
Efficient Hardware Implementation of Convolution
Layers Using Multiply-Accumulate Blocks

Mohammadreza Esmali Nojehdeh, Sajjad Parvin and Mustafa Altun
Department of Electronics and Communication Engineering, Istanbul Technical University

34469, Maslak, Istanbul, Turkey

Email: {nojehdeh, parvins17, altunmus}@itu.edu.tr

Abstract—In this paper, we propose an efficient method to
realize a convolution layer of the convolution neural networks
(CNNs). Inspired by the fully-connected neural network ar-
chitecture, we introduce an efficient computation approach to
implement convolution operations. Also, to reduce hardware
complexity, we implement convolutional layers under the time-
multiplexed architecture where computing resources are re-used
in the multiply-accumulate (MAC) blocks. A comprehensive
evaluation of convolution layers shows using our proposed
method when compared to the conventional MAC-based method
results up to 97% and 50% reduction in dissipated power and
computation time, respectively.

I. INTRODUCTION

In recent years, artificial neural networks (ANNs) have

achieved a remarkable performance in different research areas,

including medical image processing [1], face detection [2], and

semantic segmentation [3]. Recent developments in graphics

processing units (GPUs) and central processing units (CPUs)

provide generous memory resources and high computation

speeds for the training and operation of ANNs. However, their

large power consumption makes this method impractical for

portable devices where the number of processing units, battery

capacity, and memory is limited. These considerations make

application-specific integrated circuits (ASICs) a favorable

method for hardware implementation. To reduce the hardware

complexity by considering an increase in latency, ANNs

based on Multiply-accumulated (MAC) units and multiplier-

less designs are proposed in [4]. Also by introducing novel

approximate units for MAC blocks, a remarkable reduction in

power consumption and occupied area are obtained for fully-

connected ANNs [5], [6].

Beyond the fully-connected ANNs, convolutional neural

networks (CNN) provide remarkable results in achieving better

performances by extracting features from the training data. The

CNNs consist of convolutional layers followed by the fully-

connected layers. Practically, the fully-connected layers are

used to classify the inputs’ features which are provided by

filters or convolution layers. Due to numerous memory access

and a large power consumption, ASIC implementation of a

CNN with millions of parameters is impractical in the parallel

fashion.

CNNs’ hardware complexity is dominated by convolution

layers where each convolution is a sum of weighted neigh-

boring pixels. On the other hand, fully-connected ANN is a

vector multiplication of inputs with related weights. Inspired

by the fully-connected ANNs, a new computational method

for convolution layers are realized based on the MAC units

to reduce the hardware complexity of convolution layers [7].

Since the parallel implementation of the fully-connected ANN

for large structures requires enormous data access and yields

an impractical hardware complexity, exploiting MAC units

enables designers to reduce power consumption and silicon

area considerably by a hybrid operation (parallel-serial).

By considering the similarity of the fully-connected ANNs

and the convolution operation, we propose an efficient com-

putational method to reduce both the number of employed

MAC units and the number of clock cycles. Experimental

results shows that our proposed computational method results

in reduction in area, power dissipation and, number of clock

cycles in comparison to the generic computation method

introduced in [7] work.

The rest of this paper is organized as follows. Background

concepts for ANN and CNN are given in Section II. Section III

presents the MAC-based design architectures. In Section IV,

the convolutional operation and the proposed computation

method are discussed. Section V presents the experimental

results and finally, Section VI concludes this paper.

II. BACKGROUND

A. Fully-connected ANN

An ANN is a network comprised of neurons that are highly

interconnected. The weight and bias values of an ANN are

determined in a training phase where the error between the

desired and actual response reduces by using an iterative

optimization algorithm. Fig. 1 presents the fundamental block

of the ANN, i.e., neuron, which sums the multiplication

of input variables by weights, adds the bias value to this

summation, and propagates this result to an activation function.

In mathematical terms, the neuron’s operation is described as

y =
∑n

i=1 ωixi and z = φ(y + b) where n denotes the

number of inputs and weights and, φ represents the activation

function. Fig. 2 presents an ANN design including hidden and

output layers where each circle denotes a neuron.

B. Convolution Layer

A convolution layer contains a set of filters whose param-

eters are specified during the training phase. The convolution

operation on an input image using kernel filters extract fun-

damental features from the image. The inputs and filters are

formed in 3 dimensions:height H, widthW and channel C. The

convolution operation is represented in Fig. 3. The height and



x1
x2

xn

w1 w2 wn

x +
y

Control
Logic

R + z

MAC

b

Fig. 1. Multiply-accumulate (MAC) block in the neuron computation.

