
A Novel Method for the Realization of Complex
Logic Functions Using Switching Lattices

Levent Aksoy and Mustafa Altun
Department of Electronics and Communication Engineering, Istanbul Technical University

34469, Maslak, Istanbul, Turkey
Email: {aksoyl, altunmus}@itu.edu.tr

Abstract—Over the years, efficient algorithms have been pro-
posed to realize logic functions on two-dimensional arrays of
four-terminal switches, called switching lattices, using the fewest
number of switches. Although existing algorithms can easily find
a solution on logic functions with a small number of inputs and
products, they can hardly handle large size instances. In order
to cope with such logic functions, in this paper, we introduce
SISYPHUS that exploits Boolean decomposition techniques and
incorporates a state-of-art algorithm designed for the realization
of logic functions using switching lattices. Experimental results
indicate that SISYPHUS can find competitive solutions on logic
functions with a small number of inputs and products when
compared to those of previously proposed algorithms. Moreover,
its solutions on large size functions are obtained using a little
computational effort and are significantly better than the best
solutions found so far.

I. INTRODUCTION

In recent years, the realization of logic functions using
switching lattices has attracted a significant amount of interest
since lattices offer reconfigurability, a rich variety of possible
implementations, and an alternative way to realize and syn-
thesize logic functions [1], [2]. A switching lattice is a two-
dimensional network of four-terminal switches where each
switch is connected to its horizontal and vertical neighbors. A
four-terminal switch has a control input x and four terminals.
If the control input has a value 0, all terminals are discon-
nected. Otherwise, they are connected. Fig. 1(a) shows the
behavior of the four-terminal switch and Fig. 1(b) depicts the
3× 3 switching network where x1, . . . , x9 denote the control
inputs of four-terminal switches. In a lattice with four-terminal
switches, a path is defined as a sequence of switches connected
by taking horizontal and vertical moves. The function of an
m × n lattice fm×n, whose inputs are the control inputs of
switches, evaluates to 1 if there is a path between the top
and bottom plates and can be written as the sum of products
of control inputs of switches in each path. Fig. 1(c) presents
the lattice function f3×3. A lattice function is unique and does
not include any redundant products. As an example, a possible
path x1x2x5x8 in the 3× 3 lattice is eliminated by x2x5x8.

A logic function can be realized using a switching lattice
by finding appropriate assignments to the control inputs of
switches from the literals of the logic function and/or constant
values 0 and 1. Thus, the fundamental problem, called lattice
mapping (LM), is defined as: given a target function f and an
m×n lattice, find the appropriate assignments to the control in-

x1

x4

x7

x2

x5

x8

x3

x6

x9

(a) (b) (c)

f3x3 = x1x4x7 + 

x2x5x8 + 
x3x6x9 + 
x1x4x5x8 + 
x2x5x4x7 + 
x2x5x6x9 + 
x3x6x5x8 + 
x1x4x5x6x9 + 
x3x6x5x4x7

ONOFF

x

x = 0 x = 1

Fig. 1. (a) Four-terminal switch; (b) the 3×3 four-terminal switching network;
(c) the 3× 3 switching lattice function.

(a) (b)

y1

y2 y3

y4

 

 

y4

y4 y1

y2 y2

y4 y3 y2 y4

y3 y3 y1

y1

y2

y2 y2

y4

Fig. 2. Realizations of f = y1y2y4 + y1y2y3 + y1y2y4 + y2y3y4 using
switching lattices: (a) 3× 4; (b) 3× 3.

puts of switches such that f can be realized on the m×n lattice
or prove that there exists no such assignment. The LM problem
is an NP-complete problem [3]. As an example, consider
the realization of f(y1, y2, y3, y4) =

∑
(2, 5, 7, 10, 12, 13, 14),

which can be written as f = y1y2y4 + y1y2y3 + y1y2y4 +
y2y3y4, using the 3× 4 lattice. Fig. 2(a) shows the realization
of f on the given lattice1. However, the design complexity in
the realization of a logic function using a lattice is defined as
the number of four-terminal switches, i.e., lattice size. Thus,
the main optimization problem, called lattice synthesis (LS),
is defined as: given the target function f , find an m×n lattice
such that there exists an appropriate assignment to the lattice
variables, realizing f , and m times n is minimum. Fig. 2(b)
presents the realization of the logic function f using a lattice
with a minimum size, i.e., 3× 3 lattice2.

