Student ID:

Date: 5/11/2021

EHB 205E: Introduction to Logic Design
 Quiz 1

Duration: 45 Minutes
Grading: 1) 20%, 2) 40%, 3) 40%,
Quiz is in closed-notes and closed-books format
For your answers please use the space provided in the exam sheet
GOOD LUCK!

1. Answer the following statements with T (true) or F (false) only.
(do not guess: points are deducted for wrong answers. If you do not know the answer, leave it blank)
a) \qquad Finite decimal fraction can be always converted to finite binary fraction
b) \qquad Finite hexadecimal fraction can be always converted to finite binary fraction
c) \qquad (The population of Burundi was below 1 million in 2013) NAND (banana is tastier than apple)
d) ___ A circuit performing a binary addition of two n-bit numbers needs n outputs.
e) \qquad A circuit performing a binary multiplication of two n-bit numbers needs $2 n$ outputs.
2. Consider a 4 -variable Boolean function $\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}\right)=\sum(1,3,4,5,9,11,12,13,14,15) ; \boldsymbol{x}_{\mathbf{1}}$ is the most significant bit. Obtain a minimal sum-of-products (SOP) expression for f using a Karnaugh map. Show all prime and essential prime implicants.
3. Obtain a minimal sum-of-products (SOP) expression for \boldsymbol{f} using a Karnaugh map.

$$
f=\frac{1}{x_{1} \overline{x_{2}} \overline{x_{3}}+x_{1} \overline{x_{2}} \overline{\overline{x_{4}}}+\overline{x_{1}} x_{2} x_{3} \overline{\overline{x_{4}}}+\overline{x_{1}} x_{2} \overline{x_{3}} x_{4}}
$$