Inputs Hidden Layers Output
Layer

(a)

Inputs Hidden Layers Output
Layer

(b)

Fig. 2. (a) Axonal-based model; (b) Dendritic-based model.

weight of the filters are smaller than those of the input values.

The filter plane slides over the entire input image step by

step and, the output is the result of multiple convolutions. As

an example, convolution operation in Fig. 4, is considered as

Cin = 1, Hin = 4, Win = 4, Cout = 1, Hf = 2, Wf = 2 and

S = 1, where S stands for a stride value. In the convolution

operation process, stride is the number of pixel-shifting in each

operation. The number and the size of the filters varies for

different applications.

III. MAC-BASED ANN DESIGN

Serial processing is an alternative approach for parallel fash-

ion computing where re-using a unit results in a reduction in

hardware complexity by an increase in latency. As mentioned

in SectionII, ANNs’ hardware complexity are dominated by

multipliers and adders. ANNs can be designed under the time-

multiplexed architecture using the MAC blocks. The structure

of the unit is represented in Fig. 1, where each neuron in a

layer is replaced by a single MAC unit. Hardware realization

of the ANNs under MAC units can be classified into two

models: axonal-based [8] and dendritic-based [9] models.

For axonal-based model which is shown in Fig. 2(a), every

single input of a layer is multiplied by the related weights of

all neurons in a layer, where all the outputs are calculated

simultaneously. As a result, axonal-based model does not

require obtaining all the inputs at the same time. The process

is realized step by step for all inputs and, the control logic unit

is a simple counter which counts from 1 to i, where i is the

number of inputs. To obtain all of the neuron’s output, i + 1
clock cycles is required. For dendritic-based model which is

shown in Fig .2(b), the value of a next neuron is calculated

by multiplying all inputs with the related neuron’s weights

and accumulating them. This method results in the sequential

generation of outputs and every step of the calculation needs

to obtain all the input values to start the next layer calculation.

This model needs n+1 clock cycles to determine all neurons’

output values where n is the number of outputs. Also by

combining these two models, parallel computing is enabled in

two successive layers to achieve smaller latency in the whole

network computing time [10].

* = H
out

Wout

H
in

Win

H
f

Wf

Input Activation 
Maps

Output Activation 
Maps

Filters

1

2

n

Fig. 3. The computation of convolutional layer.

IV. CONVOLUTIONAL COMPUTATIONS

Convolution layer computation dominates the hardware cost

of the CNNs. Inspired by the similarity between the fully-

connected ANN and convolutional operation, each weight of

filters are modeled as a neuron of an ANN which is realized

by Axonal-based model [7]. According to this method, the

output requires Hin × Win × Cin clock cycles while using

Hout ×Wout parallel neurons. The Axonal-based model data-

flow, is shown in Table I by assuming that the stride value is

1. The accumulation of each column yields the output of the

corresponding neuron. Also, each row of the table represents

the correlated weights of the neurons.

A. Proposed Data-Flow

According to Table I, the MAC units are idle almost in half

of the cases. Also, the real image pixel numbers are greater

than the given size in Table I. For example, the MNIST data

set contains images with a size of Hin = 28 and Win =
28. Consequently the required MAC unit for each 2-D plane

convolution will be 26 × 26, by considering the stride value

is 1.

According to the convolution process, the values of the

weights remain unchanged during the computing process.

From ANN perspective, the convolution process is similar to

an ANN with identical weight set for all neurons and, to obtain

the output, only the order of inputs change in each clock cycle.

Motivated by this approach, we exploit the dendritic-base
ANN model to realize the convolution computing process

where the control unit in each clock cycle selects the related

input values. The proposed computing data-flow for the given

example is represented in Table II. Distinct from the input

numbers, the proposed method requires Hf ×Wf neurons in

parallel and Hout × Wout clock cycles to obtain the output

results. Also, all the employed MAC units are active in

each clock cycle for our proposed method. Furthermore, a

constant specified multiplicand of the MAC units reduces the

complexity of the control unit. In conclusion, since the size

of the filter is always smaller than the size of the output, the

dendritic-base model always require a lesser number of MAC



x2×w1 + x3×w2 + x4×w3+
x6×w4 + x7×w5 + x8×w6+
x10×w7 + x11×w8 + x12×w9

w1 w2

w4 w5

w3

w7

w6

w8 w9

x1 x2

x5 x6

x3 x4

x7 x8

x9 x10

x13 x14

x11 x12

x15 x16

x ×w + x ×w + x ×w +
x

6 1 7 2 8 3

10×w4 + x11×w5 + x12×w6+
x14×w7 + x15×w8 + x16×w9

+
x5×w1 + x6×w2 + x7×w3+
x9×w4 + x10×w5 + x11×w6

x13×w7 + x14×w8 + x15×w9

x ×w + x ×w + x ×w +1 1 2 2 3 3

x5×w4 + x6×w5 + x7×w6+
x9×w7 + x10×w8 + x11×w9

* =

Fig. 4. The computation of convolutional layer.