Exact and efficient approximate algorithms [3]–[5] were
introduced to realize logic functions on switching lattices
using the fewest number of switches. However, they can-
not handle large size logic functions which include a high

1Considering all the paths between the top and bottom plates and applying
the y ·y = y and y ·y = 0 laws, the logic function realized by the lattice can
be written as g = y1y2y4 + y2y3y4 + y2y3y4 + y1y2y4 + y1y2y3. Also,
y2y3y4 can be eliminated since it is covered by y1y2y3 and y1y2y4.

2Considering all the paths between the top and bottom plates and applying
the y ·y = y and y ·y = 0 laws, the logic function realized by the lattice can
be written as h = y1y2y3+y2y3y4+y1y2y4+y1y2y3y4. Also, y1y2y3y4
can be reduced to y1y2y4 due to the y1y2y3 product.



number of inputs and products since the problem complexity
increases dramatically as the number of inputs and products
in the target and lattice function increases. Also, alternative
approaches [6]–[8] were proposed, where a logic function is
decomposed into smaller sub-functions, their realizations on a
lattice are found using the previously proposed algorithms [1],
[3], and these realizations are merged into a single lattice.
However, they also cannot cope with such large size instances
and obtain poor results since they decompose a logic function
only once, use only a single decomposition method, and do
not explore alternative realizations of these sub-functions.
Moreover, the divide and conquer method of [9] iteratively
decomposes a logic function into sub-functions until they can
be handled by the algorithm of [5] easily, but it uses a single
decomposition method. Hence, in this paper, we introduce
SISYPHUS that can find a solution to a large size logic function
using three decomposition techniques in order to determine
the best sub-functions that may lead to a design with a small
number of four-terminal switches. It also decomposes logic
functions into smaller sub-functions until their realizations on
a switching lattice can be found easily by the state-of-art algo-
rithm of [5]. After the sub-functions are determined and their
realizations are found, it considers alternative realizations of
these sub-functions that may reduce the number of switches in
the final design. Experimental results show that SISYPHUS can
find significantly better solutions on large size logic functions
using less computational effort than existing algorithms.

The rest of this paper is organized as follows: Section II
gives the background concepts and related work. Section III
introduces SISYPHUS and Section IV presents the experimental
results. Finally, Section V concludes the paper.

II. BACKGROUND

A. Preliminaries

A logic function, f : Br → B, over r variables y1, . . . , yr
maps each truth assignment in Br to 0 or 1. The logic function
f in sum of products (SOP) form on r variables is a disjunction
of s products p1, . . . , ps, where a product pi = l1 · l2 · . . . · lj ,
i ≤ s and j ≤ r, is a conjunction of literals. A literal lj ,
j ≤ r, is either a variable yj or its complement yj . A product
is an implicant if and only if it evaluates f to 1 and it is
a prime implicant if it is an implicant and there exist no
other implicants whose literals are subset of its literals. In an
irredundant SOP (ISOP) form of f , every product is a prime
implicant and no product can be deleted without changing f .

