

This project has received funding from the European Union's H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 691178.

Synthesis and Performance Optimization of a Switching Nano-Crossbar Computer

NANOXCOMP

14-18 March 2016 Dresden Germany

General Overview

- 1963, 1965: CMOS and Moore's Law
- 2005: Gordon Moore himself claimed that the validity of Moore's Law will be lost.
- February 2016: Mitchell Waldrop stated:
- "Next month, the worldwide semiconductor industry will formally acknowledge ... Moore's law ... is nearing its end."
- Novel fabrication methods like self-assembly
- Regular shaped Crossbar structures

Crossbar-Switch Types

There are three different types of nano crossbar switches

Project Goal

- Synthesis and optimization methodology for switching nano-crossbar arrays: diode, FET, and four-terminal switch based
- Performance parameters such as area, delay, power dissipation, and reliability.
- New computing models arithmetic and memory elements,
- Realization of a synchronous state machine (SSM) with combination of arithmetic and memory elements

Finding optimal sizes,

Defect Tolerant Mapping

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>x</i> ₂	$\overline{x_2}$	<i>x</i> ₂	$\overline{x_2}$	$XOR_3: 3x4$
$\overline{x_2}$ $\overline{x_1}$ $\overline{x_2}$ x_3	<i>x</i> ₃	$\overline{x_3}$	$\overline{\chi_3}$	<i>x</i> ₃	
$\overline{x_3}$ x_2 $\overline{x_1}$ x_2	<i>x</i> ₁	$\overline{x_3}$	\overline{x}	$\overline{1}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>x</i> ₂	1	\overline{x}	2	XOR ₃ : 3x3
$XOR_3: 4x4$	$\overline{x_1}$	<i>x</i> ₃	x	.1	

These three network designs realize the same function XOR₃; but smallest network is the optimal solution for this function

Project Partners

• Dr. Mustafa Altun, – Principal Investigator –

Emerging Circuits and Computation Group, Istanbul Technical University, Turkey

- Dr. Dan Alexandrescu, IROC Technologies, Grenoble, France
 - Dr. Lorena Anghel, TIMA Lab., Grenoble, France
 - Prof. Valentina Ciriani, ALOS Lab., University of Milan, Italy.

Prof. Csaba A. Moritz, Nanoscale Computing Fabrics Lab., University of Massachusetts, USA

Prof. Kaushik Roy, Nanoelectronics Research Lab., Purdue University, USA

Prof. Mircea Stan, High-Performance Low-Power Lab., University of Virginia, USA • Prof. Mehdi B. Tahoori, Dependable Nano-Computing Group, Karlsruhe Institute of Technology, German