TABLE I
THE axonal-based MODEL DATA FLOW FOR CONVOLUTIONAL COMPUTATION.

Clock Cycles Neuron #1 Neuron #2 Neuron #3 Neuron #4
clk #1 X1 ×W1 X1 × 0 X1 × 0 X1 × 0
clk #2 X2 ×W2 X2 ×W1 X2 × 0 X2 × 0
clk #3 X3 ×W3 X3 ×W2 X3 × 0 X3 × 0
clk #4 X4 × 0 X4 ×W3 X4 × 0 X4 × 0
clk #5 X5 ×W4 X5 × 0 X5 ×W1 X5 × 0
clk #6 X6 ×W5 X6 ×W4 X6 ×W2 X6 ×W1

clk #7 X7 ×W6 X7 ×W5 X7 ×W3 X7 ×W2

clk #8 X8 × 0 X8 ×W6 X8 × 0 X8 ×W3

clk #9 X9 ×W7 X9 × 0 X9 ×W4 X9 × 0
clk #10 X10 ×W8 X10 ×W7 X10 ×W5 X10 ×W4

clk #11 X11 ×W9 X11 ×W8 X11 ×W6 X11 ×W5

clk #12 X12 × 0 X12 ×W9 X12 × 0 X12 ×W6

clk #13 X13 × 0 X13 × 0 X13 ×W7 X13 × 0
clk #14 X14 × 0 X14 × 0 X14 ×W8 X14 ×W7

clk #15 X15 × 0 X15 × 0 X15 ×W9 X15 ×W8

clk #16 X16 × 0 X16 × 0 X16 × 0 X16 ×W9

TABLE II
THE PROPOSED METHOD DATA FLOW FOR CONVOLUTIONAL COMPUTATION.

Clock Cycles Neuron #1 Neuron #2 Neuron #3 Neuron #4 Neuron #5 Neuron #6 Neuron #7 Neuron #8 Neuron #9
clk #1 X1 ×W1 X2 ×W2 X3 ×W3 X5 ×W4 X6 ×W5 X7 ×W6 X9 ×W7 X10 ×W8 X11 ×W9

clk #2 X2 ×W1 X3 ×W2 X4 ×W3 X6 ×W4 X7 ×W5 X8 ×W6 X10 ×W7 X11 ×W8 X12 ×W9

clk #3 X5 ×W1 X6 ×W2 X7 ×W3 X9 ×W4 X10 ×W5 X11 ×W6 X13 ×W7 X14 ×W8 X15 ×W9

clk #4 X6 ×W1 X7 ×W2 X8 ×W3 X10 ×W4 X11 ×W5 X12 ×W6 X14 ×W7 X15 ×W8 X16 ×W9

units compared to the axonal-base model. Also, by considering

the output size is smaller than the input size in convolutional

operation, the number of clocks to obtain the output values

for dendritic-base model will be lesser than the axonal-base
model.

V. EXPERIMENTAL RESULTS

To evaluate the performance of our proposed method, we

considered convolutional operation with 3 different filter sizes.

The employed filter sizes are 3 × 3, 5 × 5 and, 7 × 7. Addi-

tionally, to compare the efficiency of our proposed method,

we provided the hardware cost of axonal-based computation

method. As an input, we considered the MNIST handwritten

digit recognition database for the convolution process, where

the size of the images are 28× 28 pixels.

The operation designs were described in Verilog and synthe-

sized using Cadence Genus tool with the TSMC 40nm design

library. Hardware implementation results are represented in

Fig. 5. As discussed in Section IV, the convolution operation is

processed based on the fully-connected ANN model. Accord-

ing to the convolution process essence, the output pixels size

decreases by increasing the size of filters. Experimental results

show our proposed method requires 14%, 26% and, 38% less

clock numbers for 3× 3, 5× 5 and, 7× 7 filters, respectively,

when compared to the axinal-based model. Latency (μs) in

this work denotes as a required time for the output to be

obtained after the input is applied. Latency is determined as the

multiplication of clock period by the number of clock cycles to

obtain the ANN output. The clock period was reduced by using

the re-timing technique in the synthesis tool iteratively. Due to

the simplicity of our proposed method structure, the resulted

clock period of our proposed method by re-timing technique

is lesser than the axonal-based model. As a result, the latency

reduction value is even greater for our proposed method

when compared to the axonal-based model. According to the

experimental results in Fig. 5, our proposed method obtains

the output 31%, 46% and, 49% faster for 3×3, 5×5 and, 7×7
filters, respectively, when compared to the other method. As

discussed in Section IV, the filter size determines the numbers

of required MAC units, and this value is negligible for our

proposed method when compared to the axonal-based model.

