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SUMMARY & CONCLUSIONS 

The main goal of our study is precisely predicting the 

reliability performance of electronic boards throughout the 

warranty period by using short-term field return data.  We 

have cooperated with one of the Europe’s largest 

manufacturers and use their well-maintained data with over 

1000 electronic board failures.  Before using the field data for 

our model of warranty forecasting, we filter it to eliminate 

improper data, correlated to incomplete and poorly collected 

data.  Our model is based on a two-parameter Weibull 

distribution, chosen from many other distribution options 

regarding optimum curve fitting.  In the fitting process we use 

and compare “Bayesian”, “rank regression”, and “maximum 

likelihood” fitting techniques.  Our method has two steps.  In 

the first step, we investigate how the Weibull parameter β 

changes by increasing the number of months of field data.  For 

this purpose we use an electronic board with 36 months (full 

warranty period) of field return data.  We develop a 

mathematical model of β as a function of the field data time 

interval and board dependent parameters.  In the second step, 

we make a warranty forecasting of a new electronic board 

using its 3-month field data by using the mathematical model 

developed in the first step.  The proposed method is evaluated 

by applying it to different electronic boards with 36 months 

(full warranty period) of field return data.  The predicted 

results from our method and the direct results from the field 

return data matches well.  This demonstrates the accuracy of 

our model. 

1 INTRODUCTION 

        In recent years, the importance of electronics reliability 

has grown significantly.  Getting more complex electronic 

systems and usage in large industrial fields requires high 

reliability.  This demand for high reliability reveals a 

requirement for an accurate and early reliability prediction to 

give feedback for the design and warranty precautions. 

       There are many suggested methods to predict reliability of 

electronics in the literature such as accelerated life tests, 

component based numerical and probabilistic simulations, and 

statistical methods.  Conventional accelerated reliability test 

do not meet the demands of today’s very rapid electronic 

product cycles they can be time consuming and expensive.  

Using simulations for components and systems is another 

option, which is time saving, but simulation test data never 

reflects the real-world performance of the product and results 

in accuracy problems for various failure mechanisms [1].  

Therefore, laboratory data based predictions can be deceptive 

for many applications.  This underlines the importance of 

using the product’s field return data for reliability analysis that 

is relatively accurate, cheap and time saving.  In this study, we 

perform warranty forecasting of electronic boards by 

exploiting field return data.  We have cooperated with one of 

the Europe’s largest manufacturers and use their well-

maintained data with over 1000 electronic board failures.   

      Considering the field-data based studies in the literature [2, 

3], one of the common issues is data reliability, correlated to 

incomplete and wrong records.  For this reason, a filtering 

process must be conducted [4].  In this study, we first make 

the data reliable by filtering it to eliminate incomplete and 

poorly collected data. 

       Conventional reliability prediction methods using field 

return data of a product has an important constraint.  They can 

only predict very near future reliability of a product since they 

assume that failure mechanisms of a product do not change.  

Indeed, a product, consisting of many components, has 

different failure mechanisms for different operating time 

intervals corresponding to “early failure”, “useful life”, and 

“wear out” regions.  For example, with conventional methods 

one cannot predict the product’s reliability performance for 

the useful life period by using the data from the early failure 

period.  In this study, we propose a new method to overcome 

this problem.  Our model is based on two-parameter Weibull 

distribution, chosen from many other distribution options 

regarding optimum curve fitting.   

      The main goal of our study is to precisely predict the 

reliability performance of electronic boards throughout the 

warranty period by using very short-term field return data.  

For electronic boards targeted in this study, warranty period is 

3 years, and we use the first 3 months field data.  In the fitting 

process we use “Bayesian”, “rank regression”, and “maximum 

likelihood” estimation techniques and compare them in terms 

of performance on the field return data.   
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        Our method has two steps.  In the first step, we 

investigate how the Weibull parameter β changes by 

increasing the number of months of field data.  For this 

purpose we use an electronic board with 36 months (full 

warranty period) of field return data.  We develop a 

mathematical model of β as a function of field data time 

interval and board dependent parameters.  In the second step, 

we make a warranty forecasting of a new electronic board 

given its 3-month field data.  We achieve this using the 

mathematical model developed in the first step.  The proposed 

method is evaluated by applying it to different electronic 

boards with 36 months of field return data.  The predicted 

results from our method and the direct results from the field 

return data matches well.  This demonstrates the accuracy of 

our model. 

