23.7% 37.5% 0% 62.5% 6.25% 62.5% 0% 0% 0% 0%
2ns N/A N/A N/A N/A 95.6% 100% 98.7% 100% 96.9% 100% 0% 0%

10ns N/A N/A N/A N/A 99.1% 100% 99.9% 100% 99.4% 100% 99.1% 100%

TABLE VII
QUALITATIVE COMPARISON OF ADDERS AND MULTIPLIERS

Latency Accuracy Area Successive Multi-level
Processing Design

Conventional Excellent Excellent Moderate Good Excellent
Binary

[10] Moderate Excellent Poor Poor Moderate
[6] Moderate Excellent Moderate Poor Moderate
[11] Moderate Excellent Poor Poor Poor

AISA/AISM Moderate Excellent Moderate Poor Excellent
SISA/SISM Moderate Excellent Good Poor Excellent

SCSA/SCSM Moderate Good Good Excellent Excellent
Conventional Poor Poor Excellent Excellent Excellent

Stochastic

circuits do come first, followed by the proposed semi-accurate
circuits. For the area criteria, we evaluate the circuits using the
area values previously reported in Table III and IV. We rank the
conventional stochastic as the best area efficient one. However
if we considered the costly random number generators, needed
for SC, then the area cost of SC would even become the worst.
The successive processing criteria is the ability of the circuits
to produce same number of bits in an output as in an input.
Here, the proposed constant stream circuits come forward. We
also evaluate the suitability of the circuits to be used in multi-
level designs. If an output of a circuit can be directly used as
an input of another circuit in the next level, then the circuit is
suitable for multi-level designs. As can be directly deducted
from the definition of BSC in the preliminaries section, this
requirement is met for any circuit using BSC. On the other
hand, all of the compared studies using deterministic streams
have limitations in this regard.

In summary, when all criteria are equally important, the
conventional binary and the proposed SCSA/SCSM are fairly
competent. However, when accuracy and area are the most
important factors, the proposed SISA/SISM comes forward.

C. Evaluations within Neural Networks

To further evaluate the proposed circuits, we choose a fully-
connected neural network because it mainly consists of adders
and multipliers, and it does not require perfect accuracy. We
use the PENDIGIT database which is a set of handwritten
digits [19]. It has 16 different input features corresponding to

16 perceptrons in the input layer of the neural network. Also
our network has one hidden layer having 100 perceptrons.
Obviously the output layer has 10 perceptrons to represent 10
digits. Except for the conventional implementation of the net-
work with binary multipliers and adders, in each layer binary
input values and their weights are multiplied with the binary-
to-stream multipliers, and then they are summed in pairs with
stream-to-stream adders. After that by first using stream-to-
binary converters (just counters), all processes up to the next
layer are implemented with conventional binary circuits. We
also use rectifier linear unit (ReLU) as an activation function,
due to its quite simpler hardware implementation and similar
accuracy performance compared to sigmoid and others. In
training the network, we use exact or fully-accurate adders,
multipliers, and converters as well as the RELU. Therefore,
weights of the network is same for all different implementa-
tions involving different adder and multiplier structures.

In comparisons, we consider four different implementation
techniques of adders and multipliers. The first one offers the
most area efficient accurate adders and multipliers among
the studies considered in Table III and Table IV [6]. The
second one uses adders very similar to the proposed SCSA,
and conventional stochastic multipliers (AND gates) [12]. The
third one uses conventional binary ripple carry adders and
array multipliers, and finally the fourth technique employs
conventional stochastic adders (2-to-1 multiplexers) and mul-
tipliers (AND gates). For the conventional stochastic circuits,
randomly distributed input streams are needed. Therefore,
binary-to-stream multipliers need one LFSR and digital com-
parators as twice as the multipliers. As stated in [3], one LFSR
is enough for input streams, thanks to the low correlations
between shifted streams. Additionally, each stream-to-stream
adder needs a digital comparator for the generation of 0.5
valued stream for the select input of the multiplexer; again
one LFSR is adequate for all adders.

