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Abstract

In this study, we propose an accurate reliability prediction model for high-volume complex electronic products throughout their
warranty periods by using field return data. Our model has a specific application to electronics boards with given case studies using
36-month warranty data. Our model is constructed on a Weibull-exponential hazard rate scheme by using the proposed change
point detection method based on backward and forward data analysis. We consider field return data as short-term and long-term
corresponding to early failure and useful life phases of the products, respectively. The proposed model is evaluated by applying it
to four different board data sets. Each data set has between 1500-4000 board failures. Our prediction model can make a 36-month
(full warranty) reliability prediction of a board with using its field data as short as 3 months. The predicted results from our model
and the direct results using full warranty data match well. This demonstrates the accuracy of our model. We also evaluate our
change point method by applying it to our board data sets as well as to a well-known heart transplant data set.
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1. Introduction

The rapid developments in electronics, especially in the last
decade, have elevated the importance of electronics reliability
[2, 3, 4]. Complex electronic systems, spanning almost all large
industrial fields, require high reliability that necessitates accu-
rate and early reliability predictions to give feedback for design
and warranty precautions. Prediction methods in the literature
are mainly based on accelerated life tests, component based nu-
merical and probabilistic simulations, and statistical field data
analysis [2, 5, 6, 7]. Despite their widely usage, accelerated
tests do not meet the needs of today’s very rapid electronic
product cycles; they are time consuming and expensive [8]. To
overcome this problem, tests can be supported by simulations.
However, in general simulations have severe accuracy limita-
tions especially for complex electronic systems having various
failure mechanisms [2, 8, 9]. Therefore, accelerated test and
simulation based predictions can be deceptive for many appli-
cations. This underlines the importance of using field return
data for reliability prediction that is relatively accurate, cheap,
and time saving.

In this study, we perform warranty forecasting of high-
volume complex electronic products using their field re-
turn data. We have cooperated with one of the Europe’s
largest household appliance manufacturers and used their well-
maintained data sets of four different electronic boards. Each
data set has between 1500-4000 board failures.
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Fig. 1. A bathtub curve – hazard rate function over time [12].

We construct our prediction model on a Weibull-exponential
piecewise hazard rate scheme by considering early failure and
useful life phases of the products. This scheme is preferred
for products not getting into the wear-out region during their
warranty times or anticipated lives [10, 11]. Electronic products
including electronic boards thoroughly studied in this work, fall
into these product groups. As shown in Fig. 1, electronic boards
are expected to work at least 10-15 years with a warranty period
of at most 5 years.

Using a piecewise hazard rate function for our reliability
model necessitates to determine the turning/change time distin-
guishing Weibull and exponential distributions. This problem,
often called as the change point problem in the literature, is of
fundamental importance in various applications including bio-
statistics and medical survival data analysis [13, 14, 15]. Differ-
ent approaches have been proposed to solve the problem [16].
Studies exploiting parametric change point analysis of non-
monotonic hazard rate functions consider the change point as
a parameter and propose statistical estimation methods includ-
ing maximum likelihood, least squares, and Bayesian methods
[15, 17, 18]. Additionally, non-parametric methods are studied
widely [13, 19].
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Although there are both parametric and non-parametric
methods in the literature giving theoretically satisfactory results
for the change point problem, they are loosely encountered in
engineering areas in the manner of applicability. They are usu-
ally evaluated using certain data sets with certain distributions
such as biological survival data having exponential-exponential
hazard rate scheme [15, 18, 16]. However, these methods can
be deceptive for unevenly distributed data in time domain that
needs different approaches and distributions for different time
spans. For example, consider our board data sets for which
nearly 90% and 10% of the data belong to the early failure
(Weibull distribution) and the useful life (exponential distribu-
tion) regions, respectively. With the above discussed methods,
the change point that separates the regions can not be deter-
mined accurately. Motivated by this, we propose a practical yet
accurate change point detection method by performing forward
and backward data analysis with left and right truncated data.
We exploit both parametric and non-parametric techniques by
using maximum likelihood and rank regression estimations.

Constructed on the proposed change point detection method,
we develop an early reliability prediction methodology. In our
case studies, we accurately predict 36-month reliability of elec-
tronic boards by using their 3-month field data. Investigating
the related studies in the literature, we see the inappropriateness
of non-parametric methods since they can only predict near fu-
ture reliability of a new product [20, 21, 22, 23]. Parametric
methods using time dependent parameters are more suitable in
this regard. In general, parametric methods including a standard
Bayesian estimation, use a prior parameter distribution assum-
ing that the distribution is same for an old product from which
we get prior knowledge and a new product for which we per-
form reliability estimation [24, 25, 26, 27]. This assumption
is satisfied if the parameter is defined for a specific failure in
a specific material/component. However, for complex systems
having various components including electronic products tar-
geted in this study, the assumption looses its validity.

There are also studies using empirical findings to find dis-
tributions of the parameters [28, 29]. Here, the main prob-
lem is that to obtain sufficient accuracy, high amount of data
is needed for a new product that can kill the idea of early pre-
diction. Some recent works aim to solve this problem by using
data from pass-fail reliability tests and having field data from
multiple products [30, 31, 32]. In [31], field data of 17 differ-
ent products are used for early prediction with an assumption
that these products have similar failure distributions. Another
solution is performing degradation tests and condition monitor-
ing to have more data [33, 34, 35]. Of course, these techniques
are considerably costly compared to the techniques, including
ours, that just use field data. Additionally, physics of failure
based simulations are exploited for reliability prediction [36].
Although this technique gives satisfactory results for individual
components having certain failure mechanisms, its accuracy is
susceptible for systems having hundreds of components includ-
ing electronic products targeted in this study.

