Araştırma

From The Emerging Circuits and Computation Group at ITU
(Difference between revisions)
Jump to: navigation, search
(41 intermediate revisions by one user not shown)
Line 1: Line 1:
 
Araştırmalarımızın amacı, elektronik devre ve sistemler için hesaplama, devre tasarımı ve güvenilirlik konularında yeni yaklaşımlar geliştirmektir. Araştırmalarımız temelde yeni ve gelişen teknolojileri ve hesaplama düzenlerini hedef almaktadır.
 
Araştırmalarımızın amacı, elektronik devre ve sistemler için hesaplama, devre tasarımı ve güvenilirlik konularında yeni yaklaşımlar geliştirmektir. Araştırmalarımız temelde yeni ve gelişen teknolojileri ve hesaplama düzenlerini hedef almaktadır.
 +
Aşağıda en yeniden en eskiye ve önem sırasına göre sıralanan araştırma konuları yer almaktadır. Her konu kısaca anlatılmış ve ilgili yayın ve projeler eklenmiştir.
  
 
<div style="float:center; font-size:110%; font-weight:bold; clear:both; padding:0; margin:0.0em;">__TOC__</div>
 
<div style="float:center; font-size:110%; font-weight:bold; clear:both; padding:0; margin:0.0em;">__TOC__</div>
Line 12: Line 13:
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
  
Nano-çaprazlayıcı dizinler gelecekte CMOS'un yerini alabilecek önemli teknolojilerden biridir. Nano dizinler düzenli ve sık yapılardır; üretimlerinde CMOS'tan farklı olarak sadece litografi gibi karmaşık yöntemler kullanılmaz; Bunun  yanı sıra kendiliğinden üretime (self-assembly) dayanan teknikler de kullanılır. Günümüzde nano dizinler, her bir çaprazlayıcısı (crosspoint) diyot, FET veya anahtar olarak çalışacak şekilde üretilebilmekte ve bu da bu geleneksel devre elemanları için geliştirilmiş olan devre tasarım tekniklerini kullanmamıza olanak sağlamaktadır. Buradan yola çıkarak, nano ahtarlamalı dizinler için komple bir sentez ve performans optimizasyon metodolojisi geliştirmeyi hedefliyoruz. Çalışmalarımızın yeni gelişen CMOS sonrası bilgisayarların gerçeklenmesinde önemli bir gelişme olacağını düşünüyoruz.
+
Nano-çaprazlayıcı dizinler yakın gelecekte CMOS'un yerini alacak güçlü bir aday teknoloji olarak ortaya çıkmıştır. Düzenli ve sık yapıdadırlar. Dizinler ile hesaplama, iki-uçlu ya da dört-uçlu anahtarlar gibi davranan çaprazlama noktaları ile elde edilir. Kullanılan teknolojiye bağlı olarak, iki-uçlu bir anahtar, diyot, direnç/memristor veya FET gibi davranır. Öte yandan, dört-uçlu anahtarın tek bir davranışı vardır. İki-uçlu anahtar tabanlı dizinler için önerilen birçok farklı teknoloji olmasına rağmen, dört-uçlu anahtar tabanlı dizinler, anahtarlamalı kafesler, için teknoloji geliştirme yakın zamanda başlamıştır.
  
 +
Hem iki-uçlu hem de dört-uçlu anahtar tabanlı dizinler için, ortaya çıkacak bir nano bilgisayarın tasarımı ve yapımı için tam bir sentez ve performans optimizasyon metodolojisi geliştirmeyi hedefliyoruz. Ayrıca, özellikle anahtarlamalı kafesleri gerçeklemek için CMOS uyumlu teknolojiler geliştirmeyi hedefliyoruz.
  
[[Image:Research-nanoarray_tr-1.png|center|none|800px|link=]]
+
[[Image:arastirma_nano-2019.png|center|none|800px|link=]]
  
 
<h3>
 
<h3>
Sentez</h3>
+
Teknoloji Geliştirme</h3>
'''Boolean fonksiyonları''' diyot, FET ve dört-uçlu anahtar tabanlı nano dizinler ile gerçekledik ve dizin boyut formülleri elde ettik. Buna ek olarak, dört-uçlu anahtarlardan oluşan dizinleri '''optimum''' sentezleyen bir algoritma geliştirdik.  
+
 
 +
Dört-uçlu anahtar tabanlı bir dizin, iki-uçlu anahtarlara kıyasla, anahtar sayısı bakımından '''önemli bir alan avantajı''' sunsa da, teknoloji seviyesinde gerçekleştirilmesi henüz net olarak cevaplanmamıştır. Bu ihtiyacı karşılamak için ilk olarak, üç boyutlu teknoloji bilgisayar destekli tasarım (TCAD) simülasyonları kullanarak, '''dört-uçlu anahtarların doğrudan CMOS teknolojisi ile gerçeklenebileceğini gösterdik'''. Bu amaçla farklı yarı iletken malzemelerini farklı geometrik şekillerde denedik. Ardından, TCAD simülasyon verilerini standart CMOS akım-gerilim denklemlerine uyarlayarak, dört-uçlu bir anahtarın Spice modelini geliştirdik. Son olarak, '''Spice devre simülasyonlarını farklı ebatlardaki dört-uçlu anahtarlarda başarıyla uyguladık'''.
 +
 
 +
[[Image:arastirma_lattice_technology.png|center|none|800px|link=]]
 +
 
 +
<h3>
 +
Performans Optimizasyonu</h3>
 +
 
 +
Memristor tabanlı dizinleri de içeren nano anahtarlamalı dizinlerin optimizasyonu üzerine çalışıyoruz. Dizilerin '''alan, gecikme ve güç maliyetlerini dikkate alarak hataya dayanıklı lojik sentez algoritmaları''' önerdik.
  
<!--[[Image:Arastirma-1.png|center|none|800px|link=]] -->
 
 
<h3>
 
<h3>
 
Hata Toleransı</h3>
 
Hata Toleransı</h3>
Line 27: Line 36:
 
Yeniden ayarlanabilir nano dizinlerde oluşan '''açık ve kapalı hataları''' inceledik. '''Kalıcı''' hatalar için, sıralama, geri-izleme ve satır eşleştirme tekniklerini kullanan hızlı bir buluşsal algoritma geliştirdik. '''Yumuşak/geçici''' hatalar için,  tolere edilebilir bütün hata yerlerini yinelemeli bir teknik kullanarak belirledik.
 
Yeniden ayarlanabilir nano dizinlerde oluşan '''açık ve kapalı hataları''' inceledik. '''Kalıcı''' hatalar için, sıralama, geri-izleme ve satır eşleştirme tekniklerini kullanan hızlı bir buluşsal algoritma geliştirdik. '''Yumuşak/geçici''' hatalar için,  tolere edilebilir bütün hata yerlerini yinelemeli bir teknik kullanarak belirledik.
  
 +
<h3>
 +
Sentez</h3>
 +
'''Boolean fonksiyonları''' diyot, FET ve dört-uçlu anahtar tabanlı nano dizinler ile gerçekledik ve dizin boyut formülleri elde ettik. Buna ek olarak, dört-uçlu anahtarlardan oluşan dizinleri '''optimum''' sentezleyen bir algoritma geliştirdik.
 +
 +
<!--[[Image:Arastirma-1.png|center|none|800px|link=]] -->
 
<!--[[Image:Arastirma-2.png|center|none|800px|link=]] -->
 
<!--[[Image:Arastirma-2.png|center|none|800px|link=]] -->
 
<!--        YAYIN      -->
 
<!--        YAYIN      -->
Line 42: Line 56:
  
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 +
 
|
 
|
 
{|
 
{|
 
|- valign=top
 
|- valign=top
 
| width="100" |'''başlık''':
 
| width="100" |'''başlık''':
| width="450"|[[Media:Tunali_Altun_Permanent_and_Transient_Fault_Tolerance_for_Reconfigurable_Nano-Crossbar_Arrays.pdf | Permanent and Transient Fault Tolerance for Reconfigurable Nano-Crossbar Arrays]]
+
| width="450"|[[Media: Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pdf| Realization of Four-Terminal Switching Lattices: Technology Development and Circuit Modeling]]
 +
|- valign="top"
 +
| '''yazarlar''':
 +
| width="450"| Dan Alexandrescu, Serzat Safaltin, Oguz Gencer, Ceylan Morgul, Levent Aksoy, Sebahattin Gurmen, Csaba Andras Moritz ve [[Mustafa Altun]]
 +
|- valign=top
 +
| '''bildiri''':
 +
| [http://www.date-conference.com/ Design, Automation and Test in Europe (DATE)], Florence, Italy, 2019.
 +
|}
 +
 