Table VIII gives the results. The proposed implementations
are clearly the best ones in terms of accuracy and circuit
area. Of course, if we did not consider the costs of stochastic
number generators, [12] and the conventional stochastic would
have much smaller transistor counts. However, this would not

13

TABLE VIII
TOTAL AREAS USED IN A NEURAL NETWORK WITH PENDIGIT DATABASE (AREA:mm2 , MR:MISCLASSIFICATION RATE)

Input Levels [12] [6] SISA-SISM SCSA-SCSM Conventional Binary Conventional Stochastic
Area MR Area MR Area MR Area MR Area MR Area MR

8 9.92 68.34% 22.1 7.52% 17.0 7.52% 12.1 51.92% 8.78 7.52% 9.67 84.6%
16 12.6 37.56% 31.3 3.75% 23.8 3.75% 15.6 12.58% 13.8 3.75% 12.3 70.9%
32 15.4 13.27% 40.3 2.94% 29.9 2.94% 19.2 5.20% 19.8 2.94% 15.1 52.2%
64 18.5 5.21% 50.9 3.06% 36.9 3.06% 23.0 3.37% 27.0 3.06% 18.2 31.3%
128 21.6 3.59% 61.7 2.74% 44.2 2.74% 27.0 3.09% 35.4 2.74% 21.4 15.12%
256 24.2 3.35% 73.5 2.77% 51.7 2.77% 31.2 2.94% 44.7 2.77% 23.9 7.72%

be a fair comparison.
VI. CONCLUSION

We introduce a novel computing paradigm “Bit Stream
Computing (BSC)” that benefits from the area advantage of
stochastic logic and the accuracy advantage of conventional
binary logic. We implement accurate arithmetic multiplier and
adder circuits with BSC as well as using them in a neural net-
work. Experimental results performed in Cadence environment
with 0 18µm CMOS technology approve the efficiency of the
proposed circuits. As a future work, we aim to develop hybrid
computing schemes performing BSC and conventional binary
computing. We will also investigate bit/digit serial computing
in this regard.

Another direction is testing the proposed circuits in large
area electronics including organic and flexible circuits that
should have relatively small number of transistors. We com-
ment that as opposed to conventional binary circuits, the
proposed circuits performing BSC can be suitable for this.

REFERENCES

[1] E. Vahapoglu and M. Altun, “Accurate synthesis of arithmetic operations
with stochastic logic,” in VLSI (ISVLSI), 2016 IEEE Computer Society
Annual Symposium on. IEEE, 2016, pp. 415–420.

[2] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata studies, vol. 34, pp.
43–98, 1956.

[3] B. R. Gaines, “Stochastic computing,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 149–156.

[4] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded computing systems (TECS), vol. 12, no. 2s,
p. 92, 2013.

[5] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue, “Compact
and accurate stochastic circuits with shared random number sources,” in
Computer Design (ICCD), 2014 32nd IEEE International Conference
on. IEEE, 2014, pp. 361–366.

[6] P. K. Gupta and R. Kumaresan, “Binary multiplication with pn se-
quences,” IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 36, no. 4, pp. 603–606, 1988.

[7] A. Alaghi and J. P. Hayes, “Fast and accurate computation using stochas-
tic circuits,” in Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014. IEEE, 2014, pp. 1–4.

[8] A. Alaghi, “The logic of random pulses: Stochastic computing,” Ph.D.
dissertation, University of Michigan, 2015.

[9] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in Computer Design (ICCD), 2013 IEEE 31st International
Conference on. IEEE, 2013, pp. 39–46.

[10] D. Jenson and M. Riedel, “A deterministic approach to stochastic
computation,” in Computer-Aided Design (ICCAD), 2016 IEEE/ACM
International Conference on. IEEE, 2016, pp. 1–8.

[11] M. H. Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel, K. Bazargan,
and R. Harjani, “Time-encoded values for highly efficient stochastic
circuits,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 5, pp. 1644–1657, 2017.

[12] V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient
hybrid stochastic-binary neural networks for near-sensor computing,” in
2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2017, pp. 13–18.