B. Related Work

The exact method of [3] explores the search space of the
LS problem in a dichotomic search manner in between the
lower and upper bounds computed in [1]. For each possible
lattice, an LM problem is encoded as a quantified Boolean
formula (QBF) problem, the QBF constraints are converted
to satisfiability (SAT) clauses, and a solution is found using
a SAT solver. The algorithm of [5] applies the same search
strategy as the exact method, but also, improves the upper
bound of the search space in the LS problem and uses an

0

0

(a)

yi yi

yi
f fyi

0

0

yi yi

0

0

yi
f

off
f
yi

on
yi

f
dc

0

0

fyi

1
yi

f
0

(b) (c)

Fig. 3. Realizations of logic function decompositions on a single lattice:
(a) f = yifyi + yifyi (b) f = yif

off
yi

+ yif
on
yi

+ fdc
yi

(c) f = f0
yi

+ f1
yi

.

efficient SAT encoding for the LM problem. The method of [4]
determines a number of promising lattice candidates and uses
an algorithm of [3] to find if one of these lattices leads to a
solution. The methods of [6], [7], and [8] decompose a target
function into smaller sub-functions by exploiting the p-circuits,
D-reducible, and autosymmetric forms of the target function,
respectively and merge the realizations of these sub-functions
into a lattice. Similarly, the divide and conquer method of [9]
decomposes a target function into sub-functions iteratively.

III. THE PROPOSED ALGORITHM

SISYPHUS takes the target function as an input and returns
its realization on a switching lattice as an output. Its main
steps are given as follows:

1) Compute the initial lower bound as described in [5] and
the upper bound using the techniques proposed in [5],
except the DS method.

2) If the difference between the computed upper and lower
bound, dulb, is less than or equal to 31, find the
realization of the target function using the method of [5].

3) Otherwise, decompose it iteratively into sub-functions.
4) Find the realizations of these sub-functions using the

algorithm of [5], merge them into a single lattice, and
compute the lattice size.

5) Explore alternative realizations of sub-functions which
may reduce the final lattice size.

Based on our experience with the algorithm of [5], it can
handle logic functions with a dulb value less than or equal
to 31 easily. Hence, we determine the dulb value as 31
empirically. In the following subsections, the last three steps
of SISYPHUS are described in detail.

A. Decompositions of a Logic Function

SISYPHUS exploits three decomposition techniques. The
first one is the Shannon expansion. For a variable yi, i ≤ r, a
logic function is written as f = yifyi + yifyi , where fyi and
fyi

are the negative and positive co-factors obtained when yi
is set to logic 0 and 1 in f , respectively. For our example in
Fig. 2, the logic function f decomposed over y1 is written as
f = y1(y2y4 + y2y3y4) + y1(y2y3 + y3y4).

Fig. 3(a) presents the realization of the first decomposition
using a single lattice. Assume that the sub-functions fyi

and
fyi are realized using an mfyi

×nfyi
and mfyi

×nfyi
lattice,

respectively. Thus, the first decomposition requires a lattice of
max(1 +mfyi

, 1 +mfyi
)× (1 + nfyi

+ nfyi
).

In the second decomposition, the ISOP form of the logic
function f is found. For a variable yi, i ≤ r, the logic function
is written as f = yif

off
yi

+ yif
on
yi

+ fdc
yi

, where foff
yi

and fon
yi

consist of the products in the ISOP form of f including the
yi and yi literals which are set to logic 0 and 1, respectively,



and fdc
yi

consists of the products in the ISOP form of f that
do not include any literal of yi. For our example in Fig. 2,
f = y1y2y4 + y1y2y3 + y1y2y4 + y2y3y4 decomposed over y1
is written as f = y1(y2y4) + y1(y2y3 + y3y4) + (y2y3y4).

Fig. 3(b) presents the realization of the second decomposi-
tion using a single lattice. Assuming that the sub-functions
foff
yi

, fon
yi

, and fdc
yi

are realized using an mfoff
yi

× nfoff
yi

,
mfon

yi
×nfon

yi
, and mfdc

yi
×nfdc

yi
lattice, respectively, the second

decomposition needs a max(1 + mfoff
yi

, 1 + mfon
yi
,mfdc

yi
) ×

(2 + nfoff
yi

+ nfon
yi

+ nfdc
yi
) lattice.