 +
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/2/2c/Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pdf]]</span>
 +
<br>
 +
[[Media:Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pdf | Yayın]]
 +
| align="center" width="70" |
 +
<span class="plainlinks">
 +
 
 +
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/7/71/Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pptx]]
 +
</span>
 +
<br> [http://www.ecc.itu.edu.tr/images/7/71/Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pptx Sunum]
 +
|}
 +
 
 +
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 +
|
 +
{|
 +
|- valign=top
 +
| width="100" |'''başlık''':
 +
| width="450"|[[Media:Tunali_Morgul_Altun_Defect_Tolerant_Memristor_Crossbars.pdf | Defect Tolerant Logic Synthesis for Memristor Crossbars with Performance Evaluation]]
 
|- valign="top"
 
|- valign="top"
 
| '''yazarlar''':
 
| '''yazarlar''':
Line 52: Line 94:
 
|- valign="top"
 
|- valign="top"
 
| '''makale''':
 
| '''makale''':
| width="450" | [http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems], Vol. 36, Issue 5, pp. 747–760, 2017.
+
| width="450" | [http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=40 IEEE Micro], Vol. 38, Issue 5, pp. 22&ndash;31, 2018.
 
|- valign="top"
 
|- valign="top"
 
| '''bildiri''':
 
| '''bildiri''':
| [http://www.nanoarch.org/ IEEE/ACM International Symposium on Nanoscale Architectures<br> (NANOARCH)], Boston, USA, 2015.
+
| [http://www.date-conference.com/ Design, Automation and Test in Europe (DATE)], Dresden, Germany, 2018.
 
|}
 
|}
 
| align=center width="70" |
 
| align=center width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/c/cc/Tunali_Altun_Permanent_and_Transient_Fault_Tolerance_for_Reconfigurable_Nano-Crossbar_Arrays.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/d/db/Tunali_Morgul_Altun_Defect_Tolerant_Memristor_Crossbars.pdf]]</span>
 
<br>
 
<br>
[[Media:Tunali_Altun_Permanent_and_Transient_Fault_Tolerance_for_Reconfigurable_Nano-Crossbar_Arrays.pdf | Yayın]]
+
[[Media:Tunali_Morgul_Altun_Defect_Tolerant_Memristor_Crossbars.pdf| Yayın]]
 
| align="center" width="70" |
 
| align="center" width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
  
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/f/f9/Tunali_Altun_Defect_Tolerance_in_Diode_FET_and_Four-Terminal_Switch_based_Nano-Crossbar_Arrays.pptx]]
+
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/b/b8/Tunali_Altun_Logic_Synthesis_and_Defect_Tolerance_for_Memristive_Crossbars.pptx]]
 
</span>
 
</span>
<br> [http://www.ecc.itu.edu.tr/images/f/f9/Tunali_Altun_Defect_Tolerance_in_Diode_FET_and_Four-Terminal_Switch_based_Nano-Crossbar_Arrays.pptx Sunum]
+
<br> [http://www.ecc.itu.edu.tr/images/b/b8/Tunali_Altun_Logic_Synthesis_and_Defect_Tolerance_for_Memristive_Crossbars.pptx Sunum]
 
|}
 
|}
  
Line 76: Line 118:
 
|- valign=top
 
|- valign=top
 
| width="100" |'''başlık''':
 
| width="100" |'''başlık''':
| width="450"|[[Media:Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer.pdf | Synthesis and Performance Optimization of a Switching Nano-crossbar Computer]]
+
| width="450"|[[Media:Altun_EtAl_Synthesis_and_Testing_for_Switching_Nano_Crossbar_Arrays.pdf | Logic Synthesis and Testing Techniques for Switching Nano-Crossbar Arrays]]
 
|- valign="top"
 
|- valign="top"
 
| '''yazarlar''':
 
| '''yazarlar''':
| Dan Alexandrescu, [[Mustafa Altun]], Lorena Anghel, Anna Bernasconi,<br> Valentina Ciriani ve Mehdi Tahoori
+
| Dan Alexandrescu, [[Mustafa Altun]], Lorena Anghel, Anna Bernasconi,<br> Valentina Ciriani, Luca Frontini ve Mehdi Tahoori
 +
|- valign="top"
 +
| '''makale''':
 +
| width="450" | [http://www.journals.elsevier.com/microprocessors-and-microsystems/ Microprocessors and Microsystems], Vol. 54, pp. 14&ndash;25, 2017.
 
|- valign=top
 
|- valign=top
 
| '''bildiri''':
 
| '''bildiri''':
Line 87: Line 132:
 
| align=center width="70" |
 
| align=center width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/a/ab/Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/0/0a/Altun_EtAl_Synthesis_and_Testing_for_Switching_Nano_Crossbar_Arrays.pdf]]</span>
 
<br>
 
<br>
[[Media:Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer.pdf | Yayın]]
+
[[Media:Altun_EtAl_Synthesis_and_Testing_for_Switching_Nano_Crossbar_Arrays.pdf | Yayın]]
 
| align="center" width="70" |
 
| align="center" width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
Line 98: Line 143:
 
|}
 
|}
  
 +
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 +
|
 +
{|
 +
|- valign=top
 +
| width="100" |'''başlık''':
 +
| width="450"|[[Media:Tunali_Altun_Permanent_and_Transient_Fault_Tolerance_for_Reconfigurable_Nano-Crossbar_Arrays.pdf | Permanent and Transient Fault Tolerance for Reconfigurable Nano-Crossbar Arrays]]
 +
|- valign="top"
 +
| '''yazarlar''':
 +
| Onur Tunali ve [[Mustafa Altun]]
 +
|- valign="top"
 +
| '''makale''':
 +
| width="450" | [http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems], Vol. 36, Issue 5, pp. 747&ndash;760, 2017.
 +
|- valign="top"
 +
| '''bildiri''':
 +
| [http://www.nanoarch.org/ IEEE/ACM International Symposium on Nanoscale Architectures<br> (NANOARCH)], Boston, USA, 2015.
 +
|}
 +
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/c/cc/Tunali_Altun_Permanent_and_Transient_Fault_Tolerance_for_Reconfigurable_Nano-Crossbar_Arrays.pdf]]</span>
 +
<br>
 +
[[Media:Tunali_Altun_Permanent_and_Transient_Fault_Tolerance_for_Reconfigurable_Nano-Crossbar_Arrays.pdf | Yayın]]
 +
| align="center" width="70" |
 +
<span class="plainlinks">
 +
 +
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/f/f9/Tunali_Altun_Defect_Tolerance_in_Diode_FET_and_Four-Terminal_Switch_based_Nano-Crossbar_Arrays.pptx]]
 +
</span>
 +
<br> [http://www.ecc.itu.edu.tr/images/f/f9/Tunali_Altun_Defect_Tolerance_in_Diode_FET_and_Four-Terminal_Switch_based_Nano-Crossbar_Arrays.pptx Sunum]
 +
|}
 +
 +
<!--
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
  
Line 127: Line 202:
 
<br> [http://www.ecc.itu.edu.tr/images/2/28/Altun_Riedel_Lattice-Based_Computation_of_Boolean_Functions.ppt Sunum]
 
