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Abstract—In this paper, defect tolerance performance of 

switching nano-crossbar arrays is extensively studied. Three types 

of nanoarrays where each crosspoint behaves as a diode, FET, and 

four-terminal switch, are considered. For each crosspoint, both 

stuck-open and stuck-closed defect probabilities are independently 

taken into consideration. A fast heuristic algorithm using indexing 

and mapping techniques is proposed. The algorithm measures de-

fect tolerance performances of the crossbar arrays that are ex-

pected to implement a certain given function. The algorithm’s ef-

fectiveness is demonstrated on standard benchmark circuits that 

shows 99% accuracy compared with an exhaustive search. The 

benchmark results also show that not only the used technology, the 

nanoarray type, but more significantly the specifics of given func-

tions affect defect tolerance performances.   
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I.  INTRODUCTION  

Developments in nano-crossbar fabrication techniques have 
made it possible to use each crosspoint as a conventional elec-
tronic component such as a diode, transistor, or switch [1] [2]. 
This is a unique opportunity that allows to integrate well devel-
oped conventional circuit design techniques into nano-crossbar 
arrays. As expected, the integration comes with some challenges 
and defect tolerance is one of the significant ones. Defect rates 
are much higher for nano-crossbars compared to conventional 
CMOS circuits [3]. Therefore developing new defect tolerance 
techniques for nano-crossbars is a must, especially for high de-
fect rates up to 20%. In this study, we assess and compare defect 
tolerance performances of different nano-crossbar architec-
tures/technologies that is conducted through finding a valid 
mapping in accordance with the proposed algorithm and defect 
maps in case of randomly distributed defects.  

 Crossbar nanotechnologies are favorably achieved by nano-
tubes or nanowires [4] [5] such that each crosspoint behaves as 
a diode, FET, and four-terminal switch [10] [12] [13]. This is 
illustrated in Figure 1. Regarding crosspoints as switching ele-
ments, both static and reconfigurable crossbars are presented. A 
predetermined design with static crossbars is not capable of de-
fect tolerance because it is not possible to create alternative 
routes for defective crosspoints. On the contrary, reconfigurable 
designs can be manipulated to tolerate defects. This study fo-
cuses on reconfigurable crossbars by considering randomly oc-
curred stuck-open and stuck-closed crosspoint defects. We con-
sider diode, FET, and four-terminal switch based crossbar ar-
rays.  While diode and FET based crossbars use conventional 
resistive diode and CMOS logic [1] [2] [12] [13], four-terminal 
switch based arrays use a novel logic synthesis methodology that 
is extensively studied in [10]. Figure 2 shows implementations 
of a specific Boolean function with these three synthesis meth-
ods.  

Mapping a target logic function on a defective crossbar is an 
NP-complete problem [6]. In the worst-case scenario, an N x M 
crossbar has N!M! permutations that is intractable for a reasona-
ble computing time. Different algorithms and heuristics are pre-
sented to tackle this issue. Graph based models are proposed in 
[7] and [8] that use a fan-out embedding heuristic and a maxi-
mum flow algorithm, respectively. In addition to graph based 
approaches, “Integer Linear Programming” is used in [9] and 
[14] that employs a pruning centered approach with certain con-
straints. It is shown in [14] that defect tolerance results might 
dramatically vary with the chosen algorithm correlated to the al-
gorithm’s accuracy. We test and compare our algorithm with an 
exhaustive search to establish an accuracy of 99%. However, it 

  
Fig. 1 (a) Nano-crossbar [12]  based on (b) diode [12], (c) FET [13], (d) 

four-terminal switch [10] crosspoints. 

 
Fig. 2. Implementation of  f = x1 x2 + x3 with (a) diode, (b) CMOS, and 

(c) four-terminal switch based logic; (d) assigning logic 1’s to x1 and x2 

makes a top-to-bottom connection that results in f=1. 



 

 

should be noted that large crossbars are computationally intrac-
table to be included in exhaustive search so we only consider 
crossbars up to 7x7 size for comparison. In addition, mentioned 
approaches so far are using pre-determined crossbar sizes to find 
a mapping for a chosen logic function. We use an optimal cross-
bar to realize a logic function which means that both the function 
and the crossbar matrices have the same size. We test logic func-
tions in Irredundant Sum-of-Products (ISOP) form that is con-
sistent with using optimal crossbar sizes. Also we include 3 dif-
ferent logic families for comparison which departs from the 
mentioned studies in the literature.  