Contrarily to the axonal-based model, all the exploited MAC

units are active in our proposed method. The realization of

the convolution operation by small numbers of MAC units in

our proposed method yields a remarkable reduction in term

of silicon area and total power dissipation. According to the



304,877
280,072

251,832

53,578
31,809 29,195

3*3 5*5 7*7

A
re

a 
(μ
m
2 )

Filter Size

Axonal-based Proposed

33,295
29,466 29,084

1,381 942 2,771

3*3 5*5 7*7

Po
w

er
 C

on
su

m
pt

io
n 

(μ
W

)

Filter Size

Axonal-based Proposed

149 157 161

4 3 8

3*3 5*5 7*7

En
er

gy
 C

on
su

m
pt

io
n 

(μ
J)

Filter Size

Axonal-based Proposed

786 786 786
678 

578 
486 

3×3 3×3 5×5

C
lo

ck
 N

um
be

r

Filter Size

Axonal-based Proposed

4,464
5,345 5,535

3,098 2,903 2,874

3*3 5*5 7*7

La
te

nc
y 

(μ
s)

Filter Size

Axonal-based Proposed

676
576

484

9 25 49

3×3 5×5 7×7

M
A

C
 N

um
be

r

Filter Size

Axonal-based Proposed

Fig. 5. Experimental result of the proposed method vs the axonal-based model.

experimental results in Fig. 5, our proposed approach saves

around 85% more area when compared to the axonal-based
model. In this study, the switching activity data required for

the computation of power dissipation were generated using the

test data in the simulation where the test data consists of 10000
image samples. The experimental results indicate the efficiency

of the power consumption for our proposed method. According

to Fig. 5, the dissipated power of our proposed method is only

4%, 3% and, 9% of the conventional axonal-based model for

3, 5 and, 7 filters, respectively. We note that, in this study

the energy consumption computed as the multiplication of

latency by power dissipation. Due to remarkable reduction in

latency and power consumption for our proposed method, the

energy reduction reached to 98% of the axonal-based model

as represented in Fig. 5.

VI. CONCLUSION

In this paper, we presented hardware efficient implemen-

tation of the convolution layers under the time-multiplexed

architecture where computing resources are re-used using

MAC blocks. The conventional MAC-based realization, which

is known as the axonal-based model, suffers from high latency.

Also, a high number of idle MAC units in the mentioned

method yields in a leakage power dissipation. To overcome

these drawbacks, we introduced a novel computing approach

to speed up the convolutional computation by 2× while

only use roughly 2% of the area, power and, energy of the

conventional MAC-based method. As a future work, we plan

to realize a CNN completely under this proposed structure,

and obtain the efficiency of our proposed approach for the

CNN in the real-world applications.

ACKNOWLDGEMENT

This work is supported by the TUBITAK-1001 projects

#119E507 and Istanbul Technical University BAP projects

#42446.

REFERENCES

[1] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical
image classification with convolutional neural network,” in International
Conference on Control Automation Robotics Vision, 2014, pp. 844–848.

[2] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional neural
network cascade for face detection,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 5325–5334.

[3] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in IEEE International Conference on Computer
Vision, December 2015, pp. 1520–1528.

[4] L. Aksoy, S. Parvin, M. E. Nojehdeh, and M. Altun, “Efficient time-
multiplexed realization of feedforward artificial neural networks,” pp.
1–5, 2020.

[5] M. E. Nojehdeh and M. Altun, “Systematic synthesis of approximate
adders and multipliers with accurate error calculations,” Integration,
vol. 70, pp. 99–107, 2020.

[6] M. Esmali Nojehdeh, L. Aksoy, and M. Altun, “Efficient hardware
implementation of artificial neural networks using approximate multiply-
accumulate blocks,” pp. 96–101, 2020.

[7] A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architecture to
accelerate convolution in deep neural networks,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362,
2017.

[8] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy,
S. Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar,
and D. S. Modha, “Building block of a programmable neuromorphic
substrate: A digital neurosynaptic core,” in International Joint Confer-
ence on Neural Networks (IJCNN), 2012, pp. 1–8.

[9] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba,
M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson,
and D. S. Modha, “Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 10, pp. 1537–1557, Oct 2015.

[10] H. Park and T. Kim, “Structure optimizations of neuromorphic comput-
ing architectures for deep neural network,” in 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2018.