<br> [http://www.ecc.itu.edu.tr/images/2/28/Altun_Riedel_Lattice-Based_Computation_of_Boolean_Functions.ppt Sunum]
 
|}
 
|}
 
+
-->
 
|}
 
|}
 
| style="border:1px solid transparent;" |
 
| style="border:1px solid transparent;" |
Line 139: Line 214:
 
|- valign=top
 
|- valign=top
 
| width="696" |'''Proje Desteği'''
 
| width="696" |'''Proje Desteği'''
 +
|}
 +
 +
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
 +
 +
|
 +
{|
 +
|- valign="top"
 +
| width="140" |'''başlık''':
 +
| width="558"|Anahtarlamalı Kafesler ile Hesaplama: Teknoloji Geliştirme, Eleman Modelleme ve Devre Tasarımı
 +
|- valign="top"
 +
| '''kurum & program''':
 +
| [http://www.tubitak.gov.tr/tr/kurumsal/uluslararasi/ikili-proje-destekleri/2501/icerik-2501-abd-ulusal-bilim-vakfi-nsf-ile-ikili-isbirligi-programi?country_id=mailto:iletisim%40tubitak.gov.tr TUBITAK-NSF İkili İşbirliği Programı (2501)]
 +
|- valign="top"
 +
| '''bütçe''':
 +
| 720.000 TL
 +
|- valign="top"
 +
| '''süre''':
 +
| 2019-2022
 +
|}
 +
{| style="margin-left: auto; margin-right: 0px; border:0.1px solid #abd5ff; background:#f1f5fc; padding:0.2em 0em;"
 +
|- valign="top"
 +
| width="140" |'''proje hedefi''':
 +
| width="558"| Anahtarlamalı kafes yapılarına dayanan, CMOS uyumlu, ve geleneksel CMOS devrelerine göre çok daha düşük alan kaplayan yeni bir teknoloji geliştirmek ve geliştirilen teknoloji için eksiksiz bir elektronik tasarım otomasyon (Electronic Design Automation – EDA) metodolojisi sunmak.
 +
 +
|}
 
|}
 
|}
  
Line 158: Line 258:
 
| 2015-2019
 
| 2015-2019
 
|}
 
|}
+
{| style="margin-left: auto; margin-right: 0px; border:0.1px solid #abd5ff; background:#f1f5fc; padding:0.2em 0em;"
 +
|- valign="top"
 +
| width="140" |'''proje hedefi''':
 +
| width="558"| Nano-çaprazlayıcı dizinler için komple bir sentez metodolojisi geliştirmek ve basit bilgisayarlar olan durum makineleri gerçeklemek.
 +
 
 +
|}
 
|}
 
|}
  
Line 167: Line 272:
 
|- valign=top
 
|- valign=top
 
| width="140" |'''başlık''':
 
| width="140" |'''başlık''':
| width="558"|Nano Anahtarlamalı Dizinlerin Sentezi ve Güvenilirlik analizi
+
| width="558"|Nano Anahtarlamalı Dizinlerin Sentezi ve Güvenilirlik Analizi
 
|- valign="top"
 
|- valign="top"
 
| '''kurum & program''':
 
| '''kurum & program''':
Line 173: Line 278:
 
|- valign="top"
 
|- valign="top"
 
| '''bütçe''':
 
| '''bütçe''':
| 189.509 TL
+
| 190.000 TL
 
|- valign="top"
 
|- valign="top"
 
| '''süre''':
 
| '''süre''':
| 2014-2017
+
| 2014-2017, ''tamamlandı''
 
|}
 
|}
+
{| style="margin-left: auto; margin-right: 0px; border:0.1px solid #abd5ff; background:#f1f5fc; padding:0.2em 0em;"
 +
|- valign="top"
 +
| width="140" |'''proje hedefi''':
 +
| width="558"| Nano-çaprazlayıcı dizinler için lojik sentezi, hata toleransı ve performans optimizasyonu yapmak.
 +
 
 +
|}
 
|}
 
|}
  
Line 191: Line 301:
 
|-
 
|-
 
| colspan="2" style="background:#8FBCBF; text-align:center; padding:1px; border-bottom:1px #8FBCBF solid;" |
 
| colspan="2" style="background:#8FBCBF; text-align:center; padding:1px; border-bottom:1px #8FBCBF solid;" |
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Tersinir Devre Tasarımı </h2>
+
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Tersinir Hesaplama</h2>
 
|-
 
|-
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
  
Geleneksel lojik kapıların aksine, tersinir lojik kapılarda “don’t-care” durumları olmaz. Tersinir devrelerde herhangi bir düğümde oluşan bir hata her zaman çıkışta gözlemlenir ve bu da hatanın tespiti ve düzeltilmesinde önemli bir fırsat sunar. Buradan yola çıkarak ve parite-korunumlu lojik ve Hamming kodlarından yararlanarak hata toleranslı devre blokları gerçekledik. Amacımız, yüksek doğruluk ve güvenilirlik gerektiren uçak-uzay sistemlerinde, askeri ve tıbbi uygulamalarda kullanılmak üzere hata farkındalıklı 8-bitlik bir tersinir mikroişlemciyi tasarlamak, ürettirmek ve testlerini yapmaktır.  
+
Geleneksel CMOS devrelerinden farklı olarak, tersinir devreler gizli hatalara sahip değildir, bu nedenle dahili devre düğümlerinde meydana gelen hatalar her zaman çıkışta bir hataya neden olur. Bu, çevrimiçi veya eşzamanlı hata toleransı için eşsiz bir özelliktir. Bu durumdan hareketle, tersinir hesaplamayı kullanarak hataya dayanıklı CMOS devre blokları gerçekliyoruz. Öncelikle tersinir kapılarla tersinir devreler sentezliyoruz; sonra onları hataya dayanıklı hale getiriyoruz; ve son olarak tersinir kapılardan CMOS kapılara dönüşümü yapıyoruz.
 +
 
 +
[[Image:Research-reversible_tr-3.png|center|none|800px|link=]]
  
[[Image:Research-reversible_tr-1.png|center|none|800px|link=]]
 
 
<h3>
 
<h3>
Sentez ve Optimizasyon</h3>
+
 
 +
Mükemmel Hata Tespiti</h3>
 +
 
 +
Tersinir hesaplamadan yararlanarak % '''100 çevrimiçi veya eşzamanlı hata tespitine sahip CMOS devreleri''' sentezledik. Bu amaç için tersinir parite korunumlu bir kapı kütüphanesi önerdik.
 +
<!-- <h3>
 +
 
 +
Sentez</h3>
  
 
Tersinir Boolean fonksiyonları kuantum kapılar ile gerçekleyen hızlı bir algoritma önerdik. Önerdiğimiz algoritma, her bir fonksiyon için zaman alıcı bir arama yapmak yerine '''temel fonksiyonları''' kullanmaktadır ve sonrasında '''sıralama''' yapmaktadır. Örnek vermek gerekirse, toplamda 20922789888000 fonksiyonun olduğu 4 bit devrelerdeki temel fonksiyon sayısı yalnızca 120'dir. Buna ek olarak, komşu kapı çiftlerini göz önüne alarak '''tersinir ve kuantum devre masraflarını''' optimize ettik.
 
Tersinir Boolean fonksiyonları kuantum kapılar ile gerçekleyen hızlı bir algoritma önerdik. Önerdiğimiz algoritma, her bir fonksiyon için zaman alıcı bir arama yapmak yerine '''temel fonksiyonları''' kullanmaktadır ve sonrasında '''sıralama''' yapmaktadır. Örnek vermek gerekirse, toplamda 20922789888000 fonksiyonun olduğu 4 bit devrelerdeki temel fonksiyon sayısı yalnızca 120'dir. Buna ek olarak, komşu kapı çiftlerini göz önüne alarak '''tersinir ve kuantum devre masraflarını''' optimize ettik.
 +
-->
 +
<h3>
 +
 +
Çevrimiçi Hata Tespiti ve Düzeltme </h3>
 +
 +
Çoklu kontrol Toffoli kapılarını kullanarak tersine çevrilebilir bir devrede hataya dayanıklı hale getirmek için iki teknik geliştiriyoruz. İlk
 +
olarak, '''tek parite korumasına dayanan''' ve çıktıdaki tek sayıdaki hataları tespit edebilen bir teknik geliştirdik. İkinci teknik ise '''Hamming kodları''' üzerine inşa edilen bir hata düzeltme tekniğidir. Aynı zamanda, Fredkin kapısı gibi korunumlu tersinir kapılarla mükemmel hata tespitinin mümkün olduğunu gösterdik. Bir sonraki adım olarak, önerilen '''tersinir devreleri geleneksel CMOS kapılarından oluşan devrelere''' dönüştürdük.
  