We propose a heuristic algorithm that creates and compares 
index representations of a given function and a defective certain 
sized crossbar to be used to implement the function. We show 
that if the index representations are not matched then the defec-
tive crossbar cannot be used to implement the function; other-
wise, it can be used. We prove that this is a necessary and suffi-
cient condition. Our algorithm eliminates considerable amount 
of crossbar mapping permutations that is the main headache for 
the mentioned studies in the literature. Furthermore, our view-
point is comprehensive that is concerned both with the types of 
the crossbar technologies and the characteristics of given func-
tions. The proposed indexing based algorithm is direct used for 
diode and CMOS based logic of nano-crossbars. For four-termi-
nal switch based logic, the proposed algorithm is partially used; 
a conventional matrix based matching is mainly performed. Also 
we include 3 different logic families for comparison which de-
parts from stated studies. It is important to determine features of 
different families due to post-production selection according to 
inherent defect types. 

Organization of the paper is as follows. In section II, we give 
detailed explanation of key concepts used in the algorithm. In 
section III, we explain the proposed algorithm used for diode and 
CMOS based logic of nano-crossbars. In section IV, we briefly 
explain the defect tolerance technique used for four-terminal 
switch based logic. In section V, we present proof of correctness 
for theorem used in the algorithm. In section VI, we present ex-
perimental results and elaborate on them. In section VII, we dis-
cuss our contributions and future works. 

II. PRELIMINARIES 

We aim to find out whether it is possible or not to map a logic 

function on a given defective crossbar. For this purpose we deal 

with matrix representations of a given logic function and a de-

fective crossbar as shown in Figure 3. 

Function Matrix: Literals and products are appointed to the 

columns and rows, respectively. If a literal occurs in a product, 

it is denoted with 1; otherwise 0 is assigned.  

Crossbar Matrix: Functional switches of crossbars are denoted 

with x; defective stuck-open and stuck-closed switches are de-

noted with 0 and 1, respectively. It should be noted that func-

tional switches can be 0 or 1, so they can be matched with either 

element of a function matrix.  

In order to find a valid mapping, defective switches of a cross-

bar matrix which are denoted as 0 (stuck-open) or 1 (stuck-

closed) must be matched with 0’s (unused) and 1’s (used) in the 

function matrix. Here, an important property is that row and 

column permutations do not alter the implemented function, so 

there are exponentially many different implementations in 

terms of the crossbar size. This is an important advantage and 

feature for defect tolerance as illustrated in Figure 4. Our algo-

rithm exploits this feature to develop its indexing based meth-

odology. We use index concept in a distinct way for our algo-

rithm. Index means number of same matrix elements for a cho-  

sen value in a row or column.  

Row Index: Number of same elements in a row for a chosen 

value. For example, p4 in figure 3 has a row index of 3 for a 

chosen value of 0.   

Column Index: Number of same elements in a column for a 

chosen value. For example x4 in figure 3 has a column index of 

1 for a chosen value of 1. 

Double Index: It is found for “one” element of a matrix rather 

than for a row or a column. Double index is a 2-tuple denoted 

with (a, b). First number of tuple is a row index corresponding 

to the selected element’ occurrence in the row and second num-

ber of tuple is a column index with the same principle. For ex-

ample, double index of a44 (0) element of function matrix in 

Figure 3 is (3, 3). It lies in p4 row and x4 column; p4 has a row 

index of 3 and x4 has a column index of 3 for 0 value.  

In the proposed algorithm, we use set of mentioned indices to 

eliminate impossible mappings (row and column indices) and 

find valid mapping without considering all permutations (dou-

ble index). Definition of sets as follows: 

Set of Row Indices: A set of all row indices of a matrix for a 

chosen value. In Figure 3, rows of the function matrix p1, p2, p3 

and p4 have row indices 2, 3, 2 and 3, respectively, for a chosen 

value of 0. So its set of row indices is denoted as IR, F = {2, 3, 2, 

3} where R stands for row and F stands for function.  

Set of Column Indices: A set of all column indices of a matrix 

for a chosen value. In Figure 3, columns of the function matrix 

x1, x2, x3, x4 and x5 have column indices 2, 2, 2, 3 and 2, respec-

tively for a chosen value of 0. So its set of column indices is 

 
Fig. 3 Function matrix and crossbar matrices for different defect types. 