As opposed to the mentioned studies in the literature, our re-
liability prediction model uses only field data and deals with
a single new product. Our model combines predetermined pa-

rameter distributions and empirical findings, and performs data
fitting. It has an input of either short-term or long-term field
data corresponding to early failure and useful life phases of
products, respectively. The output of the model is the reliability
prediction covering the full warranty period. In case of having
long-term data, we directly apply our change point method to
depict a hazard rate curve with Weibull and exponential distri-
butions using maximum likelihood and rank regression meth-
ods. In case of having short-term data, we first investigate how
the Weibull shape parameter β varies with different time inter-
vals of the field data. For this purpose, we use full warranty
field data belonging to previous and/or current versions of the
products. We develop a mathematical function of β in terms of
time and product dependent parameters. Additionally, we use
empirical findings and iteration methods to estimate other dis-
tribution parameters. We finally construct our prediction model
based on the developed Weibull-exponential scheme.

The paper is organized as follows. In Section 2, we introduce
our reliability prediction methodology with a flowchart. In the
following sections we elaborate on the flowchart step by step.
In Section 3, we represent our forward and backward data anal-
ysis method to achieve a Weibull-exponential piecewise hazard
rate scheme. We evaluate our method by applying it to our field
data as well as to a well-known heart transplant data. In Section
4, we represent our reliability prediction model with long-term
and short-term data. The proposed model is evaluated by apply-
ing it to different electronic board families. In Section 5, con-
clusion remarks and inferences about future works are given.

2. The proposed methodology

Our methodology, illustrated in Fig. 2, has an input of a new
product’s field data classified as long-term or short-term that
is determined by applying the proposed forward and backward
data analysis. If the analysis results in a change point that sep-
arates early failure and useful life regions then we call the in-
put data as long-term data that is modelled with Weibull and
exponential distributions. In this case, reliability prediction is
achieved by using an exponential distribution that is expected to
keep its validity until the end of the warranty period. If the anal-
ysis results in a single distribution, no change point found, then
we call the input data as short-term data. Here, we use a frame-
work that connects prior knowledge based on an old product
with a new one. We evaluate the field data of an old product in
forward time spans in order to obtain time dependent behaviour
of the Weibull β parameter.

Ideally, a specific component or a material is expected to
have its own constant β that is time independent. However,
similarly for most of the complex systems, electronic products
consist of hundreds of different components/elements. Some of
these elements such as integrated chips are almost perfectly reli-
able throughout the early failure phase that results in β > 1. On
the other hand, components, especially used in power supply
and mechanical control blocks which face much more stress,
have serious early reliability issues that results in β < 1. There-
fore it is expected to see changes for β along with time to failure
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Fig. 2. Flow of the proposed reliability prediction methodology.

values. This is our main motivation to derive a time dependent
function of β.

From empirical findings, we first determine the function form
of β by considering data sets of old products. Determination is
not purely based on statistical inferences, but also has an engi-
neering point of view. From our case studies using four differ-
ent board data sets, we claim that complex electronic products
have a logarithmic β function with two product dependent pa-
rameters. While one of the parameters has a fixed value for
all products in the same family such as boards of washing ma-
chines, the other one varies for each product. We estimate these
parameters using a shrinkage technique by considering root-
mean-square error values. Note that we have a predetermined
distribution with unknown parameters to be estimated that is
different than both empirical and standard Bayesian estimation
techniques. After estimating parameter values, we directly use
the value of the family dependent parameter for a new prod-
uct in the same family. Then we estimate the other parameter
using the new product’s data. For this estimation, we use a
maximum likelihood estimation (MLE) method regarding large
sample sizes of high-volume products. However, in our previ-
ous study we show that Bayesian estimation would give better
results in case of having smaller data sets; the difference is ob-
vious for sample sizes in the order of tens [1]. To estimate other
parameters in the Weibull-exponential scheme, we use empiri-
cal findings and iteration methods. As a result, we make a full
warranty forecasting of a new product given its short-term field
data.

Summary of the proposed methodology is given in Fig. 3.
Step 1 and Step 2 of the methodology are thoroughly explained
in Section 3 and Section 4, respectively. In these sections, the
steps are explicitly evaluated by using four different board data
sets. As follows, we give information about these sets.

2.1. Board data sets

We use four different data sets belonging to four different
boards Board-B, Board-E, Board-F, and Board-K. The field
data contain assembly and return/failure dates for each warranty
call – time differences between the dates give time to failure
values. Warranty period of the boards is 3 years. The mainte-
nance policy of the company is to replace the failed board with

Input: Field data of a new product not completing its warranty period. 

Goal:     Full warranty reliability prediction with hazard rate curves .

Step 1 Chance point detection: Apply maximum likelihood and rank 

regression methods for data fitting while enhancing time 

windows in forward and backward directions.

Step 2 Reliability prediction: Using full warranty data of an old 

product, estimate the parameters of a new product using a 

shrinkage technique, maximum likelihood method, and 

empirical findings.  

Fig. 3. Outline of the proposed reliability prediction methodology.

Table 1
Summary of the board data sets.

