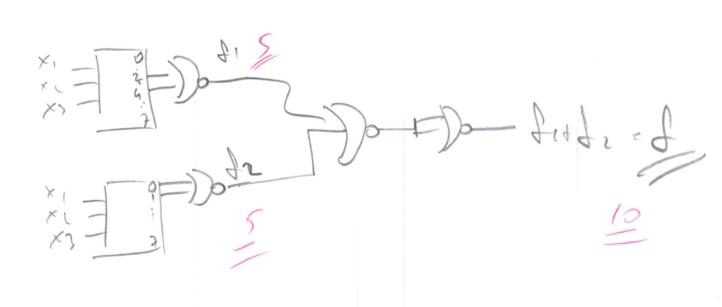
Student Name:

Student ID:

Date: 24/12/2021

EHB205E Introduction to Logic Design MIDTERM II

Duration: 120 Minutes

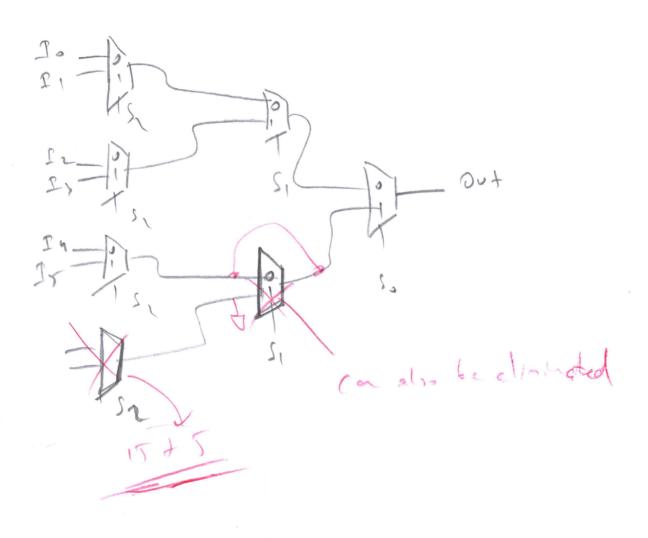

Grading: 1) 20%, 2) 20%, 3) 25%, 4) 35%

Exam is in closed-notes and closed-books format; calculators are allowed For your answers please use the space provided in the exam sheet GOOD LUCK!

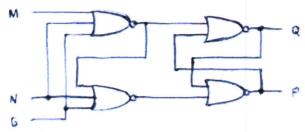
1) Consider Boolean functions $f_1(x_1, x_2, x_3) = \sum (0,1,3,5,6,7)$ and $f_2(x_4, x_5, x_6) = \sum (2,3,4,5,6,7)$. Implement $f = f_1 + f_2$ using two 3-to-8 decoders and minimal number of two-input NOR gates.

JI = TI (2,4)

f2= TI (0,1)

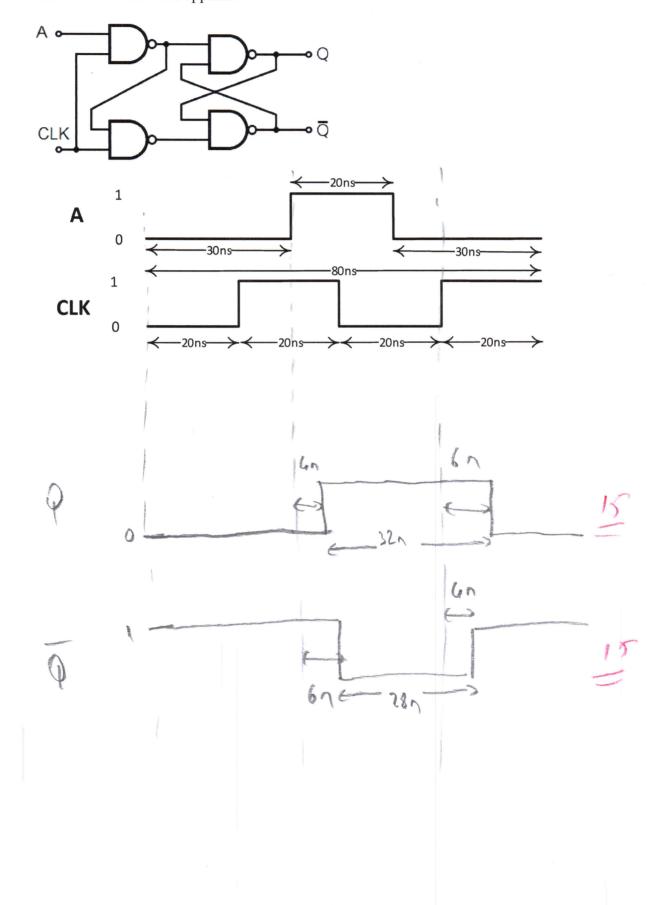

2) Consider a 6-to-1 multiplexer having inputs I₀, I₁, I₂, I₃, I₄, I₅; select input S₀, S₁, S₂; and the output OUT.

If $(S_0, S_1, S_2) = (0,0,0)$ then OUT= I_0 ; If $(S_0,S_1,S_2) = (0,0,1)$ then OUT= I_1 ; If $(S_0,S_1,S_2) = (0,1,0)$ then OUT= I_2 ;


If $(S_0,S_1,S_2) = (0,1,1)$ then OUT= I_3 ;

If $(S_0,S_1,S_2) = (1,0,0)$ then OUT= I₄; If $(S_0,S_1,S_2) = (1,0,1)$ then OUT= I_5 .

Implement this 6-to-1 multiplexer multiplier using minimal number of 2-to-1 multiplexers.



3) Consider a sequential circuit shown below.

- a) For which input values of M, N, and G, outputs P and Q hold their previous values?
- b) Obtain a minimal sum-of-products (SOP) expressions for P and Q in terms of M, N, and G as well as the previous values of P and Q.

4) Consider a flip-flop consisting of four NAND gates, shown below. Suppose that each of the NAND gates has a delay of 2ns. Suppose that initial values of Q and Q' are 0 and 1, respectively. Sketch the waveforms at the outputs Q and Q' if the input signals A and CLK shown below are applied.