 

Fig. 4 Row and column permutation of the matrix to obtain valid mapping. 



 

 

denoted as IC,F = {2, 2, 2, 3, 2} where C stands for column and 

F stands for function. 

Set of Double Indices: A set of all double indices of matrix el-

ements having a same value. In Figure 3, set of double indices 

for 0 is DF = {(2,3), (2,2), (3,2), (3,2), (3,2), (3,2), (3,2), (3,2), 

(3,2), (3,2), (3,3)} where F stands for function and in case of 

crossbar C is used.  

It should be noted that, set of double indices stays the same after 

row and column permutation of a matrix. By checking equality 

of two sets, it is possible to conclude if there is a mapping be-

tween function and crossbar matrices. We will prove correct-

ness of these noted conclusion in section V.  

III. PROPOSED ALOGRITHM FOR DIODE AND CMOS BASED LOGIC 

The outline of our four-step algorithm is shown below.  

We will then explain each step in details. The algorithm will be 
demonstrated with an example in Figure 5. It should be noted 
that the example and the following explanations are for stuck-
open defects, nevertheless they can be applied easily for stuck-
closed defects by considering defects as 1s (as opposed to 0s) to 
be matched with 1s (as opposed to 0s) in the function matrix.  

The explanations of the algorithm steps for stuck-open defects: 

1. Step: If the number of defective switches is greater than the 

corresponding elements in the function matrix, then return 

“NO”. 

We consider stuck-open defects so algorithm checks 0s in the 

crossbar matrix to match 0s in the function matrix. If 0s in 

thecrossbar matrix is greater than 0s in the function matrix, then 

it is not possible to find mapping.  

2. Step: Sort matrices according to the row and column index, 

if crossbar matrix has at least one row or column index greater 

than a row or column index of the function matrix, return 

“NO”. 

We sort matrices according to the row and column indices. For 
example, in Figure 5 index sets of the sorted function and cross-
bar matrices for 0 are:  
IR, F = {2, 2, 2, 1} IC, F = {2, 2, 2, 1} 

IR, C = {2, 1, 0, 0} IC, C = {2, 1, 0, 0}. 

There is a perfect matching between sets. However, if a member 

of a crossbar set would be greater than corresponding member 

in a function set, there would not be matching. This would mean 

there are excessive defective element for matching.  For the ex-

ample in Figure 5, this is not an issue so we proceed to the 

3.step.  

3. Step: If the number of defects is equal to or smaller than the 
worst-case limit WC, return “YES”.  

Worst-case limit of a function matrix is the maximum number 
of tolerable defects in any defect distribution related to the row 
and column index. We find WC with using sets of row and col-
umn indices. First we choose minimum members in sets of row 
and column indices, separately. After that we choose the mini-
mum between two members obtained in the first step. WC gives 
us minimum row and column index. If crossbar matrix has de-
fective elements less than or equal to WC, then defects can be 
matched with any row and column in a function matrix. Let’s 
show finding WC of the function matrix in Figure 5. Index sets 
of the function are as follows: 

IR, F = {2, 2, 2, 1} IC, F = {2, 2, 2, 1} 
min{ IR, F} = 1 and min{ IC, F} = 1 so WC = 1  

In Figure 5, crossbar matrix has 3 defective elements, so we can-
not conclude if there is a matching without checking the fourth 
step.  

4. Step: Find the reduced matrix and find set of double indices. 
Start subarray search. If a subarray is found with the equal set 
of double indices as the reduced matrix with 20,000 trials, return 
“YES”; otherwise return “NO”. 

    

     
Fig. 5 Fourth step of the proposed algorithm: sorting the function matrix, 
crossbar reducing, and subarray search. 

Input: Function matrix and crossbar (defective) matrix 

Output: If there is a matching “YES”; otherwise “NO” 

Step 1:  If the number of defective switches is greater than 

the corresponding elements in the function matrix, 

then return “NO”.  

Step 2: Sort matrices according to the row and column in-

dex, if the crossbar matrix has at least one row or 

column index greater than a row or column index 

of the function matrix, return “NO”. 

Step 3: If the number of defects is equal to or smaller than 

the worst-case limit WC, return “YES”. 

Step 4: Find the reduced matrix and find set of double in-

dices. Start subarray search. If a subarray is found 

with the equal set of double indices as the reduced 

matrix with 20,000 trials, return “YES”; otherwise 

return “NO”. 