In the third decomposition, the ISOP form of the logic
function f is also used. For a variable yi, i ≤ r, the logic
function is written as f = f0

yi
+ f1

yi
, where f0

yi
and f1

yi

initially consist of all the products of the ISOP form including
the yi and yi literals, respectively. Then, the products of the
ISOP form of f , that do not include any literal of yi, are
one by one added into either f0

yi
or f1

yi
, favoring the one that

has the smallest number of products. When these functions
have the same number of products, the product is added into
the one which has the maximum number of common literals
according to literals of the product. For our example in Fig. 2,
f = y1y2y4 + y1y2y3 + y1y2y4 + y2y3y4 decomposed over y1
is written as f = (y1y2y4 + y2y3y4) + (y1y2y3 + y1y3y4).

Fig. 3(c) presents the realization of the third decomposi-
tion using a single lattice. Assuming that the sub-functions
f0
yi

and f1
yi

are respectively realized using an mf0
yi
× nf0

yi

and mf1
yi
× nf1

yi
lattice, the third decomposition requires a

max(mf0
yi
,mf1

yi
)× (1 + nf0

yi
+ nf1

yi
) lattice.

Observe from Fig. 3 that the first and second decompositions
generate at most two and three sub-functions to be realized,
respectively, requiring one and two isolation columns full
of logic 0. Note that both first and second decompositions
have a single literal yi on the first row of the lattice and
the generated sub-functions do not include any literal of yi.
The third decomposition generates at most two sub-functions
which include a literal yi. Note that the third decomposition
generates only one sub-function if the logic function f is
always true when yi is equal to logic 0 or 1. In this case, the
generated sub-function is actually the logic function f itself
and hence, this decomposition is not taken into consideration.
In the same case, the first and second decompositions generate
only one sub-function as well. But, they are regarded as valid,
since the sub-function does not include any literal of yi and
hence, it is different from the logic function itself. Although
there exist cases, where these decompositions lead to the
same lattice realizations, they generally generate different sub-
functions that yield realizations with different complexities.

The procedure for the decomposition of a logic function f
can be given as follows: For each decomposition technique
and each variable in f , yi, i ≤ r, i) find the decomposition of
f over yi; ii) extract the sub-functions in the decomposition;
iii) estimate the lattice size of sub-functions with the IPS
method of [5] used to find an improved upper bound on
the lattice size; iv) find the size of the lattice realizing the
decomposition as described above and keep the decomposition

0

0

0
0 0

0 0

0

0

0y1

y2

y1 y1 y1 y1

y2

g
off

y2
y2

g
on

y2
g

dc

y3
h

0
y3

h
1

Fig. 4. Realization of a decomposed target function f = y1 y2g
off
y2

+

y1y2gony2 + y1gdcy2 + y1h0
y3

+ y1h1
y3

on a single lattice.

whose realization has the smallest lattice size and store its sub-
functions. This procedure is repeated until each sub-function
has a dulb value less than or equal to 31.

B. Finding the Realizations of Decomposed Functions

After the logic functions are decomposed into sub-functions,
the target function is written in the SOP form where each
product is a conjunction of sub-functions and/or literals. As an
example, assume that the target function is decomposed using
the first technique and the variable y1 as f = y1fy1 + y1fy1 .
Assume also that the sub-functions fy1

, denoted as g, and
fy1

, denoted as h, are decomposed using the second and third
decompositions and the variables y2 and y3, respectively. Thus,
the target function is given as f = y1(y2g

off
y2

+y2g
on
y2

+gdcy2
)+

y1(h
0
y3

+ h1
y3
) = y1 y2g

off
y2

+ y1y2g
on
y2

+ y1g
dc
y2

+ y1h
0
y3

+
y1h

1
y3

. The realizations of sub-functions are found using the
algorithm of [5], they are merged into a single lattice, and the
design complexity of this lattice is computed. Fig. 4 presents
the realization of our decomposed function on a single lattice.