Board
name

Total number of
products in field

Total number of
failures

Duration of data
collection (months)

B 689536 1849 37

E 1048201 4050 40

F 286108 1533 24

K 70852 3936 38

a new one in any suspected case such as stopping from time
to time or breaking down entirely in the field. Therefore the
data sets have no record of repaired boards. All failed boards
are inspected to find root causes of the failures by the company.
While most of the failures are linked to their root causes, there
are also cases where no cause is found and the replaced boards
work properly during inspections. These cases are disregarded
in this study to improve data accuracy. In other words, we only
consider proven failures. To further improve the data accuracy,
we apply our “filtering technique” that eliminates errors such as
data losses and inappropriate data recordings [37]. A summary
of the final form of the data is given in Table 1. The collection
was performed from the first day of products in field.

3. Change point detection by forward and backward data
analysis

As we previously discussed in the introduction part, field re-
turn data of electronic products can not be used for analysis of
the wear-out region since they get into this region long after
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their warranties expire. Therefore, we only deal with early fail-
ure and useful time periods. We develop our hazard rate func-
tion with phases having a decreasing failure rate (DFR) and a
constant failure rate (CFR). Here, DFR and CFR correspond to
early failure and useful life regions, respectively. The overall
hazard rate function ho(t) is defined as

ho(t) =

h1(t), t < tc
h2(t), t > tc

(1)

where h1(t) and h2(t) refer to hazard rate functions having DFR
and CFR, respectively, and tc refers to a change point distin-
guishing DFR and CFR. Note that it is not necessary to achieve
continuity between h1(t) and h2(t). Additionally after finding a
change point tc, h1(t) and h2(t) are generally obtained using sep-
arate data sets as we do in Section 3.2. As a result, there is no
direct dependency between h1(t) and h2(t). Considering a dis-
continuous ho(t) at tc, Equation (1) can be written as Equation
(2) with an addition of an indicator function I(t).

ho = I(t ≤ tc)h1(t) + I(t > tc)h2(t). (2)

Constructed on Equation (2), we first derive formulations for
the conventional MLE method in order to find a change point.
We see that the obtained change point values for board data
sets do not adequately meet our expectations. Next, we present
our change point method based on forward and backward data
analysis using both MLE and rank regression estimation (RRE)
methods. We successfully apply our method to the data sets as
well as to the medical failure data.

3.1. Pseudo maximum likelihood estimation

General formulations for a mixed hazard rate model are given
below [14].

Ho = I(t ≤ tc)H1(t) + I(t > tc)[H1(tc) + H2(t) − H2(tc)] (3)

g(t) = (1 − e−H1(tc)) f1(t) + e−H1(tc) f2(t) (4)

f1(t) =
h1(t)e−H1(t)

1 − e−H1(tc) I(t ≤ tc) (5)

f2(t) = h2(t)e−(H2(t)−H2(tc))I(t > tc) (6)

S (t) =
e−H1(t) − e−H1(tc)

1 − e−H1(tc) I(t ≤ tc) + e−(H2(t)−H2(tc))I(t > tc) (7)

Here, H(t) represents a cumulative hazard rate function of
h(t). The functions g(t), f1(t), and f2(t) are overall mixture,
right truncated, and left truncated density functions, respec-
tively; S (t) denotes a survival function.

In the Weibull-exponential mixture scheme, the right trun-
cated density function in Equation (5) and the left truncated
density function in Equation (6) are Weibull and exponential
density functions, respectively. A likelihood function for right
censored data, encountered in warranty returns, is given as

LL =
∏

g(ti)w
i S (ti)1−wi (8)

where g(t), an overall mixture density function derived using
Equation (5) and Equation (6), is formulated as

g(t) =
β

η
(

t
η

)β−1e
−

t
η

β

I(t ≤ tc) + λe−(tc/η)βe−(λt−λtc)I(t > tc). (9)

In Equation (8), wi takes a value of 1 and 0 in case of fail-
ure and suspended cases, respectively. There are four unknown
parameters λ , η, β, and tc to be estimated in this scheme.
However, according to Equation (8), tc can not be directly es-
timated since there is a discontinuity at tc. Additionally, it is
explicitly shown that it is hard to get an inference for tc ex-
cept for exponential-exponential mixture scheme [38]. Consid-
ering these issues, we use a pseudo MLE approach [39]. We
do not purely use algebraic approaches that is computationally
intractable regarding the four unknown parameters. Instead, we
perform a grid search for tc assuming that we know other pa-
rameters. We use values obtained from single distribution fit-
tings for other parameters in every iteration of tc.

We apply our pseudo MLE method to the data sets of the
boards Board-B, Board-E, Board-F, and Board-K. Results are
given in Table 2 with numbers representing average likelihood
function values log(LL)/(sample size) that are calculated using
Equation (8). We choose grid time spans as 60 days. Although
smaller grid spans are expected to result in more accurate and
detailed results due to an asymptotic behaviour of MLE, in our
case narrowing them beyond 60 days does not give us any valu-
able inference. Therefore, for simplicity we use 60-day time
spans. Note that total time range is 1080 days (36-month full

Table 2
Likelihood values for different time intervals.

t (days) Board-B Board-E Board-F Board-K

60 −0.129 −0.221 −0.0676 −0.731

120 −0.230 −0.228 −0.0663 −0.652

180 −0.340 −0.220 −0.0653 −0.673

240 −0.252 −0.227 −0.0645 −0.342

300 −0.437 −0.322 −0.0638 −0.296

360 −0.358 −0.301 −0.0634 −0.295

420 −0.394 −0.485 −0.0632 −0.223

480 −0.522 −0.497 −0.0631 −0.278

540 −0.638 −0.432 −0.0623 −0.322

600 −0.775 −0.421 −0.0631 −0.327

660 −0.854 −0.423 −0.0631 −0.329

720 −0.954 −0.417 −0.429 −0.414

780 −0.955 −0.422 − −0.414

840 −0.955 −0.425 − −0.417

900 −0.958 −0.434 − −0.419

960 −0.974 −0.456 − −0.423

1020 −0.974 −0.500 − −0.464

1080 −0.974 −0.500 − −0.464
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warranty) for all boards except for Board-F that has a data col-
lection duration of 720 days.