 



 

 

In a crossbar matrix, Xs corresponding to functional switches do 
not change the double index of a matrix element. For this reason, 
we erase columns and rows consisting of only such elements 
(Xs) for compactness. The acquired matrix keeps the same set of 
double indices. Figure 6 shows an example for this. 

 
Fig. 6 Reduced matrix for subarray search 

In the next step, we use a subarray search to find a matching 
between a reduced matrix and a subarray. Then, the function and 
crossbar matrices are sorted according to the sets of indices. We 
use this to increase the chance of finding matrices with the same 
set of double indices. Since matching elements are collected to 
the one side, search progresses diagonally. It can be seen from 
Figure 5 that seeking a subarray checks only set of double indi-
ces of a chosen subarray due to the Double Index Theorem, pre-
sented in the next section. As long as they have the same set of 
double indices, permutation of matrices is not necessary. Once 
two matrices are found with the same set, it means there is a 
mapping, so the algorithm returns “YES”. 

 Subarray search has a trial limit of 20,000. We choose this 
value because when compared with exhaustive search, it gives 
99% accuracy. When we run the algorithm by removing this lim-
itation, we see that there is almost no change in the values. This 
approves the proposed heuristic algorithm’s success. If a map-
ping could not be found in this range, it is interpreted as a nega-
tive result meaning that there is no mapping. In subarray search, 
double index theorem is only valid for matrices with the same 
number of elements to be matched. In case of unequal number 
of elements, new defective elements should be introduced to the 
reduced matrix to equalize the number of elements. If there are 
N missing elements for matching, 2N possibilities occurs for con-
sideration. Instead of this, functional switches denoted with x are 
shown with 0 and defective switches with 1. Same is applied to 
the subarray in the function matrix. Next, element by element 
multiplication of matrices is executed. Since functional switches 
can be matched with 0s and 1s in the function matrix, the result-
ing matrix can be compared with the reduced matrix. If they are 
equal, there is a matching. 

 In CMOS based design two matrices are used to model a 
logic function. All principles used for diode based design are 
valid with the exception of input permutations. In diode based 
design both inputs (columns) and products (rows) can be permu-
tated with respect to the crossbar which are checked for a map-
ping. In CMOS based design, the first matrix is for the function 
itself and the second matrix for its complement. Important dis-
tinction is that inputs are in the same order for both matrices. For 
this reason while a mapping is searched for a crossbar, rows of 
matrices can be permutated independently; however inputs must 
be in the same order for both matrices 

IV. DEFECT TOLERANCE  FOR FOUR-TERMINAL SWITCH BASED 

LOGIC 

For four-terminal switch based design, we partially use the pro-

posed algorithm. We use matrix based defect maps similar to 

those used in the proposed algorithm. Our defect tolerance tech-

nique mainly depends on permutation trials and its technical 

contribution is limited for the technical content of this paper. 

Therefore, we briefly mention about it. 
Defect Map: Four-terminal switch based design [10] uses every 
switch on the crossbar due to its layout method. Therefore there 
is no unused switch like those in diode and CMOS based de-
signs. However, certain functions yield redundant paths or extra 
connections between top and bottom plates. Figure 7 shows oc-
currence of extra connections. If a defect existing in a crossbar 
appears only on one of the connections, then it can be compen-
sated with the other connection and the correct result can still be 
achieved. A defect map of a function implemented with four-
terminal switch based design displays these type of connections.  

V. PROOF OF CORRECTNESS OF THE PROPOSED ALGORITHM 

For the proposed algorithm in Section II, checking only set of 

row and column indices is not sufficient in case of equal index 

sets. When the sets of row and column indices of two different 

matrices are equal to each other, it is not possible to decide 

whether there is a mapping or not definitely. An example in 

Figure 8 is shown in case of equal sets without a matching. For 

this reason we introduce set of double indices to obtain neces-

sary and sufficient cased for valid mapping. Before presenting 

the Double Index Theorem, let’s explain relating concepts.  

Matching one-to-one: Obtaining an identical matrix which is 

derived from another matrix with row and column 

permutations. In matching defined before, it is sufficient to 

match only defective elements. One-to-one matching provides 

an identical matrix. Importance of the distinciton lies in the 

connection of set of double indices to the mapping which will 

be explained in the proof of the theorem concerning the double 

indices. 

