
 
 
 

 
 

1 INTRODUCTION  

The rapid developments in electronics, especially in 
the last decade, have initiated the inception of 
electronics reliability (O’Connor & Kleyner, 2011). 
Conventionally used accelerated reliability tests have 
lost their significance; time consuming and expensive 
feature of these tests is against the demands of today's 
very rapid electronic product cycles (Pecht, 2010). 
This underlines the importance of using the product’s 
field return data for reliability analysis that is 
relatively cheap and time saving (Kleyner & 
Sandborn, 2004; Wu, 2012]). In this study, we 
propose a complete reliability methodology 
exploiting field return data of electronic boards.  
      

Field return data can be used for variety of 
purposes that include the prediction of future claims, 
the estimation of field reliability, and the 
identification of opportunities for quality and 
reliability improvement. (O’Connor & Kleyner, 
2011). If one assumes that the return data is error free 
then it is not difficult to claim that it is the most 
trustworthy data in analyzing reliability of a product 
compared to accelerated test or simulation based data. 
However, in reality field return data contains errors 
corresponding to improper, correlated, incomplete, 
and poorly collected data that result in misleading 
reliability predictions. In this study, we first deal with 
this problem. We propose a systematic approach to 

eliminate errors from field return data. We call this 
process of elimination as “filtering”. 

 
In the filtering process, we classify errors into two 

categories: obvious and hidden errors. Obvious errors 
are the errors that can be easily determined with 
applying one-by-one data check. Changing data 
orderings make this process even faster. Examples for 
such errors are unknown assembly dates, invalid 
time-to-failure values, and quality related errors. In 
contrary to the obvious errors, hidden errors and their 
probable sources cannot be directly determined from 
the data.  Examples for hidden errors are significant 
changes in product manufacturing process, data loss, 
and inappropriate data recording in services. Hidden 
errors are fatal and overwhelm obvious errors in 
terms the number of occurrences. This obligates us to 
eliminate hidden errors before starting statistical 
analysis. In this work, we propose a new systematic 
approach to determine and eliminate both obvious 
and hidden errors. After eliminating the errors, now 
we have “filtered data” that is accurate and ready to 
be used in our statistical modeling.  

 
In statistical modeling, the hazard rate of an 

industrial product is an important parameter 
especially for companies which have high volume 
products in the field. Additionally, hazard rate 
functions can directly be used for warranty 
forecasting. In this study, we mainly construct our 
model on hazard rate functions.  In the literature it is 
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well accepted to assume that the hazard rate function 
of a product shows a bathtub characteristic. In general 
hazard rate models depict an entire bathtub curve as a 
combine of two Weibull distributions for early failure 
and wear out periods (Dhillon, 1999; Kececioglu, 
2002). This is illustrated in Figure 1.  Although the 
models using all regions of the bathtub curve are 
theoretically correct, they are not practically 
applicable to some industrial product groups with 
relatively long lives (Kleyner & Sandborn, 2004). 
Electronic boards, studied in this work, fall into these 
product groups. Electronic boards are expected to 
work at least 10-15 years with a warranty period of at 
most 5 years. This is illustrated in Figure 1.  

 
 

 
 
In this study, we propose a model regarding early 

failure and useful life periods of electronic boards. 
Our model is based on Exponential and Weibull 
distributions among many other distribution options 
regarding the optimum curve fitting. Rather than 
conventionally using a single distribution for all time-
to-failures that does not accurately model the 
substantial changes of the board’s reliability 
performance over time, we use different distributions 
for different service time intervals.  For this purpose 
we propose a new technique that deals with forward 
and backward time analysis of the data. In the fitting 
process we use “rank regression” and “maximum 
likelihood” methods. 

 
The data used in this study (filtering and modeling 

analysis) contains assembly and return dates for each 
warranty call. Warranty period of the board is three 
years. The maintenance policy for electronic boards 
under this study is to replace the board with a new one 
in any suspected case such as stopping from time to 
time or breaking down entirely in the field. Therefore 
the analyzed data has no record of repaired boards. 
Throughout our analysis we benefit from Weibull++ 
by ReliaSoft Corporation. 

 
The structure of this paper is as follows. In Section 

2-Filtering, we describe the filtering procedure of 
field return data. In Section 3-Modeling, we work 
with the filtered data to develop our statistical model. 
Finally, Section 4 reports the conclusion of the work.  

2 FILTERING 

In order to guarantee accuracy of the analysis and 
eliminate errors, field return data must be filtered.  
For this purpose, we use a step by step procedure. In 
the first step, we filter obvious errors from the whole 
data. We filter data having unknown assembly date, 
data with quality failure records that result in zero 
time to failure (TTF), and data with negative TTF or 
unreasonable TTF.  

 
In the second step which is the main target of this 

section we are dedicated to find and eliminate hidden 
errors. As it is mentioned before, obvious errors can 
be easily found by applying one-by-one data check. 
But, we cannot find hidden errors as direct as we find 
obvious errors. Here, a systematic approach is 
needed. By using Weibull++ ReliaSoft Corporation 
software we survey the consistency of the data and 
systematically investigate if there are hidden errors or 
not. We use 2 parameter Weibull distribution for our 
analysis because of being mathematically more 
tractable than other distributions (Reliasoft, 2014 ; 
Babington et al. 2007). Also using Weibull 
distribution to model reliability has long been 
approved in the literature. Maximum likelihood 
method (MLE) is selected for parameter estimation 
since regression methods generally work best for 
large data sets (O’Connor & Kleyner, 2011). In 
analysis, we deal with six month assembly time 
intervals. Selecting 6 month intervals is quite 
reasonable because we have 54 month return data.   

