Synthesis and Performance Optimization of a Switching Nano-Crossbar Computer

General Overview
- 1963, 1965: CMOS and Moore’s Law
- 2005: Gordon Moore himself claimed that the validity of Moore’s Law will be lost.
- February 2016: Mitchell Waldrop stated: “Next month, the worldwide semiconductor industry will formally acknowledge … Moore’s law … is nearing its end.”
- Novel fabrication methods like self-assembly
- Regular shaped Crossbar structures

Crossbar-Switch Types
There are three different types of nano crossbar switches:
- Diode type
- FET type
- Four-terminal type

4x4 pseudo-nMOS ROM Example

Arithmetic Logic Synthesis Examples
- Diode type
- FET type
- Four-terminal type

of Switch Optimization Example
For Four-terminal switch type

Defect Tolerant Mapping

These three network designs realize the same function XOR3; but smallest network is the optimal solution for this function

Project Goal
- Synthesis and optimization methodology for switching nano-crossbar arrays: diode, FET, and four-terminal switch based
- Performance parameters such as area, delay, power dissipation, and reliability
- New computing models arithmetic and memory elements
- Realization of a synchronous state machine (SSM) with combination of arithmetic and memory elements

Project Partners
- Dr. Mustafa Altun, – Principal Investigator –
 Emerging Circuits and Computation Group, Istanbul Technical University, Turkey
- Dr. Dan Alexandrescu, IROC Technologies, Grenoble, France
- Dr. Lorena Anghel, TIMA Lab., Grenoble, France
- Prof. Valentina Ciriani, ALOS Lab., University of Milan, Italy
- Prof. Csaba A. Moritz, Nanoscale Computing Fabrics Lab., University of Massachusetts, USA
- Prof. Kaushik Roy, Nanoelectronics Research Lab., Purdue University, USA
- Prof. Mircea Stan, High-Performance Low-Power Lab., University of Virginia, USA
- Prof. Mehdi B. Tahoori, Dependable Nano-Computing Group, Karlsruhe Institute of Technology, Germany

Project Partners
- Dr. Mustafa Altun, – Principal Investigator –
 Emerging Circuits and Computation Group, Istanbul Technical University, Turkey
- Dr. Dan Alexandrescu, IROC Technologies, Grenoble, France
- Dr. Lorena Anghel, TIMA Lab., Grenoble, France
- Prof. Valentina Ciriani, ALOS Lab., University of Milan, Italy
- Prof. Csaba A. Moritz, Nanoscale Computing Fabrics Lab., University of Massachusetts, USA
- Prof. Kaushik Roy, Nanoelectronics Research Lab., Purdue University, USA
- Prof. Mircea Stan, High-Performance Low-Power Lab., University of Virginia, USA
- Prof. Mehdi B. Tahoori, Dependable Nano-Computing Group, Karlsruhe Institute of Technology, Germany