Examining the numbers in Table 2, we can confidently make
a change point prediction for the data set of Board-K for which
the likelihood values first increase, then stabilize for a short
time, and finally decrease. This is a desired phenomena to suc-
cessfully determine the change point tc that should be in the
time range of stabilized values. As a result, the change point
for Board-K is around 480 days. For Board-F, likelihood ratio
increases up to 660 days. Therefore, the change point is prob-
ably around 660 days. On the other hand, for boards B and
E no strong inferences can be obtained since likelihood values
excessively fluctuate. While the presumed tc value for Board-
F is consistent with the result of our method given in the next
section, that for Board-K is not consistent with the result of
our method. More accurate results could be achieved by ex-
tending grid searches, say for both Weibull β and tc. However,
this would exponentially increase the computing time that is
impractical for large data sets. Regarding these problems, we
propose a practical yet accurate change point detection method
in the following section.

3.2. Proposed change point estimation
In our method, we make data analysis using forward and

backward time windows. We apply MLE and RRE methods
for data fitting while enhancing time windows in forward and
backward directions that can be considered as on-line (adap-
tive) analysis. For small sample sizes in the order of tens, we
use the RRE method; otherwise we prefer the MLE method.
While forward analysis is a widely used method in reliability
and warranty analysis, investigating time to failure (TTF) val-
ues in backward direction is a new method that we introduce
for accurate determination of the change point tc and the haz-
ard functions h1(t) and h2(t). In our method, M f and Mb are
defined as the number of months that constitute the boundaries
of time windows. Fig. 4 illustrates our method with an explicit
demonstration of the time windows that are expanded between
1 and 36 months assuming that our products have a 3-year war-
ranty. Note that a unit time change of 1 month (30 days) is
not a necessity; for different applications it can be increased or
decreased. Also note that in case of having limited data not cov-
ering the full warranty period, time limits need to be updated.
For example, Board-F has 24-month data, so time windows can
be expanded between 1 and 24 months. To show this, we ex-
plicitly apply our method to the data sets of Board-F along with
Board-B.

The forward analysis is conducted by using the field return
data with TTF values less than or equal to M f . For example, if
M f = 3, the data to be analysed will contain TTF values of 1, 2,
and 3 months. After starting with M f = 1, M f is increased by
adding months one-by-one (M f = 2, 3, 4, ..., 36). Therefore,
the forward time window is gradually expanding to the end of
the TTF line as seen in the upper part of Fig. 4. For each
time window, we use different distributions and test them for
goodness of fit.

In order to elucidate the forward analysis we show de-
tailed results for Board-B and Board-F. We use a software

Fig. 4. Demonstration of forward and backward data analysis.

Reliasoft-Weibull++ [40] to obtain MLE likelihood values
log(LL)/(sample size) that are given in Table 3 and Table 4.
Examining the numbers, we see that a Weibull distribution is
the best fit for almost all different M f values. Although in some
cases the best fitting is achieved with lognormal or gamma dis-
tributions, these distributions show almost the same DFR pat-
tern as that of a Weibull distribution. Therefore we select a
Weibull distribution for h1(t). Note that in the forward analysis
we do not see a change point for M f from which the DFR pat-
tern and/or the fitting changes significantly. The reason is that
the overwhelmingly large portion of failures is gathered at the
first six months of the warranty period (TTF≤ 6 months) that
dominates the DFR pattern.

The backward analysis is conducted by using TTF values be-
tween Mb and 36 months (1 − 36, 2 − 36, ..., 30 − 36, ...).

Table 3
Log-likelihood values of different distributions for Board-B in forward
direction.

Forward time window Exponential Lognormal Weibull Gamma

0 − 30 days (M f = 1) −18.20 −14.35 −14.14 −14.72

0 − 60 days (M f = 2) −17.96 −14.17 −13.92 −14.22

0 − 90 days (M f = 3) −16.45 −13.88 −13.73 −13.29

0 − 180 days (M f = 6) −16.05 −13.77 −13.57 −13.81

0 − 270 days (M f = 9) −14.54 −13.62 −13.42 −13.68

0 − 360 days (M f = 12) −14.23 −13.54 −13.34 −13.57

0 − 540 days (M f = 18) −13.93 −13.21 −13.26 −13.87

0 − 720 days (M f = 24) −13.38 −13.39 −13.20 −14.14

0 − 900 days (M f = 30) −13.61 −13.36 −13.15 −13.48

0 − 1080 days (M f = 36) −13.42 −13.37 −13.20 −13.34

Table 4
Log-likelihood values of different distributions for Board-F in forward
direction.