       The paper is organized as follows.  We first introduce the 

filtering method of the field return data in Section 2.  Then, we 

give information about estimation methods showing their 

results and comparisons on the filtered field return data in 

Section 3.  Finally, we offer a warranty prediction method via 

change of β parameter of Weibull distribution with time in 

service and its mathematical model in Section 4. 

2 FILTERING 

       In order to obtain accurate results for warranty analysis, it 

is necessary that the field return data contain correct records in 

terms of assembly dates, return date, and number of sales and 

failures.  However, most of the time field-return data includes 

both obvious and hidden errors.  Obvious errors can be easily 

detected by looking at the failure record of an item.  These 

errors usually appear as wrong records on field return data.  

Frequently encountered hidden errors are missing records, 

which can affect warranty analysis badly since failed items in 

a product group are seen suspended (missing) in the warranty 

analysis.  In this case, a statistical process is needed to detect 

hidden errors. 

     In this section, a systematic approach, given in details in 

[5], to detect hidden errors in the field return data is used.  For 

this study statistical inferences are based on Weibull 

distribution and its beta (β) parameter.  Weibull β parameter 

can take values in three region; 0< β < 1, β = 1, β > 1.  These 

three regions correspond to early failure, useful life and wear 

out regions respectively in the hazard rate curve [6].  It is 

logical to expect to see early failure and useful life in a 

warranty analysis of an industrial product especially for 

electronic systems. 

           To detect hidden errors, 54 months field return data, 

including failures in the product groups assembled in the first 

54 months, is analyzed by separating the field return data into 

different assembly time intervals.  Examined field return data 

includes only warranty records of three years.  Time intervals 

are expanded in the forward direction by adding six months 

intervals like 1-6 months, 1-12 months, etc., and then β values 

are observed.  Also field return data is analyzed in separate 

time intervals like 1-6 months, 7-12 months, etc.  Weibull β 

values of these two analyses are given in Figure 1 and Figure 

2, respectively.  According to Figure 1 and Figure 2, β values 

of the first 18 months are significantly greater than 1.  On the 

other hand β values of the data covering the whole warranty 

period cannot be higher than 1.  Therefore it is clear that the 

first 18 months records in the field return data are problematic; 

they must be filtered.  In the next two sections, filtered field 

return data is used for our analysis.   

 

3 ESTIMATION METHODS 

       Our main purpose in this study is predicting the   

(Weibull parameter) values of the boards throughout their 3 

year warranty periods by using the   values of the data with 

time to failure (TTF) values less than or equal to 3 months.  

Therefore the   values for TTF ≤ 3 months is crucial and 

should be calculated accurately.  For this calculation we 

review and compare MLE, Bayesian, and rank regression 

methods.  We also give a brief background about the Weibull 

distribution.   

3.1 Estimation of parameters for Two-Parameter Weibull 

distribution 

      The Weibull distribution is one of the most popular and 

widely used models of failure time in life testing and 

reliability theory.  The estimation of the its parameters were 

considered by many authors such as Hossain and Zimmmer 

[7], Balakrishnan and Kateri [8], Teimouri et al.  [9], and 

references cited therein.  More details about the Weibull 

distribution can be found in Muthy et al.  [10] and Rinne [11]. 

      A Weibull distribution with the shape parameter   and 

Figure 2-Beta values for six month separate periods 

Figure 1-Βeta values in forward analysis. 
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the scale parameter   is denoted by ),( WE .  The 

cumulative density function (cdf) and probability density 

function (pdf) of a random variable ),( WEX :  are given 

as  

                       0,>,1=),;( xexF
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The estimation of the parameters ,    can be obtained by 

using Classical (MLE and Rank R.) and Bayesian approaches. 