        
Fig. 7 (a) Four-terminal implementation of f with two connections between 

top and bottom plates; (b) In case of a stuck-open defect, first connection 

is broken down, however since there is a second connection f evaluates 

correctly. 

           
IR, F = {2, 2, 2} IC, F  = {1, 2, 1, 2}    

IR, C = {2, 2, 2} IC, C = {1, 2, 1, 2} 

Fig. 8. Both matrices have the same set of row and column indices for 0. 

However, there is no matching between them.  

 



 

 

Double Index Theorem: There is a one-to-one matching 
between two matrices if and only if their set of double indices 
are equivavelent. 

Lemma 1: Row and column permutations do not alter the 
double  index of a matrix element.  
Numbers of the double index are defined with the row and col-
umn indices in which the element is found. Therefore even 
though permutations changes the position of a row or a column, 
element is still in the same row and column with the same row 
and column indices which defines the double index.  
Lemma 2: Set of double indices is unique for a given matrix. 
The proof is by contradiction. Let’s assume such a matrix that 
has 2 different set of double indices. Therefore sets should have 
different double indices for one element or more. Double indices 
in a matrix are determined according to a row and column index. 
Since matrix is not altered and has same number of elements in 
rows and columns for a chosen value of 0 or 1, it is not possible 
to have different row and column indices that comprises double 
indices. This contradicts with the assumption of having different 
double index for an element or more. 
Lemma 3: Set of double indices for a matrix does not change 
with row and column permutations. 
Rows and columns of a matrix is consisted of matrix elements 
which have the same double index after permutations according 
to Lemma 1. Therefore set stays the same since its members are 
not changed.  
Proof of the Double Index Theorem:  
Sufficiency: If there is a one-to-one matching between two 
matrices, then they are identical by definition. Therefore their set 
of double indices is equivavelent according to Lemma 2. 
Necessity: Lemma 2 states that set of indices is unique for a 
certain matrix and Lemma 3 states that set of double indices 
stays the same after row and column permutation. Therefore, if 
two matrices have the same set of double indices, then they are 
either identical or permutation of one another; in both case they 
can be matched one-to-one.  
Let’s explain set of double indices of two matrices with an 
example in which both a function matrix and a crossbar matrix 
have the same set of double indices. 
Example 1) Figure 9 shows a function matrix and an crossbar 
matrix which have the set of indices as follows: 
DF = {(2,2), (2,1), (2,1), (2,2), (2,2), (2,2)} 
DC = {(2,2), (2,1), (2,1), (2,2), (2,2), (2,2)} 
Since their sets of double indices are the same there must be a 
permutation to acquire one-to-one matcing. Necessary 
manipulation is shown in Figure 9.   

VI. EXPERIMENTAL RESULTS 
We use standard benchmark circuits [11] to measure defect tol-
erance performances of different nano-crossbar technologies. 
We consider stuck-open and stuck-closed defect probabili-
ties/rates of 10% and 20% for each crosspoint independently.  
Simulations are conducted in Matlab. Crossbars with random 
defects are produced with Matlab’s predetermined function gen-
erator. To obtain defect tolerance values, a sample size of around 
600 is used. At this level defect tolerance fluctuation stabilizes. 
All experiments run on a 1.70-GHz Intel Core i5 CPU (only sin-
gle core used) with 4.00 GB memory. It takes 0.2 seconds for 
each sample in average to check a valid mapping that satisfies 
an accuracy of 99% compared with an exhaustive search.  

 Table 1 shows the results of benchmark functions with re-
spect to defect rates and defect types as well as the crossbar tech-
nologies. Considering the technologies and the related logic syn-
thesis methodologies, diode based logic always has a better de-
fect tolerance performance compared with the CMOS based one. 

Reason behind this is directly connected to the number of match-
ings necessitated for valid mapping. Since CMOS based logic 
uses two different planes for function realization, it needs to sat-
isfy two matchings instead of one. Another important conclusion 
is that four-terminal switch based design yields better results for 
stuck-closed defects than stuck-open ones since the design gen-
erally requires to assign same literals to multiple switches on the 
same conduction path. Characteristics of the functions also play 
an important role in defect tolerance. Since stuck-open defects 
are tolerated with zeros in the functions’ matrices, functions with 
relatively higher number of products compared to their number 
of literals have a better chance for tolerating stuck-open defects. 
On the contrary, functions with relatively higher number of lit-
erals compared to their number of products have a better chance 
for tolerating stuck-closed defects. For example Ex33 in Table 
1, has a 14% defect tolerance for stuck-closed and 99% for 
stuck-open type defects. Significant difference between values 
occurs because of the mentioned literal related properties. Using 
Ex33 is more favorable for a crossbar with higher probability of 
stuck-open type defects. 