Forward time window Exponential Lognormal Weibull Gamma

0 − 30 days (M f = 1) −14.80 −13.52 −13.45 −13.44

0 − 60 days (M f = 2) −14.34 −13.32 −13.22 −13.40

0 − 90 days (M f = 3) −14.25 −13.27 −13.17 −13.35

0 − 180 days (M f = 6) −13.84 −13.03 −13.06 −13.25

0 − 270 days (M f = 9) −13.52 −13.00 −12.96 −13.09

0 − 360 days (M f = 12) −13.50 −12.94 −12.96 −13.09

0 − 540 days (M f = 18) −13.37 −12.87 −12.93 −13.05

0 − 720 days (M f = 24) −13.18 −12.86 −12.84 −12.98
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Fig. 5. Rho versus Mb curves of different distributions in backward direction for (a) Board-B and (b) Board-F.

Table 5
Rho values for of different distributions for Board-B in backward direction.

Backward time window Exponential Lognormal Weibull Gamma

1080 − 900 days (Mb = 30) 0.938 0.931 0.925 0.826

1080 − 720 days (Mb = 24) 0.912 0.911 0.904 0.831

1080 − 630 days (Mb = 21) 0.903 0.901 0.883 0.818

1080 − 540 days (Mb = 18) 0.886 0.856 0.843 0.800

1080 − 450 days (Mb = 15) 0.859 0.845 0.833 0.800

1080 − 360 days (Mb = 12) 0.721 0.812 0.787 0.731

1080 − 270 days (Mb = 9) 0.642 0.788 0.763 0.714

1080 − 180 days (Mb = 6) 0.517 0.822 0.765 0.800

1080 − 90 days (Mb = 3) 0.612 0.912 0.819 0.826

1080 − 0 days (Mb = 0) 0.614 0.911 0.819 0.831

In other words, one end of the backward time window is fixed
at the 36th month and the other is gradually expanding to the
beginning of the TTF line as seen in the lower part of Fig. 4.

In order to elucidate the backward analysis we show detailed
results for Board-B and Board-F. We use a software Reliasoft-
Weibull++ [40] to obtain RRE rho values that are given in Table
5 and Table 6. For Board-B, we always achieve the best fitting
with a lognormal distribution for Mb < 14 and an exponential
distribution for Mb > 14. Therefore there is a change point ap-
proximately at the 14th month and we determine an exponential
distribution for h2(t). For Board-B, we always achieve the best
fitting with a lognormal or a Weibull distribution for Mb < 18
and an exponential distribution for Mb > 18. Therefore there is
a change point approximately at the 18th month and we deter-
mine an exponential distribution for h2(t). Fig. 5 summarizes
the results with showing rho versus Mb curves.

After determination of the change point, two phase hazard
rate function, consisting of Weibull and exponential distribu-
tions, can be constructed by using the following equation:

ho = I(t ≤ tc)
βtβ−1

ηβ
+ I(t > tc)λ (10)

where β and η are the shape and scale parameters of the Weibull
distribution h1(t), respectively. Additionally, λ is the hazard rate
of the exponential distribution h2(t). Plots of ho(t), h1(t), and

Table 6
Rho values for of different distributions for Board-F in backward direction.

Forward time span Exponential Lognormal Weibull Gamma

720 − 630 days (Mb = 21) 0.956 0.935 0.943 0.922

720 − 540 days (Mb = 18) 0.955 0.932 0.930 0.921

720 − 480 days (Mb = 16) 0.831 0.922 0.923 0.913

720 − 360 days (Mb = 12) 0.793 0.912 0.911 0.902

720 − 270 days (Mb = 9) 0.711 0.886 0.845 0.853

720 − 180 days (Mb = 6) 0.673 0.882 0.836 0.831

720 − 90 days (Mb = 3) 0.622 0.884 0.835 0.822

720 − 0 days (Mb = 0) 0.631 0.883 0.832 0.815

h2(t) for Board-B and Board-F are shown in Fig. 6 and Fig.
7, respectively. For comparison we also show single Weibull
distribution and kernel smoothed hazard rate curves.

Note that throughout this paper, we use “a day” as a unit
time interval. Correspondingly all values are derived using day
counts. For example, hazard rate values represent failure prob-
abilities in a day; similarly time to failure values are derived in
days. However, we sometimes present values in month or year
counts just for simplicity.

We successfully apply our method to our four different board
data sets. The change point and the distribution parameter val-
ues are given in Table 7. The average hazard rate values are
consistent with the expectations of the cooperated company that
is between 3 and 5 ppm. For all data sets, we determine the

Fig. 6. Hazard rate curves obtained with kernel smoothing, single Weibull
distribution, and Weibull-exponential scheme for Board-B.
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Fig. 7. Hazard rate curves obtained with kernel smoothing, single Weibull
distribution, and Weibull-exponential scheme for Board-F.

Table 7
Parameter and change point values obtained by the proposed method.

Board Name β η (days) λ (per day) tc (months)

Board-B 0.715 2.44 × 106 3.30 × 10−6 14

Board-E 0.436 1.60 × 109 2.00 × 10−6 5

Board-F 0.557 1.39 × 107 3.35 × 10−6 18

Board-K 0.491 1.54 × 103 8.00 × 10−5 6

change point from the backward analysis and we use Weibull
and exponential distributions for modelling. However, these
are not necessary and sufficient conditions. For different data
sets, the change point could be derived using the forward analy-
sis. Additionally, there can be seen different distributions rather
than Weibull and exponential distributions. We see these cases
when we apply our method to the heart transplant data set in the
following section.