Assume that the target function has k products, and conse-
quently, k sub-functions, denoted as sfi, i ≤ k, and the num-
ber of literals in each product is denoted as lci. Also, suppose
that each sub-function is realized using an msfi×nsfi lattice.
Thus, the design complexity of the lattice realizing the target
function, denoted as dc, is computed as maxi(lci + msfi)
times (k − 1 +

∑
i nsfi).

C. Exploring Alternative Realizations of Sub-Functions

The lattice size can be further reduced exploring alternative
realizations of sub-functions. Considering the target function
expressed in the SOP form with k products at the previous
step, the row of the associated lattice, i.e., maxi(lci +msfi),
where i ≤ k, is denoted as the maximum row mr. If
mr > 2, alternative realizations of sub-functions are checked
as follows: i) for each product including a sub-function sfi
and lci literals, where lci +msfi = mr, i ≤ k, if msfi > 3,
check if an (msfi − 1) × c lattice, where c > nsfi , can be
used to synthesize sfi. Note that c initially set to nsfi is
incremented by 1 till the dc value is exceeded or a solution is
found; ii) for each product including a sub-function sfi and
lci literals, where lci+msfi < mr, i ≤ k, check if sfi can be
realized using an (mr − lci − 1)× c lattice, where c < nsfi .
Note that c initially set to nsfi is decremented by 1 till there
exists no solution. At the end of this procedure, the lattice
design complexity is computed as described in Section III-B.
If it is smaller than dc, the final lattice and the realizations of
sub-functions are updated. If mr is equal to maxi(lci) + 3,
where i ≤ k, this procedure is terminated. Otherwise, mr
is decremented by 1 and this procedure is repeated. These
alternative realizations are checked by the algorithm of [5].



TABLE I
SUMMARY OF RESULTS OF ALGORITHMS ON SMALL AND LARGE SIZE LOGIC FUNCTIONS.

Instance Function Details [6] [4] Exact [3] JANUS [5] MEDEA [9] SISYPHUS
in pi sol CPU sol CPU sol CPU sol CPU sol CPU sol CPU

5xp1_1 7 11 5x10 4.2 5x5 501.2 5x5 21600.0 4x6 2023.2 4x8 2.2 4x8 5.5
5xp1_3 6 14 4x11 11.1 5x27 21600.0 11x4 21600.0 4x9 19745.8 5x8 55.8 4x10 106.7
apex4_16 9 11 5x11 2742.5 8x21 21600.0 8x21 21600.0 4x12 21600.0 5x12 14.2 6x11 14.6
apex4_17 9 12 4x22 7419.7 8x23 21600.0 8x23 21600.0 7x7 21600.0 5x15 8.6 7x11 71.5
apex4_18 9 14 22x14 21600.0 43x5 21600.0 8x27 21600.0 7x8 21600.0 6x13 859.4 7x10 28.7
ex5_15 8 12 4x13 2.2 4x7 48.5 6x5 21600.0 3x8 2562.4 3x11 5.4 3x12 19.2
ex5_17 8 14 4x13 21.6 4x7 1425.6 6x6 21600.0 3x9 4377.6 4x10 29.1 4x9 13.9
ex5_23 8 12 4x11 13.2 4x8 2465.0 3x9 15418.6 3x9 3726.4 3x12 29.9 3x12 24.2
ex5_27 8 11 4x11 7.8 4x6 58.1 4x6 1561.3 3x8 1229.3 3x9 1.7 3x10 5.7
inc_03 7 11 6x8 37.4 5x21 21600.0 19x3 21600.0 4x9 15023.7 4x11 2.6 5x8 61.0
mp2d_03 10 5 7x6 19.8 5x5 42.3 6x4 1322.7 4x6 271.2 4x8 5.5 5x7 9.4
rd53_01 5 16 4x11 16.5 5x31 21600.0 9x5 21600.0 4x11 21600.0 4x11 52.5 4x11 47.5
sao2_02 10 22 5x15 266.8 23x7 21600.0 4x43 21600.0 4x13 21600.0 4x18 11.3 4x19 16.9

