

Defect Tolerance in Diode, FET, and Four-Terminal

Switch Based Nano-Crossbar Arrays
Onur Tunalı

Nanoscience and Nanoengineering Department

Istanbul Technical University

onur.tunali@itu.edu.tr

Mustafa Altun

Electronics and Communication Engineering Department

Istanbul Technical University

altunmus@itu.edu.tr

Abstract—In this paper, defect tolerance performance of

switching nano-crossbar arrays is extensively studied. Three types

of nanoarrays where each crosspoint behaves as a diode, FET, and

four-terminal switch, are considered. For each crosspoint, both

stuck-open and stuck-closed defect probabilities are independently

taken into consideration. A fast heuristic algorithm using indexing

and mapping techniques is proposed. The algorithm measures de-

fect tolerance performances of the crossbar arrays that are ex-

pected to implement a certain given function. The algorithm’s ef-

fectiveness is demonstrated on standard benchmark circuits that

shows 99% accuracy compared with an exhaustive search. The

benchmark results also show that not only the used technology, the

nanoarray type, but more significantly the specifics of given func-

tions affect defect tolerance performances.

Keywords—defect tolerance, nano-crossbar, reconfigurable arrays

I. INTRODUCTION

Developments in nano-crossbar fabrication techniques have
made it possible to use each crosspoint as a conventional elec-
tronic component such as a diode, transistor, or switch [1] [2].
This is a unique opportunity that allows to integrate well devel-
oped conventional circuit design techniques into nano-crossbar
arrays. As expected, the integration comes with some challenges
and defect tolerance is one of the significant ones. Defect rates
are much higher for nano-crossbars compared to conventional
CMOS circuits [3]. Therefore developing new defect tolerance
techniques for nano-crossbars is a must, especially for high de-
fect rates up to 20%. In this study, we assess and compare defect
tolerance performances of different nano-crossbar architec-
tures/technologies that is conducted through finding a valid
mapping in accordance with the proposed algorithm and defect
maps in case of randomly distributed defects.

 Crossbar nanotechnologies are favorably achieved by nano-
tubes or nanowires [4] [5] such that each crosspoint behaves as
a diode, FET, and four-terminal switch [10] [12] [13]. This is
illustrated in Figure 1. Regarding crosspoints as switching ele-
ments, both static and reconfigurable crossbars are presented. A
predetermined design with static crossbars is not capable of de-
fect tolerance because it is not possible to create alternative
routes for defective crosspoints. On the contrary, reconfigurable
designs can be manipulated to tolerate defects. This study fo-
cuses on reconfigurable crossbars by considering randomly oc-
curred stuck-open and stuck-closed crosspoint defects. We con-
sider diode, FET, and four-terminal switch based crossbar ar-
rays. While diode and FET based crossbars use conventional
resistive diode and CMOS logic [1] [2] [12] [13], four-terminal
switch based arrays use a novel logic synthesis methodology that
is extensively studied in [10]. Figure 2 shows implementations
of a specific Boolean function with these three synthesis meth-
ods.

Mapping a target logic function on a defective crossbar is an
NP-complete problem [6]. In the worst-case scenario, an N x M
crossbar has N!M! permutations that is intractable for a reasona-
ble computing time. Different algorithms and heuristics are pre-
sented to tackle this issue. Graph based models are proposed in
[7] and [8] that use a fan-out embedding heuristic and a maxi-
mum flow algorithm, respectively. In addition to graph based
approaches, “Integer Linear Programming” is used in [9] and
[14] that employs a pruning centered approach with certain con-
straints. It is shown in [14] that defect tolerance results might
dramatically vary with the chosen algorithm correlated to the al-
gorithm’s accuracy. We test and compare our algorithm with an
exhaustive search to establish an accuracy of 99%. However, it

Fig. 1 (a) Nano-crossbar [12] based on (b) diode [12], (c) FET [13], (d)

four-terminal switch [10] crosspoints.