3.2   MLE Estimation 

In this part, we consider the maximum likelihood estimates 

(MLE) of the parameters for the Weibull distribution.  Let 

nXX ,...,1
 be a independent random sample from Weibull 

distribution with parameters ),(  .  Then the likelihood 

function is  
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Taking the natural logarithm, we get the log-likelihood 

function 
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The MLEs of the parameters   and   (denoted by 𝛽 ̂and �̂� r 

espectively) are the set of values of the model parameters that 

maximizes the likelihood function given in (2) based on the 

samples .,...,1 nxx  These estimates are derived from the 

following equations 
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Then, the MLE of  , �̂� is given by  

                                     �̂� =  
∑  𝑥 𝑖

�̂� 𝑛
 𝑖=1   

𝑛
       (3) 

and the MLE of ,  �̂� is the solution of the following non-

linear equation 
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�̂� can be obtained as the solution of the nonlinear equation of 

the form  =)(H  where  
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Since, �̂� is a fixed point solution of the nonlinear equation (4), 

its value can be obtained using an iterative scheme like: 

),(= )(1)( jj H  
 where 

)( j  is the j th iterate of �̂�.  The 

iteration procedure should be stopped when 
1)()(  jj   is 

sufficiently small.  After �̂�  is obtained, �̂� is obtained from 

equation (3). 

3.3 Bayesian Estimation 

       Bayesian approach has a number of advantages over the 

conventional frequentist approach where data is a repeatable 

random sample - there is a frequency. Bayes theorem is a 

consistent way to modify our beliefs about the parameters 

given the data that actually occurred.  In the Bayesian 

inference, the most commonly used loss function is the 

squared error (SE) loss function, ,)(=),( 2 L  

where   is an estimate of  .  This loss function is 

symmetrical and gives equal weight to overestimation as well 

as underestimation. 

        In this part, we consider the Bayes estimates of the 

parameters of Weibull distribution under the SE loss function 

when the parameters   and   are both unknown and 

random variables. 

        The Bayesian approach assumes that the parameters   

and   are random variables rather then being fixed as in 

classical approach.  In this study, we assume that   has 

exponential distribution with the hyper-parameter   and the 

parameter   has uniform distribution in .),( ba  That is the 

prior distribution of   is 
,

1
=)( /


 e

 0>  and the 

prior distribution of   is =)(  
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 Then the joint 

posterior density function of   and   is given by  
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The Bayes estimate of a given measurable function of   and 

 , say ),( g  under the SE loss function is its posterior 

mean.  Therefore, the Bayes estimate of ),( g  under the 

SE loss function 
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        It is not possible to compute the above equation 

analytically.  Different approaches are available in the 

literature such as Lindley’s approximation, Tierney-Kadane 

method, or Markov chain Monte Carlo (MCMC) method.  The 

Lindley’s approximation can be applied to obtain the Bayes 



estimates of   and  .  The bayesian estimate of   is 

obtained using one of these approximation when 

,=),( g  similarly for   when .=),( g  

Morever, the hyper-parameters can be obtained using method 

of moments. 

3.4 Linear Rank Regression 

        One of the simplest method for parameter estimation is 

that of probability plotting.  This methodology involves 

plotting the failure times to determine the fit of the data to a 

given distribution by using the linear rank regression, which is 

a simple technique that engages replacing the data with their 

corresponding ranks [12].  With this method only the position 

where the failure occurred is taken into account, and not the 

exact time-to-suspension.  This shortfall is significant when 

the number of failures is small and the number of suspensions 

is large and not spread uniformly between failures,  as with 

these data.  Therefore, in this study we do not use rank 

regression method; we only consider maximum likelihood 

(MLE) or Bayesian estimation methods to estimate the 

parameters instead of using least squares.  A comparison of 

the  MLE and Bayesian methods follows. 