alu4_02 14 50 25x54 21600.0 79x7 21600.0 6x99 21600.0 59x7 21600.0 5x36 164.2 5x37 179.3
alu4_03 14 72 56x73 21600.0 143x7 21600.0 7x143 21600.0 107x7 21600.0 5x64 850.1 8x32 1214.3
alu4_05 14 90 90x93 21600.0 179x9 21600.0 9x179 21600.0 136x9 21600.0 5x121 2736.0 7x71 3946.6
alu4_06 14 36 36x36 21600.0 71x7 21600.0 7x71 21600.0 55x7 21600.0 5x35 1285.0 6x25 509.5
apex4_01 9 33 28x35 21600.0 73x6 21600.0 9x65 21600.0 55x6 21600.0 6x36 214.5 7x33 901.4
apex4_03 9 69 47x69 21600.0 137x8 21600.0 9x137 21600.0 103x8 21600.0 6x78 1094.0 7x70 344.9
apex4_04 9 76 45x81 21600.0 147x8 21600.0 9x151 21600.0 111x8 21600.0 6x96 1583.4 7x81 193.2
apex4_06 9 76 46x85 21600.0 8x151 21600.0 8x151 21600.0 8x114 21600.0 5x112 1862.0 7x73 254.2
apex4_07 9 75 46x79 21600.0 143x8 21600.0 9x149 21600.0 108x8 21600.0 6x89 975.2 7x74 279.4
apex4_08 9 76 46x84 21600.0 149x8 21600.0 8x151 21600.0 113x8 21600.0 6x87 2758.3 7x75 816.9
apex4_09 9 72 45x75 21600.0 8x143 21600.0 8x143 21600.0 8x108 21600.0 5x104 275.4 7x73 309.2
apex4_10 9 74 41x79 21600.0 131x8 21600.0 9x147 21600.0 100x8 21600.0 5x98 761.6 7x69 631.7
Z9sym 9 84 34x112 21600.0 143x7 21600.0 6x167 21600.0 107x7 21600.0 5x112 1938.7 6x79 2177.3

Avg. (1-13) 8.0 12.7 72.8 2474.1 98.8 11980.1 80.9 18023.3 36.2 12073.8 47.2 82.9 47.5 32.7
Avg. (14-26) 10.5 67.9 3446.3 21600.0 1008.4 21600.0 1085.1 21600.0 762.0 21600.0 440.5 1269.1 415.2 904.5
Avg. (1-26) 9.3 40.3 1759.5 12037.0 553.6 16790.0 583.0 19811.6 399.1 16836.9 243.8 676.0 231.4 468.6

(b)

sf1 

3x2
sf2 

6x4

sf3 

4x5

y1 0
0
0

0
0
0
0

1 0
0

y1 0
0
0

0
0
0
0

1 0

y1 0
0
0

0
0
0
0

sf1 

3x2
sf1 

3x2

sf2 

5x5

sf2 

4x6

sf3 

5x4

sf3 

4x5
1

1111
1

1 1

0
0
0

0

(a) (c)

0
0

1 1 1 1
1
1

Fig. 5. Realizations of sub-functions on alternative lattices leading to designs
with different complexities: (a) 6× 13; (c) 5× 13; (a) 4× 15.