Fig. 2. Implementation of f = x1 x2 + x3 with (a) diode, (b) CMOS, and

(c) four-terminal switch based logic; (d) assigning logic 1’s to x1 and x2

makes a top-to-bottom connection that results in f=1.

should be noted that large crossbars are computationally intrac-
table to be included in exhaustive search so we only consider
crossbars up to 7x7 size for comparison. In addition, mentioned
approaches so far are using pre-determined crossbar sizes to find
a mapping for a chosen logic function. We use an optimal cross-
bar to realize a logic function which means that both the function
and the crossbar matrices have the same size. We test logic func-
tions in Irredundant Sum-of-Products (ISOP) form that is con-
sistent with using optimal crossbar sizes. Also we include 3 dif-
ferent logic families for comparison which departs from the
mentioned studies in the literature.

We propose a heuristic algorithm that creates and compares
index representations of a given function and a defective certain
sized crossbar to be used to implement the function. We show
that if the index representations are not matched then the defec-
tive crossbar cannot be used to implement the function; other-
wise, it can be used. We prove that this is a necessary and suffi-
cient condition. Our algorithm eliminates considerable amount
of crossbar mapping permutations that is the main headache for
the mentioned studies in the literature. Furthermore, our view-
point is comprehensive that is concerned both with the types of
the crossbar technologies and the characteristics of given func-
tions. The proposed indexing based algorithm is direct used for
diode and CMOS based logic of nano-crossbars. For four-termi-
nal switch based logic, the proposed algorithm is partially used;
a conventional matrix based matching is mainly performed. Also
we include 3 different logic families for comparison which de-
parts from stated studies. It is important to determine features of
different families due to post-production selection according to
inherent defect types.

Organization of the paper is as follows. In section II, we give
detailed explanation of key concepts used in the algorithm. In
section III, we explain the proposed algorithm used for diode and
CMOS based logic of nano-crossbars. In section IV, we briefly
explain the defect tolerance technique used for four-terminal
switch based logic. In section V, we present proof of correctness
for theorem used in the algorithm. In section VI, we present ex-
perimental results and elaborate on them. In section VII, we dis-
cuss our contributions and future works.

II. PRELIMINARIES

We aim to find out whether it is possible or not to map a logic

function on a given defective crossbar. For this purpose we deal

with matrix representations of a given logic function and a de-

fective crossbar as shown in Figure 3.

Function Matrix: Literals and products are appointed to the

columns and rows, respectively. If a literal occurs in a product,

it is denoted with 1; otherwise 0 is assigned.

Crossbar Matrix: Functional switches of crossbars are denoted

with x; defective stuck-open and stuck-closed switches are de-

noted with 0 and 1, respectively. It should be noted that func-

tional switches can be 0 or 1, so they can be matched with either

element of a function matrix.

In order to find a valid mapping, defective switches of a cross-

bar matrix which are denoted as 0 (stuck-open) or 1 (stuck-

closed) must be matched with 0’s (unused) and 1’s (used) in the

function matrix. Here, an important property is that row and

column permutations do not alter the implemented function, so

there are exponentially many different implementations in

terms of the crossbar size. This is an important advantage and

feature for defect tolerance as illustrated in Figure 4. Our algo-

rithm exploits this feature to develop its indexing based meth-

odology. We use index concept in a distinct way for our algo-

rithm. Index means number of same matrix elements for a cho-

sen value in a row or column.

Row Index: Number of same elements in a row for a chosen

value. For example, p4 in figure 3 has a row index of 3 for a

chosen value of 0.

Column Index: Number of same elements in a column for a

chosen value. For example x4 in figure 3 has a column index of

1 for a chosen value of 1.

Double Index: It is found for “one” element of a matrix rather

than for a row or a column. Double index is a 2-tuple denoted

with (a, b). First number of tuple is a row index corresponding

to the selected element’ occurrence in the row and second num-

ber of tuple is a column index with the same principle. For ex-

ample, double index of a44 (0) element of function matrix in

Figure 3 is (3, 3). It lies in p4 row and x4 column; p4 has a row

index of 3 and x4 has a column index of 3 for 0 value.

In the proposed algorithm, we use set of mentioned indices to

eliminate impossible mappings (row and column indices) and

find valid mapping without considering all permutations (dou-

ble index). Definition of sets as follows:

Set of Row Indices: A set of all row indices of a matrix for a

chosen value. In Figure 3, rows of the function matrix p1, p2, p3

and p4 have row indices 2, 3, 2 and 3, respectively, for a chosen

value of 0. So its set of row indices is denoted as IR, F = {2, 3, 2,

3} where R stands for row and F stands for function.