VII. CONCLUSION 
In this study, we propose a novel heuristic algorithm to evaluate 
defect tolerance performances of diode, CMOS, and four-termi-
nal switch based logic families for nano-crossbar arrays. The al-
gorithm uses indexing and mapping techniques that eliminates 
considerable amount of crossbar mapping permutations which is 
the main headache for related studies in the literature. The algo-
rithm’s effectiveness is demonstrated on standard benchmark 
circuits. The results show that not only the used technology, the 
nanoarray type, but more significantly the specifics of given 
functions affect defect tolerance performances. As a future 
work, we will extend our proposed methodology to be applicable 
to different nano-crossbar technologies including magnetic and 
organic switch based nanoarrays. We also have a plan to con-
sider transient defects and optimum usage of redundancies to 
tolerate them.  
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Fig. 9. Row and column permutations to obtain valid mapping 



 

 

REFERENCES 
[1] G. Snider, P. Kuekes, T. Hogg and R. Williams, 'Nanoelectronic architectures', Appl. 

Phys. A, vol. 80, no. 6, pp. 1183-1195, 2005 

[2] A. Dehon, 'Nanowire-based programmable architectures', ACM Journal on 

Emerging Technologies in Computing Systems, vol. 1, no. 2, pp. 109-162, 2005. 

 

[3] C. Collier, 'Electronically Configurable Molecular-Based Logic Gates', Science, vol. 

285, no. 5426, pp. 391-394, 1999.. 

[4] M. Ziegler and M. Stan, 'CMOS/nano Co-design for crossbar-based molecular 

electronic systems', IEEE Trans. Nanotechnology, vol. 2, no. 4, pp. 217-230, 2003. 

[5] S. Goldstein and M. Budiu, 'NanoFabrics', ACM SIGARCH Computer Architecture 

News, vol. 29, no. 2, pp. 178-191, 2001. 

[6] Shrestha, A.M.S.; Tayu, S.; Ueno, S., "Orthogonal ray graphs and nano-PLA 

design," Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium 

on , vol., no., pp.2930,2933, 24-27 May 2009 

[7] Wenjing Rao; Orailoq, A.; Karri, R., "Topology aware mapping of logic functions 

onto nanowire-based crossbar architectures," Design Automation Conference, 2006 

43rd ACM/IEEE , vol., no., pp.723,726, 0-0 0 

[8] Jing Huang; Tahoori, M.B.; Lombardi, Fabrizio, "On the defect tolerance of nano-

scale two-dimensional crossbars," Defect and Fault Tolerance in VLSI Systems, 

2004. DFT 2004. Proceedings. 19th IEEE International Symposium on , vol., no., 

pp.96,104, 10-13 Oct. 2004. 

[9] Joon-Sung Yang; Datta, R., "Efficient Function Mapping in Nanoscale Crossbar 

Architecture," Defect and Fault Tolerance in VLSI and Nanotechnology Systems 

(DFT), 2011 IEEE International Symposium on , vol., no., pp.190,196, 3-5 Oct. 

2011.. 

[10] Altun, M.; Riedel, M.D., "Logic Synthesis for Switching Lattices," Computers, 

IEEE Transactions on , vol.61, no.11, pp.1588,1600, Nov. 2012. 

[11] K. McElvain, “IWLS93 benchmark set: Version 4.0, distributed as part of the 

IWLS93 benchmark distribution, 

http://www.cbl.ncsu.edu:16080/benchmarks/lgsynth93/,” 1993. 

[12] W. Lu and C. Lieber, 'Nanoelectronics from the bottom up', Nat Mater, vol. 6, no. 

11, pp. 841-850, 2007.. 

[13] P. Avouris, 'Molecular Electronics with Carbon Nanotubes', Acc. Chem. Res., vol. 

35, no. 12, pp. 1026-1034, 2002. 

[14] M. Zamani and H. Mirzaei and M.B. Tahoori. “ILP Formulations for 

Variation/Defect Tolerant Logic Mapping on Crossbar Nano-Architectures”. In 

ACM Journal on Emerging Technologies in Computing Systems, 2013. 