3.2.1. Application to the heart transplant data set
Our method is suitable for right censored survival data which

is often encountered in reliability engineering and medical ap-
plications. After testing our method for the board data sets,
here we test it using a well-known heart transplant data. The
data has 184 samples and 113 of them are suspended; survival
time is 3695 days. Kernel smoothed hazard rate curve of the
data is given in Fig. 8. In the literature, the heart transplant data
is modelled with two different exponential distributions with
a change point. It has been found that the data has a change
point between 65 and 80 days with hazard rates (per day) being
approximately 0.004 (λ1) and 0.0004 (λ2) before and after the
change point, respectively [15, 18, 41, 42, 43]. Therefore the
hazard rate function, consisting of exponential and exponential
distributions, can be constructed by using the following equa-
tion:

ho = I(t ≤ tc)λ1 + I(t > tc)λ2. (11)

We perform our method to find the change point with select-
ing exponential-exponential hazard rate scheme. Since sample
size is relatively small, we use a RRE method to estimate distri-
bution parameters. We observe changes in hazard rate as well
as in rho values in forward and backward directions. Obtained
values for the forward and backward analysis are given in Table
8 and 9, respectively. Analysing the hazard rate values in Table
8, we see that they stand almost steady for the first 90 days and

Fig. 8. Kernel smoothed hazard rate curve of the Stanford heart transplant
data.

Table 8
Forward analysis of the heart transplant data.

Forward time window Hazard rate Rho

0-to-30 days 0.0040 0.979

0-to-60 days 0.0042 0.984

0-to-80 days 0.0042 0.976

0-to-90 days 0.0042 0.947

0-to-100 days 0.0040 0.945

0-to-110 days 0.0039 0.944

0-to-120 days 0.0036 0.944

0-to-150 days 0.0031 0.936

0-to-240 days 0.0023 0.926

0-to-3695 days 0.0007 0.916

Table 9
Backward analysis of the heart transplant data.

Backward time window Hazard rate λ (per day) Rho

180-to-3695 days 0.00022 0.940

120-to-3695 days 0.00028 0.951

70-to-3695 days 0.00028 0.961

60-to-3695 days 0.00036 0.912

50-to-3695 days 0.0004 0.931

0-to-3695 days 0.0007 0.916

then begin to slowly deviate from 0.0042. Additionally, rho val-
ues start to sharply decrease after 80 days. Therefore, we can
comment that the change point tc should be around 80 days. On
the other hand, the values in Table 9 do not give us a valuable
inference; there is no certain break-away point for the hazard
rate or the rho values.

As a result, we find the change point using the forward anal-
ysis in an expected range between 65 and 80 days. The rea-
son of the inefficiency of the backward data analysis is that for
this data set, in contrary to our board data sets, most of the
samples have TTF values larger than the change point. Note
that the survival time is 3695 days. Also note that we only use
an exponential-exponential hazard rate scheme considering the
same treatment in the related literature. However, using differ-
ent distributions as we did in the previous section would surely
give us additional inferences about the change point.
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4. Full warranty reliability prediction

We make a warranty forecasting with a new product’s field
data that is classified as long-term or short-term by applying the
forward and backward data analysis presented in the previous
section. If the analysis results in a change point that separates
early failure and useful life regions then we call the input data
as long-term data. If the analysis results in a single distribution,
no change point found, then we call the input data as short-term
data. For both data types, modelling is achieved using Weibull
and exponential distributions.

In case of having long-term data, reliability prediction is
achieved with an exponential distribution that is expected to
keep its validity until the end of the warranty period. To elu-
cidate this, we use n-month data of Board-B for which TTF
values in months are smaller than n. Of course, if n = 36 then
we have full warranty data for which, as previously found, the
change point tc is 14 months and the hazard rate λ after the
change point is 3.3×10−6 failures per day. Starting with n = 14
we increase n. For n ≥ 17 we can accurately determine the
values of tc and λ regarding that we have adequate number of
samples. If n = 17, λ = 4.2 × 10−6 is achieved. As expected
increasing n makes the predicted λ get closer to 3.3 × 10−6.
Fig. 9 shows an example for this when n = 20. Our prediction
shown with the dashed red curve covering the warranty period
of 20-to-36 months, performs well considering a slight devia-
tion from the blue curve that is obtained using the full warranty
data of 36 months. Here, our prediction method is quite simple
and straightforward, but we need to wait considerable amount
of time after a new product gets into the field. This underlines
the importance of using short-term data for early reliability pre-
diction.

In case of having short-term data, we use a framework that
connects the prior knowledge based on an old product with a
new one. We base our framework on a Weibull distribution
and its shape parameter β. We investigate how the β parameter
changes by increasing time to failure (TTF) values; we obtain
a time dependent two-parameter equation of β. This is thor-
oughly explained in the following section. In order to estimate
other parameters in the Weibull-exponential scheme that are the
change point, the Weibull η parameter, and the exponential λ
parameter, we use empirical findings and iteration methods.

Fig. 9. Comparison of the results obtained from 20-month and 36-month data
of Board-B. Using 20-month data: tc1 = 15, λ1 = 3.9 × 10−6; using 36-month
data: tc2 = 14, λ2 = 3.3 × 10−6.

4.1. Prediction of the Weibull β parameter with short-term data

Considering the fact that different versions of a product used
for a specific purpose share similar components and stress
mechanisms, valuable inferences for a new product’s reliabil-
ity can be achieved by analysing the reliability performance of
old products. In this regard, we classify products into families.
Products in the same family have same duties. For example,
electronic cards of coffee machines (as opposed to kettles) or
electronic cards of car engines (as opposed to truck engines)
fall into a same family. For a specific family, we first make a
mathematical model of the Weibull β parameter in time domain
using full warranty data of an old product. Then we predict a
new product’s reliability using the developed model and short-
term field data of a new product.