Set of Column Indices: A set of all column indices of a matrix

for a chosen value. In Figure 3, columns of the function matrix

x1, x2, x3, x4 and x5 have column indices 2, 2, 2, 3 and 2, respec-

tively for a chosen value of 0. So its set of column indices is

Fig. 3 Function matrix and crossbar matrices for different defect types.

Fig. 4 Row and column permutation of the matrix to obtain valid mapping.

denoted as IC,F = {2, 2, 2, 3, 2} where C stands for column and

F stands for function.

Set of Double Indices: A set of all double indices of matrix el-

ements having a same value. In Figure 3, set of double indices

for 0 is DF = {(2,3), (2,2), (3,2), (3,2), (3,2), (3,2), (3,2), (3,2),

(3,2), (3,2), (3,3)} where F stands for function and in case of

crossbar C is used.

It should be noted that, set of double indices stays the same after

row and column permutation of a matrix. By checking equality

of two sets, it is possible to conclude if there is a mapping be-

tween function and crossbar matrices. We will prove correct-

ness of these noted conclusion in section V.

III. PROPOSED ALOGRITHM FOR DIODE AND CMOS BASED LOGIC

The outline of our four-step algorithm is shown below.

We will then explain each step in details. The algorithm will be
demonstrated with an example in Figure 5. It should be noted
that the example and the following explanations are for stuck-
open defects, nevertheless they can be applied easily for stuck-
closed defects by considering defects as 1s (as opposed to 0s) to
be matched with 1s (as opposed to 0s) in the function matrix.

The explanations of the algorithm steps for stuck-open defects:

1. Step: If the number of defective switches is greater than the

corresponding elements in the function matrix, then return

“NO”.

We consider stuck-open defects so algorithm checks 0s in the

crossbar matrix to match 0s in the function matrix. If 0s in

thecrossbar matrix is greater than 0s in the function matrix, then

it is not possible to find mapping.

2. Step: Sort matrices according to the row and column index,

if crossbar matrix has at least one row or column index greater

than a row or column index of the function matrix, return

“NO”.

We sort matrices according to the row and column indices. For
example, in Figure 5 index sets of the sorted function and cross-
bar matrices for 0 are:
IR, F = {2, 2, 2, 1} IC, F = {2, 2, 2, 1}

IR, C = {2, 1, 0, 0} IC, C = {2, 1, 0, 0}.

There is a perfect matching between sets. However, if a member

of a crossbar set would be greater than corresponding member

in a function set, there would not be matching. This would mean

there are excessive defective element for matching. For the ex-

ample in Figure 5, this is not an issue so we proceed to the

3.step.

3. Step: If the number of defects is equal to or smaller than the
worst-case limit WC, return “YES”.

Worst-case limit of a function matrix is the maximum number
of tolerable defects in any defect distribution related to the row
and column index. We find WC with using sets of row and col-
umn indices. First we choose minimum members in sets of row
and column indices, separately. After that we choose the mini-
mum between two members obtained in the first step. WC gives
us minimum row and column index. If crossbar matrix has de-
fective elements less than or equal to WC, then defects can be
matched with any row and column in a function matrix. Let’s
show finding WC of the function matrix in Figure 5. Index sets
of the function are as follows:

IR, F = {2, 2, 2, 1} IC, F = {2, 2, 2, 1}
min{ IR, F} = 1 and min{ IC, F} = 1 so WC = 1

In Figure 5, crossbar matrix has 3 defective elements, so we can-
not conclude if there is a matching without checking the fourth
step.

4. Step: Find the reduced matrix and find set of double indices.
Start subarray search. If a subarray is found with the equal set
of double indices as the reduced matrix with 20,000 trials, return
“YES”; otherwise return “NO”.

Fig. 5 Fourth step of the proposed algorithm: sorting the function matrix,
crossbar reducing, and subarray search.

Input: Function matrix and crossbar (defective) matrix

Output: If there is a matching “YES”; otherwise “NO”

Step 1: If the number of defective switches is greater than

the corresponding elements in the function matrix,

then return “NO”.

Step 2: Sort matrices according to the row and column in-

dex, if the crossbar matrix has at least one row or

column index greater than a row or column index

of the function matrix, return “NO”.

Step 3: If the number of defects is equal to or smaller than

the worst-case limit WC, return “YES”.