 
<!--  [[Image:Arastirma-4.png|center|none|800px|link=]]  -->
 
<!--  [[Image:Arastirma-4.png|center|none|800px|link=]]  -->
Line 216: Line 340:
 
| width="696" |'''Seçilmiş Yayınlar'''
 
| width="696" |'''Seçilmiş Yayınlar'''
 
|}
 
|}
 +
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 +
 +
|
 +
{|
 +
|- valign=top
 +
| width="100" |'''başlık''':
 +
| width="450"|[[Media:Parvin_Altun_CMOS_Fault_Tolerance_with_Preservative_Reversible_Gates.pdf | Implementation of CMOS Logic Circuits with Perfect Fault Detection Using Preservative Reversible Gates]]
 +
|- valign="top"
 +
| '''yazarlar''':
 +
| Sajjad Parvin ve [[Mustafa Altun]]
 +
|- valign=top
 +
| '''bildiri''':
 +
| width="450"| [http://tima.univ-grenoble-alpes.fr/conferences/iolts/iolts19/ IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS)], Rhodes Island, Greece, 2019.
 +
|}
 +
 +
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/e/ee/Parvin_Altun_CMOS_Fault_Tolerance_with_Preservative_Reversible_Gates.pdf]]</span>
 +
<br>
 +
[[Media:Parvin_Altun_CMOS_Fault_Tolerance_with_Preservative_Reversible_Gates.pdf | Yayın]]
 +
| align="center" width="70" |
 +
<span class="plainlinks">
 +
 +
[[File:PPT.jpg|60px|link=]]
 +
</span>
 +
<br> Sunum
 +
|}
 +
 +
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 +
|
 +
{|
 +
|- valign=top
 +
| width="100" |'''başlık''':
 +
| width="524"|[[Media:Altun_Parvin_Cilasun_Exploiting_Reversible_Computing_for_CMOS_Fault_Tolerance.pdf| Exploiting Reversible Computing for Latent-Fault-Free Error Detecting/Correcting CMOS Circuits
 +
]]
 +
|- valign="top"
 +
| '''yazarlar''':
 +
| [[Mustafa Altun]], Sajjad Parvin, and Husrev Cilasun
 +
|- valign="top"
 +
| '''makale''':
 +
| width="524" | [http://ieeeaccess.ieee.org/ IEEE Access], Vol. 6, pp. 74475&ndash;74484, 2018.
 +
|}
 +
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/7/7d/Altun_Parvin_Cilasun_Exploiting_Reversible_Computing_for_CMOS_Fault_Tolerance.pdf]]</span>
 +
<br>
 +
[[Media:Altun_Parvin_Cilasun_Exploiting_Reversible_Computing_for_CMOS_Fault_Tolerance.pdf | Yayın]]
 +
|}
 +
<!-- {| style="border:1px solid #abd5f5; background:#f1f5fc;"
  
 
|
 
|
Line 228: Line 401:
 
|- valign="top"
 
|- valign="top"
 
| '''makale''':
 
| '''makale''':
| width="450"| [http://www.oldcitypublishing.com/journals/mvlsc-home/ Journal of Multiple-Valued Logic and Soft Computing], Vol. 29, Issue 1-2, pp. 1–23, 2017.
+
| width="450"| [http://www.oldcitypublishing.com/journals/mvlsc-home/ Journal of Multiple-Valued Logic and Soft Computing], Vol. 29, Issue 1-2, pp. 1&ndash;23, 2017.
 
|- valign="top"
 
|- valign="top"
 
| '''bildiri''':
 
| '''bildiri''':
Line 245: Line 418:
 
<br> [http://www.ecc.itu.edu.tr/images/d/d0/Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pptx Sunum]
 
<br> [http://www.ecc.itu.edu.tr/images/d/d0/Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pptx Sunum]
 
|}
 
|}
 
+
-->
 
|}
 
|}
  
Line 266: Line 439:
 
|- valign="top"
 
|- valign="top"
 
| width="140" |'''başlık''':
 
| width="140" |'''başlık''':
| width="558"| Hata farkındalıklı 8-bitlik bir tersinir mikroişlemci gerçeklemesi
+
| width="558"| Hata Farkındalıklı 8-bitlik bir Tersinir Mikroişlemci Gerçeklemesi
 
|- valign="top"
 
|- valign="top"
 
| '''kurum & program''':
 
| '''kurum & program''':
Line 275: Line 448:
 
|- valign="top"
 
|- valign="top"
 
| '''süre''':
 
| '''süre''':
| 2016-2017
+
| 2016-2017, ''tamamlandı''
 
|}
 
|}
+
{| style="margin-left: auto; margin-right: 0px; border:0.1px solid #abd5ff; background:#f1f5fc; padding:0.2em 0em;"
 +
|- valign="top"
 +
| width="140" |'''proje hedefi''':
 +
| width="558"| Çevrimiçi hataları tespit edebilen tersinir devreleri ve bunların CMOS devre karşılıklarını gerçeklemek.
 +
 
 +
|}
 
|}
 
|}
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
+
<!--{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
  
 
|
 
|
Line 294: Line 472:
 
|}
 
|}
 
   
 
   
|}
+
|}-->
  
 
|}
 
|}
Line 310: Line 488:
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
  
<h3>
+
Rastgele veya Binom dağılımlı bit katarlarını işleyen yeni bir hesaplama paradigması “'''Bit Stream Computing (BSC)'''” önerdik. Önerilen paradigma, '''stokastik mantığın alan avantajından ve geleneksel ikili mantığın doğruluk avantajından faydalanmaktadır'''. Asenkron veya senkron olarak sınıflandırılmış tam ve yarı doğru aritmetik çarpıcı ve toplayıcı devreler gerçekledik. Bu çalışmanın, geleneksel ikili ve geleneksel stokastik hesaplama tekniklerine alternatif sunarak '''yeni ufuklar''' açtığına inanıyoruz.
 +
<!-- <h3>
 
Yüksek Doğruluklu Aritmetik Gerçeklemeler</h3>
 
Yüksek Doğruluklu Aritmetik Gerçeklemeler</h3>
  
 
Stokastik hesaplamanın en önemli sorunu '''düşük doğruluk''' veya bununla ilişkili olarak '''uzun hesaplama süreleridir'''. Bu soruna, bit katarlarını geri besleme mekanizmalarının da yardımıyla manipüle ederek bir çözüm bulduk. Alan, gecikme ve doğruluk parametrelerini göz önüne alarak hatasız çalışan toplayıcı ve çarpıcı devreler gerçekledik.  
 
Stokastik hesaplamanın en önemli sorunu '''düşük doğruluk''' veya bununla ilişkili olarak '''uzun hesaplama süreleridir'''. Bu soruna, bit katarlarını geri besleme mekanizmalarının da yardımıyla manipüle ederek bir çözüm bulduk. Alan, gecikme ve doğruluk parametrelerini göz önüne alarak hatasız çalışan toplayıcı ve çarpıcı devreler gerçekledik.  
 
+
-->
[[Image:Research-stochastic_tr-1.png|center|none|800px|link=]]
+
[[Image:Arastirma_Bit_Stream.png|center|none|800px|link=]]
  
 
<!--        YAYIN      -->
 
<!--        YAYIN      -->
Line 334: Line 513:
 
|- valign=top
 
|- valign=top
 
| width="100" |'''başlık''':
 
| width="100" |'''başlık''':
| width="450"|[[Media:Vahapoglu_Altun_Accurate_Synthesis_of_Arithmetic_Operations_with_Stochastic_Logic.pdf | Accurate Synthesis of Arithmetic Operations with Stochastic Logic]]
+
| width="450"|[[Media:Vahapoglu_Altun_From_Stochastic_To_Bit_Stream_Computing.pdf | From Stochastic to Bit Stream Computing: Accurate Implementation of Arithmetic Circuits and Applications in Neural Networks]]
 
|- valign="top"
 
|- valign="top"
 
| '''yazarlar''':
 
| '''yazarlar''':
| Ensar Vahapoglu and [[Mustafa Altun]]
+
| Ensar Vahapoglu ve [[Mustafa Altun]]
 +
|- valign=top
 +
| '''makale''':
 +
| arXiv, 1805.06262, 2018.
 
|- valign=top
 
|- valign=top
 
| '''bildiri''':
 
| '''bildiri''':
| [http://www.isvlsi.org/ IEEE Computer Society Annual Symposium on VLSI (ISVLSI)],<br> Pittsburgh, USA, 2016.
+
| width="450"| [http://www.isvlsi.org/ IEEE Computer Society Annual Symposium on VLSI (ISVLSI)], Pittsburgh, USA, 2016.
 
|}
 
|}
  
 
| align=center width="70" |
 
| align=center width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/d/d6/Vahapoglu_Altun_Accurate_Synthesis_of_Arithmetic_Operations_with_Stochastic_Logic.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/7/73/Vahapoglu_Altun_From_Stochastic_To_Bit_Stream_Computing.pdf]]</span>
 