3.5 Comparison of MLE and Bayesian Methods 

       We compare the methods on different sample sizes.  The 

comparison is shown in Table 1.  We select exponential 

distribution with a hyperparameter  for the prior fuction of 

the Bayesian method.  The hyperparameter  is calculated as 

the arithmetic mean of the TTF values.  As shown in the 

second row of the table (bold), for very large sample sizes, 

MLE and Bayesian methods give very close results.  This is 

expected considering that the larger the sample size the more 

accurate the estimation.  However decreasing sample sizes 

results in very different   values.  While   values of the 

Bayesian method remains almost the same (that is the sign of 

accuracy),   values of the MLE method changes 

significantly.  In the Bayesian approach, the uncertainty about 

the parameter is represented by a probability density function 

which may result in more accurate estimates.  As a result, in 

this study we prefer to use Bayesian method to estimate   

values of the data with TTF ≤ 3 months. 

 
Sample Size   from MLE   from Bayesian 

538 0,39526 0,381216 

177  0,471275 0,432028 

73  0,55383 0,442491 

56  0,72817 0,501102 

42  0,750407 0,415987 

Table 1- Beta values for different sample sizes for MLE and 

Bayesian methods; TTF ≤ 3 months.   

4 WARRANTY FORECASTING 

       Conventional reliability prediction methods using field 

return data have an important constraint.  They can only 

predict very near term reliability of a product.   

       Field return data of an electronic board can be used to get 

some inferences about reliability of next generation boards, 

which have similar components and production methods.  We 

call these similar boards a family.  While doing prediction 

about next generation boards, it is expected to get fast 

reliability prediction in early phase of products.  For this 

reason a new method is offered in this section.  The method, 

we introduce, consists of two steps.  Firstly, we investigate 

how the β parameter of Weibull distribution changes with 

increasing time and failures.  We calculate β values via 

Bayesian estimation method, whose performance is better than 

MLE method as pointed in previous section.  Then we fit a 

curve to denote β as a function of service time, namely time to 

failure (TTF).  Due to this fitting, we obtain 2 parameters and 

examine change of β values of another similar electronic board 

with time.   

        In this study, we base our analysis and methods on the 

two-parameter Weibull distribution and its parameter β since 

we see that estimated values of the Weibull   parameter 

don’t change considerably with TTF values in the warranty 

analysis of field return data.  Also β affects hazard rate 

function directly.   

4.1 Analysis of change of   Beta in warranty analysis 

        To determine the change of β, we analyze filtered field 

return TTF data.  Due to the filtering, we now have the data 

obtained in the last   36 months (initially 54 months).  This is 

irrelevant from the warranty duration which is also 36-month.  

We perform warranty analysis for 1, 2, 3, 6, 9, 12, 18, 24, 30, 

36 month TTF in Reliasoft Weibull++ program using Weibull 

distribution.  For each month (1, 2, 3, 6, 12, 18, 24, 30, 36) we 

examine the β parameter.  In the method, n-month TTF 

analysis refers to the analysis of field return records which 

have 1, 2, 3, 4, ,,,, n-1, n month TTF value.  Namely, 36 

months analysis involves all the filtered data since the 

warranty has 36 months.  Result of the analysis for an 

electronic board, Board-B, is given in Table 2 and Figure 3.  

As seen from Figure 3, β of filtered field return data has a 

logarithmic growth model which approaches 1 (useful life 

region) toward to the end of the warranty period as expected 

for an electronic board whose wear out region is assumed to 

be 10-15 years. 

 

Month Beta  

1 0.332 

2 0.369 

3 0.381 

6 0.436 

9 0.489 

12 0.551 

18 0.648 

24 0.699 

30 0.588 

36 0.588 

Table 2- Beta values for different time to failures analysis 



 

4.2 Warranty forecasting with curve fitting 

      In the second step, we fit β values to a curve to implement 

β as a function of time as seen in Figure 3 .Here, we use 

logarithmic curve fitting using the least square method.  The 

equation of the curve is obtained as; 

         𝛽(𝑡) = 𝑎 × ln (𝑏 × 𝑡), t >0 (Month)  (5) 

      As a result of our experiments with different real field 

return data, we know that β curves of products in the same 

family have similar trends and close values to each other.  