Step 4: Find the reduced matrix and find set of double in-

dices. Start subarray search. If a subarray is found

with the equal set of double indices as the reduced

matrix with 20,000 trials, return “YES”; otherwise

return “NO”.

In a crossbar matrix, Xs corresponding to functional switches do
not change the double index of a matrix element. For this reason,
we erase columns and rows consisting of only such elements
(Xs) for compactness. The acquired matrix keeps the same set of
double indices. Figure 6 shows an example for this.

Fig. 6 Reduced matrix for subarray search

In the next step, we use a subarray search to find a matching
between a reduced matrix and a subarray. Then, the function and
crossbar matrices are sorted according to the sets of indices. We
use this to increase the chance of finding matrices with the same
set of double indices. Since matching elements are collected to
the one side, search progresses diagonally. It can be seen from
Figure 5 that seeking a subarray checks only set of double indi-
ces of a chosen subarray due to the Double Index Theorem, pre-
sented in the next section. As long as they have the same set of
double indices, permutation of matrices is not necessary. Once
two matrices are found with the same set, it means there is a
mapping, so the algorithm returns “YES”.

 Subarray search has a trial limit of 20,000. We choose this
value because when compared with exhaustive search, it gives
99% accuracy. When we run the algorithm by removing this lim-
itation, we see that there is almost no change in the values. This
approves the proposed heuristic algorithm’s success. If a map-
ping could not be found in this range, it is interpreted as a nega-
tive result meaning that there is no mapping. In subarray search,
double index theorem is only valid for matrices with the same
number of elements to be matched. In case of unequal number
of elements, new defective elements should be introduced to the
reduced matrix to equalize the number of elements. If there are
N missing elements for matching, 2N possibilities occurs for con-
sideration. Instead of this, functional switches denoted with x are
shown with 0 and defective switches with 1. Same is applied to
the subarray in the function matrix. Next, element by element
multiplication of matrices is executed. Since functional switches
can be matched with 0s and 1s in the function matrix, the result-
ing matrix can be compared with the reduced matrix. If they are
equal, there is a matching.

 In CMOS based design two matrices are used to model a
logic function. All principles used for diode based design are
valid with the exception of input permutations. In diode based
design both inputs (columns) and products (rows) can be permu-
tated with respect to the crossbar which are checked for a map-
ping. In CMOS based design, the first matrix is for the function
itself and the second matrix for its complement. Important dis-
tinction is that inputs are in the same order for both matrices. For
this reason while a mapping is searched for a crossbar, rows of
matrices can be permutated independently; however inputs must
be in the same order for both matrices

IV. DEFECT TOLERANCE FOR FOUR-TERMINAL SWITCH BASED

LOGIC

For four-terminal switch based design, we partially use the pro-

posed algorithm. We use matrix based defect maps similar to

those used in the proposed algorithm. Our defect tolerance tech-

nique mainly depends on permutation trials and its technical

contribution is limited for the technical content of this paper.

Therefore, we briefly mention about it.
Defect Map: Four-terminal switch based design [10] uses every
switch on the crossbar due to its layout method. Therefore there
is no unused switch like those in diode and CMOS based de-
signs. However, certain functions yield redundant paths or extra
connections between top and bottom plates. Figure 7 shows oc-
currence of extra connections. If a defect existing in a crossbar
appears only on one of the connections, then it can be compen-
sated with the other connection and the correct result can still be
achieved. A defect map of a function implemented with four-
terminal switch based design displays these type of connections.

V. PROOF OF CORRECTNESS OF THE PROPOSED ALGORITHM

For the proposed algorithm in Section II, checking only set of

row and column indices is not sufficient in case of equal index

sets. When the sets of row and column indices of two different

matrices are equal to each other, it is not possible to decide

whether there is a mapping or not definitely. An example in

Figure 8 is shown in case of equal sets without a matching. For

this reason we introduce set of double indices to obtain neces-

sary and sufficient cased for valid mapping. Before presenting

the Double Index Theorem, let’s explain relating concepts.

Matching one-to-one: Obtaining an identical matrix which is

derived from another matrix with row and column

permutations. In matching defined before, it is sufficient to

match only defective elements. One-to-one matching provides

an identical matrix. Importance of the distinciton lies in the

connection of set of double indices to the mapping which will

be explained in the proof of the theorem concerning the double

indices.