<br>
 
<br>
[[Media:Vahapoglu_Altun_Accurate_Synthesis_of_Arithmetic_Operations_with_Stochastic_Logic.pdf | Yayın]]
+
[[Media:Vahapoglu_Altun_From_Stochastic_To_Bit_Stream_Computing.pdf | Yayın]]
 
| align="center" width="70" |
 
| align="center" width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
Line 380: Line 562:
 
|- valign="top"
 
|- valign="top"
 
| '''bütçe''':
 
| '''bütçe''':
| 265.400 TL
+
| 260.000 TL
 
|- valign="top"
 
|- valign="top"
 
| '''süre''':
 
| '''süre''':
 
| 2017-2020
 
| 2017-2020
 
|}
 
|}
 +
{| style="margin-left: auto; margin-right: 0px; border:0.1px solid #abd5ff; background:#f1f5fc; padding:0.2em 0em;"
 +
|- valign="top"
 +
| width="140" |'''proje hedefi''':
 +
| width="558"| Stokastik hesaplamada hatayı azaltmak, hatasız aritmetik blokları gerçeklemek ve bu blokları geniş alan elektroniğinde kullanmak.
 +
 +
|}
 
|}
 
|}
  
 +
<!-- {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
 +
 +
|
 +
{|
 +
|- valign=top
 +
| width="140" |'''başlık''':
 +
| width="558"| Stokastik Mantık ile Yüksek Doğruluklu Aritmetik İşlem Bloklarının Kapı ve Transistor Seviyesinde Gerçeklenmesi
 +
|- valign="top"
 +
| '''kurum & program''':
 +
| [http://bap.itu.edu.tr/ İstanbul Teknik Üniversitesi Bilimsel Araştırmalar Programı (İTÜ-BAP)]
 +
|- valign="top"
 +
| '''süre''':
 +
| 2017-2019
 +
|}
 +
 +
|} -->
 +
|}
 +
|}
 +
|}
 +
 +
 +
<!--        YAKLAŞIK      -->
 +
 +
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 +
|-
 +
| colspan="2" style="background:#8FBC9F; text-align:center; padding:1px; border-bottom:1px #8FBCAF solid;" |
 +
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Yaklaşık Devre ve Sistem Tasarımı </h2>
 +
|-
 +
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 +
<!--
 +
<h3>
 +
Güç Verimli Yaklaşık Sistem Tasarım Metodolojisi</h3>
 +
-->
 +
 +
Bu çalışma, '''sistem düzeyinde tasarımın istenen doğrulukta olması için devre düzeyinde tasarımın güç/alan verimliliğini sağlar'''. İlk önce devre seviyesinde yaklaşık hesaplama blokları, genellikle toplayıcılar ve çarpıcılar, tasarladık. Daha sonra sistem seviyesinde, toplam hesaplama maliyetini en aza indiren ancak nihai performansı koruyan yaklaşık hesaplama birimlerini seçen bir yöntem geliştirildi. Yöntem, her bloğun yeterli çıktı kalitesini belirlemek için toplam sistemi en üst seviyeden aritmetik birimlerine kadar araştırmaktadır.
 +
 +
[[Image:Arastirma-yaklasik.png|center|none|800px|link=]]
 +
 +
<!--        YAYIN      -->
 +
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 +
| class="MainPageBG" style="width:50%; border:0px solid #D8BFD8; vertical-align:top; color:#000;" |
 +
{| id="mp-left" style="width:100%; vertical-align:top;"
 +
 +
|
 +
 +
{| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;"
 +
 +
|- valign=top
 +
| width="696" |'''Seçilmiş Yayınlar'''
 +
|}
 +
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 +
|
 +
{|
 +
|- valign=top
 +
| width="100" |'''başlık''':
 +
| width="450"|[[Media:Ayhan_Altun_Circuit_Aware_Approximate_System_Design.pdf| Circuit Aware Approximate System Design with Case Studies in Image Processing and Neural Networks]]
 +
|- valign="top"
 +
| '''yazarlar''':
 +
| Tuba Ayhan and [[Mustafa Altun]]
 +
|- valign="top"
 +
| '''makale''':
 +
| [http://ieeeaccess.ieee.org/ IEEE Access], Vol. 7, pp. 4726&ndash;4734, 2019.
 +
|- valign=top
 +
| '''bildiri''':
 +
| width="450"| [http://www.isvlsi.org/ IEEE Computer Society Annual Symposium on VLSI (ISVLSI)], Bochum, Germany, 2017.
 +
|}
 +
 +
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/9/90/Ayhan_Altun_Circuit_Aware_Approximate_System_Design.pdf]]</span>
 +
<br>
 +
[[Media:Ayhan_Altun_Circuit_Aware_Approximate_System_Design.pdf | Yayın]]
 +
| align="center" width="70" |
 +
<span class="plainlinks">
 +
 +
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/8/86/Ayhan_Kula_Altun_Approximate_System_Design_Methodology.pptx]]
 +
</span>
 +
<br> [http://www.ecc.itu.edu.tr/images/8/86/Ayhan_Kula_Altun_Approximate_System_Design_Methodology.pptx Sunum]
 +
|}
 +
 +
|}
 +
 +
| style="border:1px solid transparent;" |
 +
<!--        PROJE      -->
 +
| class="MainPageBG" style="width:50%; border:0px solid #A9A9A9; vertical-align:top;"|
 +
{| id="mp-right" style="width:100%; vertical-align:top;"
 +
 +
|
 +
 +
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;"
 +
 +
|- valign=top
 +
| width="696" |'''Proje Desteği'''
 +
|}
 +
 +
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
 +
 +
|
 +
{|
 +
|- valign="top"
 +
| width="140" |'''başlık''':
 +
| width="558"|Yaklaşık Hesaplama Yapabilen Yeniden Yapılandırılabilir Devre ve Sistemlerin Tasarımı ve Öğrenme İçeren Görüntü İşleme Uygulamalarında Kullanılması
 +
|- valign="top"
 +
| '''kurum & program''':
 +
| [http://www.tubitak.gov.tr/tr/destekler/akademik/ulusal-destek-programlari/icerik-1001-bilimsel-ve-teknolojik-arastirma-projelerini-destekleme-pr TÜBİTAK Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı (1001)]
 +
|- valign="top"
 +
| '''bütçe''':
 +
| 230.000 TL
 +
|- valign="top"
 +
| '''süre''':
 +
| 2018-2020
 +
|}
 +
{| style="margin-left: auto; margin-right: 0px; border:0.1px solid #abd5ff; background:#f1f5fc; padding:0.2em 0em;"
 +
|- valign="top"
 +
| width="140" |'''proje hedefi''':
 +
| width="558"| Sistemden istenen doğruluk veya kalite seviyesine bağlı olarak her devre bloğunun gerekli doğruluk performansını belirleyerek minimum güç/enerji tüketimi için en uygun çözümleri hiyerarşik bir yaklaşımla bulmak.
 +
|}
 +
|}
 
|}
 
|}
 
|}
 
|}
Line 395: Line 701:
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
|-
 
|-
| colspan="2" style="background:#8FBC9F; text-align:center; padding:1px; border-bottom:1px #8FBC9F solid;" |
+
| colspan="2" style="background:#8FBC8F; text-align:center; padding:1px; border-bottom:1px #8FBC9F solid;" |
 
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Elektronik Ürünlerin Güvenilirliği </h2>
 
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Elektronik Ürünlerin Güvenilirliği </h2>
 
|-
 
|-
Line 414: Line 720:
  
 
ZnO varistörlerde görülen değişik bozunum mekanizmalarını inceledik. Varistör voltajı Vv'nin değişik stres seviyelerinde nasıl değiştiğini modelledik. Bu amaç için, değişik AC akımlar kullanarak hızlandırılmış testler uyguladık ve Vv değerlerini ölçtük. Literatürdeki genel kanının aksine sadece '''düşen Vv değerleri''' değil, '''yükselen Vv değerleri''' de gözlemledik.
 
ZnO varistörlerde görülen değişik bozunum mekanizmalarını inceledik. Varistör voltajı Vv'nin değişik stres seviyelerinde nasıl değiştiğini modelledik. Bu amaç için, değişik AC akımlar kullanarak hızlandırılmış testler uyguladık ve Vv değerlerini ölçtük. Literatürdeki genel kanının aksine sadece '''düşen Vv değerleri''' değil, '''yükselen Vv değerleri''' de gözlemledik.
 