We use full warranty data of an old product to derive a time
dependent function of β. For this purpose, we find β values for
different subsets of the data, namely for different m values such
that TTF values less than or equal to m months. Starting with
m = 1, we increase m one by one. We find a β value for each m
value and fit the obtained β values using a logarithmic function:

β(t) = α × ln(ζ t) (12)

where t represents the duration of the product in field within its
warranty period. Additionally, ζ and α are defined as family
and product dependent parameters, respectively. Although we
prefer month counts for grouping the data, we use “a day” as a
unit time interval (as always in this paper). Therefore, the units
of t and ζ are “day” and “1/day”, respectively; α is unitless.

Using the full warranty data of an old product, we aim to find
the ζ parameter to be directly used for new products within the
same family. Whenever we have sufficient amount of data for
the new product, we can obtain the α parameter and predict the
new product’s β throughout its warranty period.

In order to elucidate the proposed β prediction method, we
apply it to our board data sets. While Board-B, Board-E, and
Board-F, used in washing machines, fall into a same family,
Board-K used in refrigerators comprises a different family. We
can select Board-B, Board-E, or Board-K as an old board since
they all have 36-month full warranty data. Table 10 shows β
values and corresponding sample sizes (number of failures) for
these data sets. We use an MLE method to obtain the β val-
ues. Fitting accuracy can be justified using log-likelihood val-
ues that are previously presented in Table 3 for Board-B. Simi-
lar results are achieved for Board-E and Board-K. After obtain-
ing the β values, we fit them using the logarithmic function in
Equation (12) to find the values of ζ and α. For this purpose, we
use a standard least square method; accuracy is evaluated with
root-mean-square error (RMSE) values. The obtained ζ, α, and
RMSE values are listed in Table 11. Examining the numbers,
we see that the ζ values are close for Board-B and Board-E
since these boards are in the same family. However, Board-K is
in a different family and as expectedly it has a quite different ζ
value.

We select Board-E as an old board with 36-month data and
aim to predict β values for Board-B, Board-F, and Board-K us-
ing their 3-month field data. The fitted β curve of Board-E is
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Table 10
β values & sample sizes for different m values for Board-B, Board-E, and
Board-K

Time Board-B Board-E Board-K

30 days (m = 1) 0.328 & 250 0.332 & 528 0.312 & 174

60 days (m = 2) 0.373 &408 0.369 & 835 0.362 & 370

90 days (m = 3) 0.421 & 538 0.381 & 1036 0.413 & 601

180 days (m = 6) 0.471 & 827 0.436 & 1656 0.496 & 1151

270 days (m = 9) 0.544 & 1170 0.489 & 2280 0.574 & 1697

360 days (m = 12) 0.613 & 1396 0.551 & 2845 0.667 & 2284

540 days (m = 18) 0.715 & 1669 0.648 & 3591 0.812 & 3184

720 days (m = 24) 0.775 & 1777 0.699 & 3941 0.901 & 3687

900 days (m = 30) 0.797 & 1812 0.588 & 4046 0.942 & 3880

1080 days (m = 36) 0.800 & 1849 0.588 & 4050 0.950 & 3936

Table 11
ζ, α, and RMSE values for for Board-B, Board-E, and Board-K

Board-B Board-E Board-K

ζ = 0.941 ζ = 0.922 ζ = 0.195

α = 0.110 α = 0.094 α = 0.143

RMSE= 0.0393 RMSE= 0.0652 RMSE= 0.0121

Fig. 10. β values and logarithmic curve fitting for Board-E.

shown in Fig. 10. The reason of selecting Board-E as an old
board is that it is the oldest board used in the field and it has the
largest data size. Indeed, selecting Board-B as an old board is
expected to give us similar results since it has almost the same
ζ value as shown in Table 11. However, we could not select
Board-K as an old board since it is the only member of its fam-
ily and can not be used for reliability prediction for the other
boards.

Using ζ = 0.922 for Board-E, we now have a β equation for
Board-B and Board-F as

β(t) = α × ln(0.922 t). (13)

Values of α for Board-B and Board-F are calculated directly
from their 3-month data, i.e., TTF ≤ 3 months since by the third
month there are usually an adequate number of records or sam-
ple sizes to perform an MLE method with reasonable likelihood
values. Parameter α is calculated for Board-B as 0.126 and for
Board-F as 0.188. Results are shown in Fig. 11 and Fig. 12.
In these figures, we compare predicted curves that are obtained
using 3-month data with discrete points representing β values

Fig. 11. Comparison of the predicted β curve and the obtained β values for
Board-B.

Fig. 12. Comparison of the predicted β curve and the obtained β values for
Board-F.

Fig. 13. Comparison of the predicted β curve and the obtained β values for
Board-K.

that are obtained using full warranty data. It is clear that there
is a good match between the predicted curves and the points.

An additional result that shows consistency of our method is
given in Fig. 13, which shows results for Board-K. The pre-
dicted curve of Board-K is obtained following the same pro-
cess used for other boards with the same value of ζ. There is a
substantial difference between real β values and the estimated
curve in Fig. 13. This happens mainly because Board-K is not
a member of the family of Board-B, Board-E, and Board-F.