Fig. 7 (a) Four-terminal implementation of f with two connections between

top and bottom plates; (b) In case of a stuck-open defect, first connection

is broken down, however since there is a second connection f evaluates

correctly.

IR, F = {2, 2, 2} IC, F = {1, 2, 1, 2}

IR, C = {2, 2, 2} IC, C = {1, 2, 1, 2}

Fig. 8. Both matrices have the same set of row and column indices for 0.

However, there is no matching between them.

Double Index Theorem: There is a one-to-one matching
between two matrices if and only if their set of double indices
are equivavelent.

Lemma 1: Row and column permutations do not alter the
double index of a matrix element.
Numbers of the double index are defined with the row and col-
umn indices in which the element is found. Therefore even
though permutations changes the position of a row or a column,
element is still in the same row and column with the same row
and column indices which defines the double index.
Lemma 2: Set of double indices is unique for a given matrix.
The proof is by contradiction. Let’s assume such a matrix that
has 2 different set of double indices. Therefore sets should have
different double indices for one element or more. Double indices
in a matrix are determined according to a row and column index.
Since matrix is not altered and has same number of elements in
rows and columns for a chosen value of 0 or 1, it is not possible
to have different row and column indices that comprises double
indices. This contradicts with the assumption of having different
double index for an element or more.
Lemma 3: Set of double indices for a matrix does not change
with row and column permutations.
Rows and columns of a matrix is consisted of matrix elements
which have the same double index after permutations according
to Lemma 1. Therefore set stays the same since its members are
not changed.
Proof of the Double Index Theorem:
Sufficiency: If there is a one-to-one matching between two
matrices, then they are identical by definition. Therefore their set
of double indices is equivavelent according to Lemma 2.
Necessity: Lemma 2 states that set of indices is unique for a
certain matrix and Lemma 3 states that set of double indices
stays the same after row and column permutation. Therefore, if
two matrices have the same set of double indices, then they are
either identical or permutation of one another; in both case they
can be matched one-to-one.
Let’s explain set of double indices of two matrices with an
example in which both a function matrix and a crossbar matrix
have the same set of double indices.
Example 1) Figure 9 shows a function matrix and an crossbar
matrix which have the set of indices as follows:
DF = {(2,2), (2,1), (2,1), (2,2), (2,2), (2,2)}
DC = {(2,2), (2,1), (2,1), (2,2), (2,2), (2,2)}
Since their sets of double indices are the same there must be a
permutation to acquire one-to-one matcing. Necessary
manipulation is shown in Figure 9.

VI. EXPERIMENTAL RESULTS
We use standard benchmark circuits [11] to measure defect tol-
erance performances of different nano-crossbar technologies.
We consider stuck-open and stuck-closed defect probabili-
ties/rates of 10% and 20% for each crosspoint independently.
Simulations are conducted in Matlab. Crossbars with random
defects are produced with Matlab’s predetermined function gen-
erator. To obtain defect tolerance values, a sample size of around
600 is used. At this level defect tolerance fluctuation stabilizes.
All experiments run on a 1.70-GHz Intel Core i5 CPU (only sin-
gle core used) with 4.00 GB memory. It takes 0.2 seconds for
each sample in average to check a valid mapping that satisfies
an accuracy of 99% compared with an exhaustive search.

 Table 1 shows the results of benchmark functions with re-
spect to defect rates and defect types as well as the crossbar tech-
nologies. Considering the technologies and the related logic syn-
thesis methodologies, diode based logic always has a better de-
fect tolerance performance compared with the CMOS based one.

Reason behind this is directly connected to the number of match-
ings necessitated for valid mapping. Since CMOS based logic
uses two different planes for function realization, it needs to sat-
isfy two matchings instead of one. Another important conclusion
is that four-terminal switch based design yields better results for
stuck-closed defects than stuck-open ones since the design gen-
erally requires to assign same literals to multiple switches on the
same conduction path. Characteristics of the functions also play
an important role in defect tolerance. Since stuck-open defects
are tolerated with zeros in the functions’ matrices, functions with
relatively higher number of products compared to their number
of literals have a better chance for tolerating stuck-open defects.
On the contrary, functions with relatively higher number of lit-
erals compared to their number of products have a better chance
for tolerating stuck-closed defects. For example Ex33 in Table
1, has a 14% defect tolerance for stuck-closed and 99% for
stuck-open type defects. Significant difference between values
occurs because of the mentioned literal related properties. Using
Ex33 is more favorable for a crossbar with higher probability of
stuck-open type defects.