+
<!--
 
<h3>
 
<h3>
 
Kalibreli Hızlandırılmış Testler</h3>
 
Kalibreli Hızlandırılmış Testler</h3>
  
 
Elektronik ürünlerin hata oranlarındaki önemli azalma, geleneksel '''ALT''' (accelerated life tests) kullanımını oldukça masraflı ve zaman alıcı bir hale getirmiştir. Bu aşamada yeni bir test metodolojisi olan '''CALT''' (calibrated accelerated life tests) önerilmiştir. Bu çalışmada, ALT ve CALT testlerini detaylı olarak karşılaştırdık; hata oranı, hızlandırma faktörü ve stres seviyesinin test süresine olan etkilerini inceledik.
 
Elektronik ürünlerin hata oranlarındaki önemli azalma, geleneksel '''ALT''' (accelerated life tests) kullanımını oldukça masraflı ve zaman alıcı bir hale getirmiştir. Bu aşamada yeni bir test metodolojisi olan '''CALT''' (calibrated accelerated life tests) önerilmiştir. Bu çalışmada, ALT ve CALT testlerini detaylı olarak karşılaştırdık; hata oranı, hızlandırma faktörü ve stres seviyesinin test süresine olan etkilerini inceledik.
 
+
-->
 
<!--        YAYIN      -->
 
<!--        YAYIN      -->
 
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
Line 445: Line 751:
 
|- valign=top
 
|- valign=top
 
| '''makale''':
 
| '''makale''':
| width="450"| [http://www.journals.elsevier.com/reliability-engineering-and-system-safety Reliability Engineering and System Safety], Vol. 156, pp. 175–184, 2016.
+
| width="450"| [http://www.journals.elsevier.com/reliability-engineering-and-system-safety Reliability Engineering and System Safety], Vol. 156, pp. 175&ndash;184, 2016.
 
|- valign=top
 
|- valign=top
 
| '''bildiri''':
 
| '''bildiri''':
Line 476: Line 782:
 
|- valign="top"
 
|- valign="top"
 
| '''makale''':
 
| '''makale''':
| width="450"| [http://journals.tubitak.gov.tr/elektrik/index.htm;jsessionid=848207EBE52EFE10C78B78C76A0FEAD9 Turkish Journal of Electrical Engineering and Computer Sciences], kabul edildi, 2016.
+
| width="450"| [http://journals.tubitak.gov.tr/elektrik/index.htm;jsessionid=848207EBE52EFE10C78B78C76A0FEAD9 Turkish Journal of Electrical Engineering and Computer Sciences], Vol. 25, No.4, pp. 3240&ndash;3252, 2017.
 
|- valign=top
 
|- valign=top
 
| '''bildiri''':
 
| '''bildiri''':
Line 494: Line 800:
 
|}
 
|}
  
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
+
<!-- {| style="border:1px solid #abd5f5; background:#f1f5fc;"
  
 
|
 
|
Line 519: Line 825:
 
</span>
 
</span>
 
<br> [http://www.ecc.itu.edu.tr/images/a/a8/Sal_Altun_Extensive_Investigation_of_CALT_in_Comparison_with_ALT.pptx Sunum]
 
<br> [http://www.ecc.itu.edu.tr/images/a/a8/Sal_Altun_Extensive_Investigation_of_CALT_in_Comparison_with_ALT.pptx Sunum]
|}
+
|} -->
|}
+
|}  
 
| style="border:1px solid transparent;" |
 
| style="border:1px solid transparent;" |
 
<!--        PROJE      -->
 
<!--        PROJE      -->
Line 544: Line 850:
 
|- valign="top"
 
|- valign="top"
 
| '''bütçe''':
 
| '''bütçe''':
| 211.800 TL
+
| 210.000 TL
 
|- valign="top"
 
|- valign="top"
 
| '''süre''':
 
| '''süre''':
 
| 2013-2015, ''tamamlandı''
 
| 2013-2015, ''tamamlandı''
 
|}
 
|}
+
{| style="margin-left: auto; margin-right: 0px; border:0.1px solid #abd5ff; background:#f1f5fc; padding:0.2em 0em;"
 +
|- valign="top"
 +
| width="140" |'''proje hedefi''':
 +
| width="558"| Elektronik kartlar için saha geri dönüş verilerini, yeni hızlandırılmış test metodolojilerini ve hata bazlı simülasyonların fiziğini kullanarak güvenilirlik tahmin tekniklerini geliştirmek.
 
|}
 
|}
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
+
|}
 +
<!-- {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
  
 
|
 
|
Line 566: Line 876:
 
|}
 
|}
 
   
 
   
|}
+
|} -->
  
 
|}
 
|}
Line 577: Line 887:
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
|-
 
|-
| colspan="2" style="background:#8FBC8F; text-align:center; padding:1px; border-bottom:1px #8FBC8F solid;" |
+
| colspan="2" style="background:#8FBC7F; text-align:center; padding:1px; border-bottom:1px #8FBC8F solid;" |
 
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Analog Devre Tasarımı </h2>
 
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Analog Devre Tasarımı </h2>
 
|-
 
|-
Line 640: Line 950:
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
|-
 
|-
| colspan="2" style="background:#8FBC7F; text-align:center; padding:1px; border-bottom:1px #8FBC7F solid;" |
+
| colspan="2" style="background:#8FBC6F; text-align:center; padding:1px; border-bottom:1px #8FBC7F solid;" |
 
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Ayrık Matematik </h2>
 
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Ayrık Matematik </h2>
 
|-
 
|-
Line 673: Line 983:
 
|- valign="top"
 
|- valign="top"
 
| '''makale''':
 
| '''makale''':
| width="450"| [http://www.springer.com/mathematics/applications/journal/10255 Acta Mathematicae Applicatae Sinica - English Series], Vol. 33, Issue 1, pp. 43-52, 2017
+
| width="450"| [http://www.springer.com/mathematics/applications/journal/10255 Acta Mathematicae Applicatae Sinica - English Series], Vol. 33, Issue 1, pp. 43&ndash;52, 2017
 
|}
 
|}
 
| align=center width="70" |
 
| align=center width="70" |

Revision as of 16:31, 20 April 2019

Araştırmalarımızın amacı, elektronik devre ve sistemler için hesaplama, devre tasarımı ve güvenilirlik konularında yeni yaklaşımlar geliştirmektir. Araştırmalarımız temelde yeni ve gelişen teknolojileri ve hesaplama düzenlerini hedef almaktadır. Aşağıda en yeniden en eskiye ve önem sırasına göre sıralanan araştırma konuları yer almaktadır. Her konu kısaca anlatılmış ve ilgili yayın ve projeler eklenmiştir.

Contents

Nano-Çaprazlayıcı Dizinler ile Hesaplama

Nano-çaprazlayıcı dizinler yakın gelecekte CMOS'un yerini alacak güçlü bir aday teknoloji olarak ortaya çıkmıştır. Düzenli ve sık yapıdadırlar. Dizinler ile hesaplama, iki-uçlu ya da dört-uçlu anahtarlar gibi davranan çaprazlama noktaları ile elde edilir. Kullanılan teknolojiye bağlı olarak, iki-uçlu bir anahtar, diyot, direnç/memristor veya FET gibi davranır. Öte yandan, dört-uçlu anahtarın tek bir davranışı vardır. İki-uçlu anahtar tabanlı dizinler için önerilen birçok farklı teknoloji olmasına rağmen, dört-uçlu anahtar tabanlı dizinler, anahtarlamalı kafesler, için teknoloji geliştirme yakın zamanda başlamıştır.

Hem iki-uçlu hem de dört-uçlu anahtar tabanlı dizinler için, ortaya çıkacak bir nano bilgisayarın tasarımı ve yapımı için tam bir sentez ve performans optimizasyon metodolojisi geliştirmeyi hedefliyoruz. Ayrıca, özellikle anahtarlamalı kafesleri gerçeklemek için CMOS uyumlu teknolojiler geliştirmeyi hedefliyoruz.