[13] R. Hartley and K. K. Parhi, Digit-serial computation. Springer Science
and Business Media, 2012, vol. 316.

[14] B. Parhami, Computer arithmetic. Oxford university press, 2010,
vol. 20, no. 00.

[15] A. Alaghi, W.-T. J. Chan, J. P. Hayes, A. B. Kahng, and J. Li, “Trading
accuracy for energy in stochastic circuit design,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 13, no. 3,
p. 47, 2017.

[16] P. B. Denyer and D. Renshaw, VLSI signal processing; a bit-serial
approach. Addison-Wesley Longman Publishing Co., Inc., 1985.

[17] N. R. Mahapatra, A. Tareen, and S. V. Garimella, “Comparison and
analysis of delay elements,” in Circuits and Systems, 2002. MWSCAS-
2002. The 2002 45th Midwest Symposium on, vol. 2. IEEE, 2002, pp.
II–II.

[18] B. Parhami and C.-H. Yeh, “Accumulative parallel counters,” in Signals,
Systems and Computers, 1995. 1995 Conference Record of the Twenty-
Ninth Asilomar Conference on, vol. 2. IEEE, 1995, pp. 966–970.

[19] E. Alpaydin and F. Alimoglu, “Pen-based recognition of handwritten
digits data set,” University of California, Irvine, Machine Learning
Repository. Irvine: University of California, 1998.

Ensar Vahapoglu received the B.Sc. degree from
the Department of Electronics and Communication
Engineering Istanbul Technical University, Istanbul,
Turkey in 2015. He is currently a M.Sc. student and
works as a research assistant in the same department.
His main research areas are analog/digital circuits
design, stochastic computing and quantum comput-
ing.

14

Mustafa Altun received his BSc and MSc degrees
in electronics engineering at Istanbul Technical Uni-
versity in 2004 and 2007, respectively. He received
his PhD degree in electrical engineering with a PhD
minor in mathematics at the University of Minnesota
in 2012. Since 2013, he has served as an assis-
tant professor at Istanbul Technical University and
runs the Emerging Circuits and Computation (ECC)
Group. Dr. Altun has been served as a principal
investigator/researcher of various projects including
EU H2020 RISE, National Science Foundation of

USA (NSF) and TUBITAK projects. He is an author of more than 50 peer
reviewed papers and a book chapter, and the recipient of the TUBITAK
Success, TUBITAK Career, and Werner von Siemens Excellence awards.
List of Differences:

A preliminary version of this paper, titled Accurate Syn-
thesis of Arithmetic Operations with Stochastic Logic was
presented at the IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2016. Nearly 70% of material in this
manuscript is new:

• At least 50% of the material in the introduction section
(Section I) including the entire Subsection I-A;

• At least 40% of the material in the preliminaries section
(Section II) including Theorem II and the summary of the
proposed circuits, corresponding to Fig. 5 and the related
text;

• Among the proposed 3 adders and 3 multipliers, given
in Section III and IV, only the asynchronous adder
is fundamentally same as the circuit proposed in the
previous publication; the other 5 circuits are completely
new;

• The experimental results section (Section V) is almost
100% new. All results for the adders and multipliers
in Section V-A and V-B as well as those of the neural
network application are new.

	I Introduction
	I-A Previous Works and Contributions
	I-B Overview

	II Preliminaries
	III Asynchronous Adders and Multipliers
	III-A Increasing Stream Length: Fully-accurate Addition
	III-B Increasing Stream Length: Fully-accurate Multiplication

	IV Synchronous Adders and Multipliers
	IV-A Increasing Stream Length: Fully-accurate Addition
	IV-B Increasing Stream Length: Fully-accurate Multiplication
	IV-C Constant Stream Length: Semi-accurate Addition
	IV-D Constant Stream Length: Semi-accurate Multiplication

	V Experimental Results
	V-A Area, Speed, and Power Evaluations
	V-B Timing Evaluations
	V-C Evaluations within Neural Networks

	VI Conclusion
	References
	Biographies
	Ensar Vahapoglu
	Mustafa Altun