 

Circuit 

Name 

Diode 

 

CMOS 

 

Four-Terminal 

 

stuck-closed stuck-open stuck-closed stuck-open stuck-closed stuck-open 

10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 

Alu 0 85% 54% 99% 96% 63% 50% 93% 72% 86% 64% 52% 26% 

Alu 1 85% 54% 99% 96% 83% 53% 97% 73% 86% 64% 52% 26% 

Alu 2 85% 54% 99% 96% 83% 53% 97% 73% 86% 64% 52% 26% 

Alu 3 85% 54% 99% 96% 83% 53% 94% 73% 86% 64% 52% 26% 

B12 0 98% 80% 98% 74% 46% 5% 95% 59% 28% 7% 28% 7% 

B12 1 92% 33% 99% 75% 58% 1% 99% 91% 36% 9% 58% 19% 

B12 3 96% 77% 96% 78% 90% 58% 93% 68% 42% 17% 43% 16% 

B12 4 84% 40% 99% 96% 79% 25% 93% 74% 42% 17% 43% 16% 

B12 6 68% 2% 95% 47% 14% 1% 99% 85% 27% 7% 21% 11% 

B12 7 44% 2% 99% 95% 34% 1% 82% 75% 42% 11% 22% 3% 

B12 8 32% 1% 99% 97% 24% 1% 99% 99% 82% 40% 22% 4% 

C17 0 95% 78% 99% 94% 92% 70% 98% 87% 53% 26% 53% 26% 

C17 1 96% 77% 96% 78% 91% 64% 92% 69% 43% 16% 43% 16% 

Clpl 0 97% 69% 99% 98% 78% 23% 99% 92% 62% 29% 53% 20% 

Clpl 1 98% 84% 99% 95% 98% 83% 98% 82% 39% 14% 48% 20% 

Clpl 2 97% 82% 99% 94% 93% 79% 98% 92% 67% 40% 65% 42% 

Clpl 3 87% 53% 99% 81% 49% 1% 50% 21% 18% 3% 41% 10% 

Clpl 4 91% 41% 99% 97% 74% 6% 63% 50% 18% 3% 41% 12% 

Dc1 1 99% 97% 95% 75% 84% 52% 93% 73% 52% 25% 52% 25% 

Dc1 2 93% 55% 99% 96% 68% 9% 99% 96% 28% 6% 28% 6% 

Dc1 5 99% 95% 97% 85% 96% 84% 84% 53% 65% 38% 53% 26% 

Dc1 6 95% 79% 99% 88% 94% 70% 98% 86% 53% 25% 53% 25% 

Ex5 31 56% 5% 99% 95% 30% 1% 83% 64% 35% 7% 22% 2% 

Ex5 33 14% 1% 99% 98% 9% 1% 60% 43% 66% 28% 25% 4% 

Ex5 46 45% 5% 99% 99% 38% 1% 84% 65% 17% 1% 28% 6% 

Ex5 49 3% 0% 99% 99% 1% 1% 84% 65% 90% 32% 28% 6% 

Ex5 50 23% 1% 99% 99% 22% 1% 87% 45% 93% 75% 22% 4% 

Ex5 61 29% 2% 99% 99% 25% 1% 98% 78% 90% 32% 43% 16% 

Ex5 62 28% 1% 98% 85% 23% 1% 96% 74% 95% 74% 37% 12% 

Misex1 1 99% 96% 92% 66% 65% 17% 52% 9% 44% 16% 43% 16% 

Misex1 2 78% 18% 99% 92% 30% 1% 98% 87% 29% 6% 36% 10% 

Misex1 3 94% 38% 99% 86% 10% 1% 96% 67% 8% 1% 38% 11% 

Misex1 4 93% 44% 99% 94% 8% 1% 99% 89% 27% 5% 38% 10% 

Misex1 5 86% 45% 97% 80% 63% 3% 95% 64% 26% 4% 42% 14% 

Misex1 6 89% 28% 99% 86% 26% 1% 93% 73% 12% 2% 29% 5% 

Misex1 7 95% 57% 99% 92% 50% 1% 99% 93% 21% 3% 49% 15% 

Newtag 59% 4% 99% 98% 52% 1% 96% 52% 62% 22% 30% 7% 

Table 1 Defect tolerance performances of 3 different nano-crossbar based logic families. 