Arastirma nano-2019.png

Teknoloji Geliştirme

Dört-uçlu anahtar tabanlı bir dizin, iki-uçlu anahtarlara kıyasla, anahtar sayısı bakımından önemli bir alan avantajı sunsa da, teknoloji seviyesinde gerçekleştirilmesi henüz net olarak cevaplanmamıştır. Bu ihtiyacı karşılamak için ilk olarak, üç boyutlu teknoloji bilgisayar destekli tasarım (TCAD) simülasyonları kullanarak, dört-uçlu anahtarların doğrudan CMOS teknolojisi ile gerçeklenebileceğini gösterdik. Bu amaçla farklı yarı iletken malzemelerini farklı geometrik şekillerde denedik. Ardından, TCAD simülasyon verilerini standart CMOS akım-gerilim denklemlerine uyarlayarak, dört-uçlu bir anahtarın Spice modelini geliştirdik. Son olarak, Spice devre simülasyonlarını farklı ebatlardaki dört-uçlu anahtarlarda başarıyla uyguladık.

Arastirma lattice technology.png

Performans Optimizasyonu

Memristor tabanlı dizinleri de içeren nano anahtarlamalı dizinlerin optimizasyonu üzerine çalışıyoruz. Dizilerin alan, gecikme ve güç maliyetlerini dikkate alarak hataya dayanıklı lojik sentez algoritmaları önerdik.

Hata Toleransı

Yeniden ayarlanabilir nano dizinlerde oluşan açık ve kapalı hataları inceledik. Kalıcı hatalar için, sıralama, geri-izleme ve satır eşleştirme tekniklerini kullanan hızlı bir buluşsal algoritma geliştirdik. Yumuşak/geçici hatalar için, tolere edilebilir bütün hata yerlerini yinelemeli bir teknik kullanarak belirledik.

Sentez

Boolean fonksiyonları diyot, FET ve dört-uçlu anahtar tabanlı nano dizinler ile gerçekledik ve dizin boyut formülleri elde ettik. Buna ek olarak, dört-uçlu anahtarlardan oluşan dizinleri optimum sentezleyen bir algoritma geliştirdik.

Seçilmiş Yayınlar
başlık: Realization of Four-Terminal Switching Lattices: Technology Development and Circuit Modeling
yazarlar: Dan Alexandrescu, Serzat Safaltin, Oguz Gencer, Ceylan Morgul, Levent Aksoy, Sebahattin Gurmen, Csaba Andras Moritz ve Mustafa Altun
bildiri: Design, Automation and Test in Europe (DATE), Florence, Italy, 2019.

PDF.png
Yayın

PPT.jpg
Sunum

başlık: Defect Tolerant Logic Synthesis for Memristor Crossbars with Performance Evaluation
yazarlar: Onur Tunali ve Mustafa Altun
makale: IEEE Micro, Vol. 38, Issue 5, pp. 22–31, 2018.
bildiri: Design, Automation and Test in Europe (DATE), Dresden, Germany, 2018.

PDF.png
Yayın

PPT.jpg
Sunum

başlık: Logic Synthesis and Testing Techniques for Switching Nano-Crossbar Arrays
yazarlar: Dan Alexandrescu, Mustafa Altun, Lorena Anghel, Anna Bernasconi,
Valentina Ciriani, Luca Frontini ve Mehdi Tahoori
makale: Microprocessors and Microsystems, Vol. 54, pp. 14–25, 2017.
bildiri: Euromicro Conference on Digital System Design (DSD),
Limassol, Cyprus, 2016.

PDF.png
Yayın

PDF.png
Sunum

başlık: Permanent and Transient Fault Tolerance for Reconfigurable Nano-Crossbar Arrays
yazarlar: Onur Tunali ve Mustafa Altun
makale: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 36, Issue 5, pp. 747–760, 2017.
bildiri: IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH)
, Boston, USA, 2015.

PDF.png
Yayın

PPT.jpg
Sunum

Proje Desteği
başlık: Anahtarlamalı Kafesler ile Hesaplama: Teknoloji Geliştirme, Eleman Modelleme ve Devre Tasarımı
kurum & program: TUBITAK-NSF İkili İşbirliği Programı (2501)
bütçe: 720.000 TL
süre: 2019-2022
proje hedefi: Anahtarlamalı kafes yapılarına dayanan, CMOS uyumlu, ve geleneksel CMOS devrelerine göre çok daha düşük alan kaplayan yeni bir teknoloji geliştirmek ve geliştirilen teknoloji için eksiksiz bir elektronik tasarım otomasyon (Electronic Design Automation – EDA) metodolojisi sunmak.
başlık: Anahtarlamalı Nano-Çaprazlayıcı Bilgisayar Sentezi ve Performans Optimizasyonu
kurum & program: Avrupa Birliği/Avrupa Komisyonu H2020 MSCA
Araştırma ve Yenilikçilik Değişim Programı (RISE)
bütçe: 724.500 EURO
süre: 2015-2019
proje hedefi: Nano-çaprazlayıcı dizinler için komple bir sentez metodolojisi geliştirmek ve basit bilgisayarlar olan durum makineleri gerçeklemek.
başlık: Nano Anahtarlamalı Dizinlerin Sentezi ve Güvenilirlik Analizi
kurum & program: TÜBİTAK Kariyer Geliştirme Programı (3501)
bütçe: 190.000 TL
süre: 2014-2017, tamamlandı
proje hedefi: Nano-çaprazlayıcı dizinler için lojik sentezi, hata toleransı ve performans optimizasyonu yapmak.


Tersinir Hesaplama

Geleneksel CMOS devrelerinden farklı olarak, tersinir devreler gizli hatalara sahip değildir, bu nedenle dahili devre düğümlerinde meydana gelen hatalar her zaman çıkışta bir hataya neden olur. Bu, çevrimiçi veya eşzamanlı hata toleransı için eşsiz bir özelliktir. Bu durumdan hareketle, tersinir hesaplamayı kullanarak hataya dayanıklı CMOS devre blokları gerçekliyoruz. Öncelikle tersinir kapılarla tersinir devreler sentezliyoruz; sonra onları hataya dayanıklı hale getiriyoruz; ve son olarak tersinir kapılardan CMOS kapılara dönüşümü yapıyoruz.

Research-reversible tr-3.png

Mükemmel Hata Tespiti

Tersinir hesaplamadan yararlanarak % 100 çevrimiçi veya eşzamanlı hata tespitine sahip CMOS devreleri sentezledik. Bu amaç için tersinir parite korunumlu bir kapı kütüphanesi önerdik.

Çevrimiçi Hata Tespiti ve Düzeltme

Çoklu kontrol Toffoli kapılarını kullanarak tersine çevrilebilir bir devrede hataya dayanıklı hale getirmek için iki teknik geliştiriyoruz. İlk olarak, tek parite korumasına dayanan ve çıktıdaki tek sayıdaki hataları tespit edebilen bir teknik geliştirdik. İkinci teknik ise Hamming kodları üzerine inşa edilen bir hata düzeltme tekniğidir. Aynı zamanda, Fredkin kapısı gibi korunumlu tersinir kapılarla mükemmel hata tespitinin mümkün olduğunu gösterdik. Bir sonraki adım olarak, önerilen tersinir devreleri geleneksel CMOS kapılarından oluşan devrelere dönüştürdük.

Seçilmiş Yayınlar
başlık: Implementation of CMOS Logic Circuits with Perfect Fault Detection Using Preservative Reversible Gates
yazarlar: Sajjad Parvin ve Mustafa Altun
bildiri: IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS), Rhodes Island, Greece, 2019.

PDF.png
Yayın

PPT.jpg
Sunum

başlık: Exploiting Reversible Computing for Latent-Fault-Free Error Detecting/Correcting CMOS Circuits

yazarlar: Mustafa Altun, Sajjad Parvin, and Husrev Cilasun
makale: IEEE Access, Vol. 6, pp. 74475–74484, 2018.

PDF.png
Yayın

Proje Desteği
başlık: Hata Farkındalıklı 8-bitlik bir Tersinir Mikroişlemci Gerçeklemesi
kurum & program: TÜBİTAK Hızlı Destek Programı (1002)
bütçe: 30.000 TL
süre: 2016-2017, tamamlandı
proje hedefi: Çevrimiçi hataları tespit edebilen tersinir devreleri ve bunların CMOS devre karşılıklarını gerçeklemek.


Stokastik Devre Tasarımı

Rastgele veya Binom dağılımlı bit katarlarını işleyen yeni bir hesaplama paradigması “Bit Stream Computing (BSC)” önerdik. Önerilen paradigma, stokastik mantığın alan avantajından ve geleneksel ikili mantığın doğruluk avantajından faydalanmaktadır. Asenkron veya senkron olarak sınıflandırılmış tam ve yarı doğru aritmetik çarpıcı ve toplayıcı devreler gerçekledik. Bu çalışmanın, geleneksel ikili ve geleneksel stokastik hesaplama tekniklerine alternatif sunarak yeni ufuklar açtığına inanıyoruz.