VII. CONCLUSION
In this study, we propose a novel heuristic algorithm to evaluate
defect tolerance performances of diode, CMOS, and four-termi-
nal switch based logic families for nano-crossbar arrays. The al-
gorithm uses indexing and mapping techniques that eliminates
considerable amount of crossbar mapping permutations which is
the main headache for related studies in the literature. The algo-
rithm’s effectiveness is demonstrated on standard benchmark
circuits. The results show that not only the used technology, the
nanoarray type, but more significantly the specifics of given
functions affect defect tolerance performances. As a future
work, we will extend our proposed methodology to be applicable
to different nano-crossbar technologies including magnetic and
organic switch based nanoarrays. We also have a plan to con-
sider transient defects and optimum usage of redundancies to
tolerate them.

ACKNOWLEDGEMENT
This work is supported by TUBITAK (The Scientific and

Technological Research Council of Turkey) Career #113E760
and 2210-C programs.

Fig. 9. Row and column permutations to obtain valid mapping

REFERENCES
[1] G. Snider, P. Kuekes, T. Hogg and R. Williams, 'Nanoelectronic architectures', Appl.

Phys. A, vol. 80, no. 6, pp. 1183-1195, 2005

[2] A. Dehon, 'Nanowire-based programmable architectures', ACM Journal on

Emerging Technologies in Computing Systems, vol. 1, no. 2, pp. 109-162, 2005.

[3] C. Collier, 'Electronically Configurable Molecular-Based Logic Gates', Science, vol.

285, no. 5426, pp. 391-394, 1999..

[4] M. Ziegler and M. Stan, 'CMOS/nano Co-design for crossbar-based molecular

electronic systems', IEEE Trans. Nanotechnology, vol. 2, no. 4, pp. 217-230, 2003.

[5] S. Goldstein and M. Budiu, 'NanoFabrics', ACM SIGARCH Computer Architecture

News, vol. 29, no. 2, pp. 178-191, 2001.

[6] Shrestha, A.M.S.; Tayu, S.; Ueno, S., "Orthogonal ray graphs and nano-PLA

design," Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium

on , vol., no., pp.2930,2933, 24-27 May 2009

[7] Wenjing Rao; Orailoq, A.; Karri, R., "Topology aware mapping of logic functions

onto nanowire-based crossbar architectures," Design Automation Conference, 2006

43rd ACM/IEEE , vol., no., pp.723,726, 0-0 0

[8] Jing Huang; Tahoori, M.B.; Lombardi, Fabrizio, "On the defect tolerance of nano-

scale two-dimensional crossbars," Defect and Fault Tolerance in VLSI Systems,

2004. DFT 2004. Proceedings. 19th IEEE International Symposium on , vol., no.,

pp.96,104, 10-13 Oct. 2004.

[9] Joon-Sung Yang; Datta, R., "Efficient Function Mapping in Nanoscale Crossbar

Architecture," Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFT), 2011 IEEE International Symposium on , vol., no., pp.190,196, 3-5 Oct.

2011..

[10] Altun, M.; Riedel, M.D., "Logic Synthesis for Switching Lattices," Computers,

IEEE Transactions on , vol.61, no.11, pp.1588,1600, Nov. 2012.

[11] K. McElvain, “IWLS93 benchmark set: Version 4.0, distributed as part of the

IWLS93 benchmark distribution,

http://www.cbl.ncsu.edu:16080/benchmarks/lgsynth93/,” 1993.

[12] W. Lu and C. Lieber, 'Nanoelectronics from the bottom up', Nat Mater, vol. 6, no.

11, pp. 841-850, 2007..

[13] P. Avouris, 'Molecular Electronics with Carbon Nanotubes', Acc. Chem. Res., vol.

35, no. 12, pp. 1026-1034, 2002.

[14] M. Zamani and H. Mirzaei and M.B. Tahoori. “ILP Formulations for

Variation/Defect Tolerant Logic Mapping on Crossbar Nano-Architectures”. In

ACM Journal on Emerging Technologies in Computing Systems, 2013.