As a simple example, assume that a target function is
decomposed into sub-functions, their realizations are found
using the algorithm of [5], and are merged into a single lattice
as shown in Fig. 5(a). The design complexity of this lattice
is computed as 6 × 13, i.e., 78. However, assume that the
sub-function sf2 and sf3 can be realized using a 5 × 5 and
5 × 4 lattice, respectively, as shown in Fig. 5(b). Thus, the
design complexity reduces to 65. Moreover, assume that the
sub-function sf2 can be realized using a 4×6 lattice as shown
in Fig. 5(c). Thus, the design complexity reduces to 60.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of SISYPHUS and
the methods of [3]–[6], [9]. Note that SISYPHUS, developed
in Perl, uses espresso [10] to find the ISOP forms of logic
functions. We used 26 instances which were taken from [11]
and categorized into two classes. The first (second) class,
i.e., the first (last) 13 instances, consists of small (large) size
logic functions, where the number of inputs times the number
of products is less than or equal to 220 (greater than or
equal to 297). Table I presents the function details and the
results of methods, where in and pi denote the number of
inputs and prime implicants of the target functions in ISOP
form, respectively. Also, sol and CPU stand for the solution
of methods and their run-time in seconds, respectively. All

methods were run on an Intel Xeon processor at 2.40GHz
with 28 cores and 128GB RAM under a time limit of 6 hours.

Observe from Table I that the solutions of SISYPHUS on
small size instances are close to those found by the algorithms
of [5] and [9] and are better than those of algorithms [3],
[4], [6] on average. Also, SISYPHUS finds the solutions of
small size instances using less computational effort than the
previously proposed algorithms on average. Existing methods,
except the algorithm of [9], cannot cope with large size
instances and their solutions are obtained with their methods
used to find an upper bound. On the other hand, the solutions
of SISYPHUS on these instances are obtained using the least
computational effort and are significantly better than those
of the existing algorithms on average. This experiment also
shows that the use of three different decomposition techniques
generally leads to better solutions in terms of the number of
switches and run-time when compared to algorithms including
only one decomposition technique [6], [9].

V. CONCLUSIONS

This paper introduced an efficient method for the realization
of complex logic functions on a switching lattice that existing
algorithms find them hard to handle. Experimental results
clearly indicated that its solutions on small size instances
are very competitive to those found using the previously
proposed algorithms and its solutions on large size instances
are significantly better than the best solutions found so far.

ACKNOWLEDGMENT

This work is supported by the European Union’s
H2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 691178 and the
TUBITAK-2501 project #218E068.



REFERENCES

[1] M. Altun and M. Riedel, “Logic synthesis for switching lattices,” IEEE
Transactions on Computers, vol. 61, no. 11, pp. 1588–1600, 2012.

[2] D. Alexandrescu, M. Altun, L. Anghel, A. Bernasconi, V. Ciriani,
L. Frontini, and M. Tahoori, “Logic synthesis and testing techniques
for switching nano-crossbar arrays,” Microprocessors and Microsystems,
vol. 54, pp. 14–25, 2017.

[3] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing optimal
switching lattices,” ACM Transactions on Design Automation of Elec-
tronic Systems, vol. 20, no. 1, pp. 6:1–6:14, 2014.

[4] M. Morgul and M. Altun, “Optimal and heuristic algorithms to synthe-
size lattices of four-terminal switches,” Integration, vol. 64, pp. 60–70,
2019.

[5] L. Aksoy and M. Altun, “A satisfiability-based approximate algorithm
for logic synthesis using switching lattices,” in Design, Automation and
Test in Europe Conference, 2019, pp. 1637–1642.

[6] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and
T. Villa, “Logic synthesis for switching lattices by decomposition with
p-circuits,” in Euromicro Conference on Digital System Design, 2016,
pp. 423–430.

[7] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Synthesis
of switching lattices of dimensional-reducible boolean functions,” in
International Conference on Very Large Scale Integration, 2016, pp.
1–6.

[8] ——, “Composition of switching lattices for regular and for decomposed
functions,” Microprocessors and Microsystems, vol. 60, pp. 207–218,
2018.

[9] L. Aksoy and M. Altun, “Novel methods for efficient realization of logic
functions using switching lattices,” IEEE Transactions on Computers,
2019, accepted for publication.

[10] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Springer, 1984.

[11] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0,” MCNC, Tech. Rep., Jan. 1991.