Therefore with this motivation, we make two definitions.  We 

define parameter a as product dependent parameter since it is 

closely correlated with β values in early months.  Parameter b 

is defined as technology dependent parameter since change of 

b create slight differences in equation (5) and this situation is 

more suitable for the evaluation of electronic board in terms of 

technology change.  For this reason it is reasonable to assume 

that technology dependent parameter may be same for a 

family.  Therefore we assume that b is fixed and a is variable 

for products in a family. 

       Fitting results of Board-B for a and b are 0.149 and 5.77 

respectively.  Therefore we expect that β equation of family 

including Board-B is 𝛽(𝑡) = 𝑎 × ln (27.7 × 𝑡).  Due to this 

equation, change of β with time can be estimated 

approximately from the early warranty data.  If we know b for 

a family, we can calculate a in (5) from β values obtained by 

early warranty analysis with the proposed method in section 

(4.1).  Two experimental results are given by Figure 4 and 

Figure 5.  These graphics show a comparison of real β values 

of Board-F and Board-E and their estimated curves from 

Board-B, β (t) =𝑎 × ln (27.7 × 𝑡).  The values of a are 

calculated directly from their 3-month analyses, since by the 

third month there are usually an adequate number of record to 

get a healthy estimations.  Parameter a is calculated for Board-

E as 0.1339 and for Board-F as 0.1266. 

 

 

        In Figure 4 and 5, discrete points represents real β values 

obtained from whole field return data analysis in terms of TTF 

(1, 2, 3, ,,,) as in the first step of this section.  Curves in Figure 

4 and 5 are derived from equation (5).  It is clear from these 

figures that as expected there is a significant match with real 

values in the warranty period.  The most important advantage 

of this method is the ability to work with past products 

warranty data and early warranty data of next generation 

products.  An additional result that shows consistency of our 

method is given in Figure-6, which shows result of the 

analysis conducted for another electronic board, Board-K, not 

a member of the family of Board B-E-F.  The estimated curve 

of Board-K is obtained from the same process used for other 

boards by using the same value for b.  There is a substantial 

difference between real beta values and the estimated curve in 

the Figure-6.  This happens mainly because Board-K is not a 

member of the family of Board B-E-F.  As a future work, we 

improve our model to be applicable for different electronic 

products.   

 

 
Figure 6- Comparison of estimated curve and real values for 

Board-K 

      In our method, the main challenge is accurately calculating 

the β values from early field return data.  In this section we 

calculate the β values from a large field data to show the 

consistency of our method.  But in the offered situation 

namely in the case of early warranty returns, data size (sample 

size) may not be sufficient relative to the whole field data, 

which affects the estimated β values in warranty analysis.  

Such a difference in the β values will cause a difference in 

parameters of the equation in (5).  In this situation, we propose 

to use Bayesian estimation method that gives more accurate 

results in the case of low sample size as discussed in section 

(3.5).  Table I illustrates this by comparing MLE and Bayesian 

methods for different sample sizes. 
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Figure 3- Beta values and their fitted curve for Board-B 

Figure 4- Comparison of estimated curve and real values for 

Board-E 

Figure 5- Comparison of estimated curve and real values for 

Board-F 

0 5 10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

1

Time (Month)

Real beta values and estimated curve for Board-E

B
et

a

 

 

Real beta values

Estimated curve



5 CONCLUSION 

       The main goal of our study is precisely predicting the 

reliability performance of electronic boards throughout the 

warranty period by using very short-term field return data. For 

electronic boards targeted in this study, warranty period is 3 

years, and we use field data of their first 3 months. 

Conventional reliability prediction methods can only predict 

very near future reliability of a product since they assume that 

failure mechanisms of a product do not change.  In this study, 

we propose a new method to overcome this problem.  The 

proposed method is evaluated by applying it to different 

electronic boards with field return data of 36 months (full 

warranty period).  The predicted results from our method and 

the direct results from the field return data matches well. This 

demonstrates the accuracy of our model.    
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