Circuit

Name

Diode

CMOS

Four-Terminal

stuck-closed stuck-open stuck-closed stuck-open stuck-closed stuck-open

10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 10% 20%

Alu 0 85% 54% 99% 96% 63% 50% 93% 72% 86% 64% 52% 26%

Alu 1 85% 54% 99% 96% 83% 53% 97% 73% 86% 64% 52% 26%

Alu 2 85% 54% 99% 96% 83% 53% 97% 73% 86% 64% 52% 26%

Alu 3 85% 54% 99% 96% 83% 53% 94% 73% 86% 64% 52% 26%

B12 0 98% 80% 98% 74% 46% 5% 95% 59% 28% 7% 28% 7%

B12 1 92% 33% 99% 75% 58% 1% 99% 91% 36% 9% 58% 19%

B12 3 96% 77% 96% 78% 90% 58% 93% 68% 42% 17% 43% 16%

B12 4 84% 40% 99% 96% 79% 25% 93% 74% 42% 17% 43% 16%

B12 6 68% 2% 95% 47% 14% 1% 99% 85% 27% 7% 21% 11%

B12 7 44% 2% 99% 95% 34% 1% 82% 75% 42% 11% 22% 3%

B12 8 32% 1% 99% 97% 24% 1% 99% 99% 82% 40% 22% 4%

C17 0 95% 78% 99% 94% 92% 70% 98% 87% 53% 26% 53% 26%

C17 1 96% 77% 96% 78% 91% 64% 92% 69% 43% 16% 43% 16%

Clpl 0 97% 69% 99% 98% 78% 23% 99% 92% 62% 29% 53% 20%

Clpl 1 98% 84% 99% 95% 98% 83% 98% 82% 39% 14% 48% 20%

Clpl 2 97% 82% 99% 94% 93% 79% 98% 92% 67% 40% 65% 42%

Clpl 3 87% 53% 99% 81% 49% 1% 50% 21% 18% 3% 41% 10%

Clpl 4 91% 41% 99% 97% 74% 6% 63% 50% 18% 3% 41% 12%

Dc1 1 99% 97% 95% 75% 84% 52% 93% 73% 52% 25% 52% 25%

Dc1 2 93% 55% 99% 96% 68% 9% 99% 96% 28% 6% 28% 6%

Dc1 5 99% 95% 97% 85% 96% 84% 84% 53% 65% 38% 53% 26%

Dc1 6 95% 79% 99% 88% 94% 70% 98% 86% 53% 25% 53% 25%

Ex5 31 56% 5% 99% 95% 30% 1% 83% 64% 35% 7% 22% 2%

Ex5 33 14% 1% 99% 98% 9% 1% 60% 43% 66% 28% 25% 4%

Ex5 46 45% 5% 99% 99% 38% 1% 84% 65% 17% 1% 28% 6%

Ex5 49 3% 0% 99% 99% 1% 1% 84% 65% 90% 32% 28% 6%

Ex5 50 23% 1% 99% 99% 22% 1% 87% 45% 93% 75% 22% 4%

Ex5 61 29% 2% 99% 99% 25% 1% 98% 78% 90% 32% 43% 16%

Ex5 62 28% 1% 98% 85% 23% 1% 96% 74% 95% 74% 37% 12%

Misex1 1 99% 96% 92% 66% 65% 17% 52% 9% 44% 16% 43% 16%

Misex1 2 78% 18% 99% 92% 30% 1% 98% 87% 29% 6% 36% 10%

Misex1 3 94% 38% 99% 86% 10% 1% 96% 67% 8% 1% 38% 11%

Misex1 4 93% 44% 99% 94% 8% 1% 99% 89% 27% 5% 38% 10%

Misex1 5 86% 45% 97% 80% 63% 3% 95% 64% 26% 4% 42% 14%

Misex1 6 89% 28% 99% 86% 26% 1% 93% 73% 12% 2% 29% 5%

Misex1 7 95% 57% 99% 92% 50% 1% 99% 93% 21% 3% 49% 15%

Newtag 59% 4% 99% 98% 52% 1% 96% 52% 62% 22% 30% 7%

Table 1 Defect tolerance performances of 3 different nano-crossbar based logic families.