Arastirma Bit Stream.png
Seçilmiş Yayınlar
başlık: From Stochastic to Bit Stream Computing: Accurate Implementation of Arithmetic Circuits and Applications in Neural Networks
yazarlar: Ensar Vahapoglu ve Mustafa Altun
makale: arXiv, 1805.06262, 2018.
bildiri: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, USA, 2016.

PDF.png
Yayın

PPT.jpg
Sunum

Proje Desteği
başlık: Yüksek Doğruluklu Stokastik Devre Bloklarının Gerçeklenmesi ve Yazdırılabilir/Esnek Elektronik Sistemlerde Kullanımı
kurum & program: TÜBİTAK Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı (1001)
bütçe: 260.000 TL
süre: 2017-2020
proje hedefi: Stokastik hesaplamada hatayı azaltmak, hatasız aritmetik blokları gerçeklemek ve bu blokları geniş alan elektroniğinde kullanmak.


Yaklaşık Devre ve Sistem Tasarımı

Bu çalışma, sistem düzeyinde tasarımın istenen doğrulukta olması için devre düzeyinde tasarımın güç/alan verimliliğini sağlar. İlk önce devre seviyesinde yaklaşık hesaplama blokları, genellikle toplayıcılar ve çarpıcılar, tasarladık. Daha sonra sistem seviyesinde, toplam hesaplama maliyetini en aza indiren ancak nihai performansı koruyan yaklaşık hesaplama birimlerini seçen bir yöntem geliştirildi. Yöntem, her bloğun yeterli çıktı kalitesini belirlemek için toplam sistemi en üst seviyeden aritmetik birimlerine kadar araştırmaktadır.

Arastirma-yaklasik.png
Seçilmiş Yayınlar
başlık: Circuit Aware Approximate System Design with Case Studies in Image Processing and Neural Networks
yazarlar: Tuba Ayhan and Mustafa Altun
makale: IEEE Access, Vol. 7, pp. 4726–4734, 2019.
bildiri: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 2017.

PDF.png
Yayın

PPT.jpg
Sunum

Proje Desteği
başlık: Yaklaşık Hesaplama Yapabilen Yeniden Yapılandırılabilir Devre ve Sistemlerin Tasarımı ve Öğrenme İçeren Görüntü İşleme Uygulamalarında Kullanılması
kurum & program: TÜBİTAK Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı (1001)
bütçe: 230.000 TL
süre: 2018-2020
proje hedefi: Sistemden istenen doğruluk veya kalite seviyesine bağlı olarak her devre bloğunun gerekli doğruluk performansını belirleyerek minimum güç/enerji tüketimi için en uygun çözümleri hiyerarşik bir yaklaşımla bulmak.


Elektronik Ürünlerin Güvenilirliği

Elektronik sektöründe yaşanan baş döndürücü gelişmeler, elektronik devre ve sistemlerin güvenilirliği kavramını yeniden şekillendirmiştir. Elektronik ürünlerin günümüzdeki hızlı üretim döngüleri, uzun süreli ve masraflı olan geleneksel hızlandırılmış testlerin öneminin azalmasına neden olmuştur. Biz bu çalışmada görece masrafsız ve yüksek doğruluklu bir güvenilirlik analizi metodolojisi önerdik. Bu noktada saha verileri, yeni hızlandırılmış testler ve hata fiziği tabanlı benzetimlerden yararlandık. Çalışmalarımız Avrupa'nın en büyük ev aletleri ve beyaz eşya üreticilerinden biri olan Arçelik A.Ş. ile birlikte yürütülmüştür.

Arastirma-3.png

Saha Verileri ile Güvenilirlik Analizi ve Tahmini

Yüksek miktarda üretilen elektronik ürünler için saha arıza verileri ile güvenilirlik tahmin modeli geliştirdik. Modelimizi, önerdiğimiz değişim noktası tespit metodunu kullanarak Weibul-eksponansiyel dağılımı üzerine inşa ettik. Modelimiz, elektronik kartların kısa süreli saha verilerini kullanarak, garanti süresi içerisindeki güvenilirlik performanslarını yüksek doğrulukta tahmin etmektedir. Bu çalışmada kullandığımız kartların garanti süresi 3 yıldır ve kullandığımız veri seti 3 aylıktır.

Varistörlerin Bozunum Prosesleri

ZnO varistörlerde görülen değişik bozunum mekanizmalarını inceledik. Varistör voltajı Vv'nin değişik stres seviyelerinde nasıl değiştiğini modelledik. Bu amaç için, değişik AC akımlar kullanarak hızlandırılmış testler uyguladık ve Vv değerlerini ölçtük. Literatürdeki genel kanının aksine sadece düşen Vv değerleri değil, yükselen Vv değerleri de gözlemledik.

Seçilmiş Yayınlar
başlık: A Change-Point based Reliability Prediction Model using Field Return Data
yazarlar: Mustafa Altun ve Vehbi Comert
makale: Reliability Engineering and System Safety, Vol. 156, pp. 175–184, 2016.
bildiri: Reliability and Maintainability Symposium (RAMS),
Palm Harbor, USA, 2015.

PDF.png
Yayın

PPT.jpg
Sunum

başlık: Distinct Degradation Processes in ZnO Varistors: Reliability Analysis and Modeling with Accelerated AC Tests
yazarlar: Hadi Yadavari ve Mustafa Altun
makale: Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 25, No.4, pp. 3240–3252, 2017.
bildiri: European Safety and Reliability Conference (ESREL), Zurich, Switzerland, 2015.

PDF.png
Yayın

PPT.jpg
Sunum

Proje Desteği
başlık: Beyaz Eşya Elektronik Kartları için Yüksek Doğruluklu bir Güvenilirlik Analizi Metodolojisi
kurum & program: TÜBİTAK Üniversite-Sanayi İşbirliği Programı (1505)
bütçe: 210.000 TL
süre: 2013-2015, tamamlandı
proje hedefi: Elektronik kartlar için saha geri dönüş verilerini, yeni hızlandırılmış test metodolojilerini ve hata bazlı simülasyonların fiziğini kullanarak güvenilirlik tahmin tekniklerini geliştirmek.


Analog Devre Tasarımı

Pozitif Geribesleme

Geleneksel olarak analog devreler pozitif geribesleme çevrimleri içermemelidirler. Aykırı gözükse de, biz bu çalışmada akım kuvvetlendiricilerin giriş empedanslarını pozitif geribesleme kullanarak başarıyla iyileştirdik. Ek olarak yeni bir tamamen farksal akım kuvvetlendirici devresi önerdik ve bu devreyi filtre uygulamalarında test ettik.

Seçilmiş Yayınlar
başlık: Design of a Fully Differential Current Mode Operational Amplifier with its Filter Applications
yazarlar: Mustafa Altun ve Hakan Kuntman
makale: AEU International Journal of Electronics and Communications,
Vol. 62, Issue 3, pp. 39–44, 2008.
bildiri: ACM Great Lakes Symposium on VLSI (GLSVLSI), Stresa, Italy, 2007.

PDF.png
Yayın

PPT.jpg
Sunum


Ayrık Matematik

"Self Duality" Problemi

IDNF (irredundant disjuntive normal form) formundaki monoton bir Boolean fonksiyonun self-dual olup olmadığının zaman karmaşıklığında belirlenmesi, matematikte çözülememiş önemli problemlerden biridir. Bu çalışma bu ünlü problem üzerinedir. Biz bu çalışmada IDNF formundaki monoton Boolean fonksiyonların değişken sayısının çarpım (disjunct) sayısından fazla olamayacağını gösterdik. Ayrıca n sayıda çarpım ve n sayıda değişken içeren IDNF formundaki monoton Boolean fonksiyonların, self-dual olup olmadığını bulan bir algoritma geliştirdik. Algoritmanın zaman karmaşıklığı O(n^3)'dür.

Seçilmiş Yayınlar
başlık: A Study on Monotone Self-dual Boolean Functions
yazarlar: Mustafa Altun ve Marc Riedel
makale: Acta Mathematicae Applicatae Sinica - English Series, Vol. 33, Issue 1, pp. 43–52, 2017

PDF.png
Yayın

PPT.jpg
Sunum

Personal tools
Namespaces

Variants
Actions
ECC
ECC (In Turkish)
Toolbox