4.2. Prediction of the Weibull-exponential scheme with short-
term data

To construct a Weibull-exponential hazard rate scheme of a
new product, along with the estimated β parameter we need
to find three more parameters that are the change point tc, the
Weibull scale parameter η, and the exponential rate parameter
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λ. Weibull and exponential hazard rate functions are shown
below.

ho(t) =

h1(t), t < tc
h2(t), t > tc

(14)

h1(t) = hw(t) =
β(tc)
η

(
t
η

)β(tc)−1 (15)

h2(t) = he(t) = λ (16)

To find the values of tc, η, and λ, we use the following three
equations. The subscripts op and w stand for old product and
warranty, respectively; tw is a warranty period which is 36
months in this study.

h1(tc) = h2(tc) = λ (17)

λ = λop (18)

1
tw − tc

∫ tw

tc

β(tw)
η

(
t
η

)β(tw)−1dt =

1
tw − tc−op

∫ tw

tc−op

βop(tw)
ηop

(
t
ηop

)βop(tw)−1dt
(19)

Equation (17) is a result of the inference that at time tc,
Weibull and exponential hazard rate values should be close to
each other. Therefore we assume that they are equal. Equa-
tion (18) and Equation (19) are based on our assumption that
products in the same family have a similar reliability perfor-
mance in their useful life region. More generally stating, al-
though different versions of a product might perform substan-
tially differently in their early failure region, they have almost
identical behaviour for their useful life region. Indeed, this is
a well-known assumption frequently used by reliability scien-
tist/engineers in the industry. We can justify it with our board
data sets, by considering the λ values for Board-B, Board-E,
and Board-F presented in Table 7; there is nearly a ±20% dis-
persion. Similarly, a dispersion of ±10% is seen for a different
product group [11].

In Equation (18), we assume that the λ value of a new product
is same as that of an old product. In Equation (19), by using a
Weibull distribution throughout the whole warranty period, we
assume that the average hazard rate value from the change point
to the end of the warranty of a new product is same as that of
an old product. With using equations (14) through (19) and
performing an empirical iteration, we find values of tc, η, and λ
of our board data sets as shown in Table 12. For Board-B and
Board-F, the predicted values, using 3-month warranty data, are
in consistent with the values obtained using full warranty data
in Table 7. However, the predicted values for Board-K are quite
different than the values in Table 7 since Board-K is not in not
a member of the family of Board-B, Board-E, and Board-F.

For further evaluation of our prediction method, Fig. 14 and
Fig. 15 are presented with predicted and real curves where solid
and dashed lines are used to model early failure and useful life

Table 12
Predicted values in the Weibull-exponential scheme using 3-month data. Note
that for all boards λ = λop = 2.4 × 10−6 (per day).

Board Name β η (days) tc (months)

Board-B 0.684 3.3 × 106 17

Board-F 0.6 8.1 × 106 20

Board-K 0.6 3.3 × 106 16

Fig. 14. Hazard rates for Board-B using 3-month and 36-month full warranty
data

Fig. 15. Hazard rates for Board-F using 3-month and 24-month data

regions, respectively. The figures confirm our method’s accu-
racy; predicted and real curves are satisfactorily matched with
slight differences between tc values (intersection of the solid
and dashed lines), curve shapes (determined by β), and aver-
age hazard rate values (determined by β and η). Note that our
prediction method is fundamentally based on our assumption
that products in the same family have a similar reliability per-
formance in their useful life region. Here, to predict η, one can
consider applying a similar procedure as we do for β, but this
is certainly not a good idea since η is a scale parameter repre-
senting the time when 63% of the products fail. Therefore, its
value is expected to highly fluctuate by changing a product type
and/or the field data duration.
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5. Merits, limitations, and future work

In this study, we aim to predict reliability performance of
high-volume electronic products throughout their warranty pe-
riod by using field return data. We construct our prediction
model on a Weibull-exponential hazard rate scheme by using
the proposed change point detection method. Conventional re-
liability prediction methods can only predict very near future
reliability of a product since they assume that failure mecha-
nisms of a product do not change. In this study, we propose a
new method to overcome this problem. The proposed method is
evaluated by using four different data sets corresponding to four
different boards. Warranty period of these boards is 3 years,
and we perform prediction by using their field data as short as
3 months. The predicted results from our method and the direct
results from the field return data matches well. This demon-
strates the accuracy of our model.

In developing our prediction methodology, we aim to keep
balance between its technical contribution and practicability.
As opposed to use purely statistical methods, we aim to com-
bine statistical, empirical, and engineering point of views that
results in applicability of our methodology to different products
not just limited to electronic products. However, we have three
main limitations. First, the product’s working environments and
stress levels should be satisfactorily steady. For example, con-
sider a vehicle engine/motor working in four seasons with a
temperature range from -20◦C to 20◦C. For this product we can
not use its short-term data corresponding to a winter season to
predict the product’s one-year reliability performance. We con-
sider this limitation and its solutions as a future work.

Second, in order to apply our β prediction method, the prod-
uct should have different parts/components having different β
values. Ideally, a specific component or a material is expected
to have its own constant β that is time independent. How-
ever, similarly for electronic products studied in this work, if
the product has several components having different β values
larger and smaller than 1 then we can apply our method. Third,
the product should have sufficient amount of field data to suc-
cessfully apply an MLE method for both change point detec-
tion and reliability prediction steps. In this regard, military and
aerospace products are not good candidates for our model. In-
deed, in general low sample sizes are problematic for reliability
statistics. To overcome this problem, different estimation meth-
ods including a Bayesian estimation method, can be integrated
into our model as a future work.
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