 
The proposed methodology targeting hidden errors 

is as follows.  We first perform forward analysis for 
1-6, 1-12, 1-18, 1-24, 1-30, 1-36, 1-42, 1-48 and 1-54 
month time intervals. This is illustrated in Figure 2. 
For example, 1-6 time interval represents products 
assembled in the first six months. Similarly, 1-42 time 
interval represents the whole data excluding the ones 
assembled in the last six months. In forward analysis 
we expand time window from left to right where the 
left edge is fixed. We then perform backward analysis 
for time intervals of 48-54, 42-54, 36-54,,,,,,12-54, 
and 1-54. This is illustrated in Figure 3. Here, we 
expand time window from right to left where the right 
edge is fixed. Finally we perform analysis for seperate 
6 month time intervals of 1-6, 7-12, 13-18, 19-24, 25-
30, 31-36, 37-42, 43-48, 49-54. This is illustrated in 
Figure 4. Note that X-axes in figures represent 
assembly times (not TTF). As a result, using 
parameters of Weibull distributions of these three 
analysis, we filter improper time intervals 
corresponding to hidden errors.  

 
We develop our filtering systematic mainly on a 

Weibull parameter β that explains the hazard rate 
function’s behavior. If β <1, it indicates a decreasing 
hazard rate and is usually associated with the early 

Figure 1. A bathtub curve - hazard rate function over time.  
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failure region. If β≈1, it means a constant hazard rate 
and is usually associated with the useful life region. 
If β >1, it indicates an increasing hazard rate and is 
usually associated with the wear out region, 
corresponding to the end life of the product. As a 
reminder, the early failure, useful life, and wear out 
regions are illustrated n Figure 1. As follows we 
investigate Figure 2, Figure 3, and Figure 4 in details 
regarding β values. 

 

 
 

 
 

 
 
Figure 2 shows β parameters of Weibull 

distributions for the forward analysis. Looking at β 
values we can derive that there are problems in the 
first 3 intervals 1-6, 1-12, and 1-18. These β values 
are greater than one, meaning that we are in the wear 

out region. This is impossible; the first 18 months of 
the field return data are suspected.  Figure 3 shows β 
parameters of Weibull distributions for the backward 
analysis. Again, by looking at the β values we see that 
the last 6 months have β>1. Here, we cannot come to 
a conclusion since we have insufficient data (sample 
size of 10) for the products assembled in the last six 
months. This low amount of sample size is not 
enough to perform accurate statistical analysis.  
Finally, Figure 4 shows β parameters of Weibull 
distributions for 6 month periods. If we look at β 
values we can derive that the first 3 intervals 1-6, 7-
12, and 13-18 having β>1 are suspected.   
 

In conclusion, we should filter the first 18 months 
of the field return data corresponding to hidden errors. 
In other words, the products assembled in the first 18 
months have insufficient field return data with hidden 
errors. Note that if we just performed backward 
analysis, we would not find any hidden errors. This 
could also happen for only performing forward or 6-
month analysis for a different case. However, with 
performing backward, forward, and 6-month analysis 
together, as suggested in this study, we consider all 
aspects of hidden errors.  We have now 36 month 
field data to be safely used in statistical reliability 
modeling. 

3 MODELING 

As we discussed in introduction, the field return data 
can not be used for analysis of the wear out region 
since electronic boards get into this region long after 
their warranties expire.  Therefore, we only deal with 
early failure and useful time periods.  We develop our 
hazard rate function with phases having “Decreasing 
Failure/Hazard rate (DFR)” and “Constant Failure 
Rate (CFR)” like those proposed by Yuan et al. 
(2010) and Chen et al. (1999). Here, DFR and CFR 
correspond to early failure and useful life regions, 
respectively. The proposed overall hazard rate 
function ℎ𝑜(𝑡) is presented in Equation 1 where 
ℎ1(𝑡) = hazard rate function in early failure period, 
ℎ2(𝑡) = hazard rate function in useful-life period, 𝑡 = 
time (TTF), and 𝜏 = change point from DFR to CFR.  
 

ℎ𝑜(𝑡) = {
ℎ1, 𝑡 < 𝜏
ℎ2, 𝑡 ≥ 𝜏

   (1) 

Using a piecewise hazard rate function for 
reliability modeling, as we suggest, is a well-studied 
subject in the reliability and statistics literature. This 
includes the determination of  𝜏 often called as change 
point problem. In some sources 𝜏 is even called as 
burn-in time. Studies on parametric change point 
analysis of nonmonotonic hazard rate functions 
consider the change point as a parameter and propose 
statistical estimation methods like MLE and least 
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squares (Yuan & Kuo, 2010; Blischke 2011). Also 
nonparametric methods were studied widely. 
Bayesian estimation method with prior distribution 
belief about change point was discussed using test 
data in Yuan & Kuo, (2010). A confidence interval 
for parametric estimation of change point in two 
phase hazard model was given by Chen et al. (2001).  
In this study, we propose a novel change point 
detection method with determination of the separate 
hazard rate functions ℎ1(𝑡) and ℎ2(𝑡)  via parametric 
analysis and processing the data with graphical 
inferences.  

 
The data that we use, have TTF values between 1 

and 36 months, since the product has 3 year warranty 
period.  In our model, we do analysis for forward and 
backward time windows. While forward analysis is a 
widely used method in warranty analysis, 
investigating TTF values from backward is a new 
method that we introduce for accurate determination 
of the change point 𝜏 and the hazard functions ℎ1(𝑡) 
and ℎ2(𝑡). In our method, Mf and Mb are used as the 
number of months that constitute the boundaries of 
time windows. In Figure 5, an explicit demonstration 
of the time windows are shown.  

 
 

 
The forward analysis is conducted by using the 

filtered data with TTF values less than or equal to Mf. 
For example, if Mf=3, the data to be analyzed will 
contain TTF values of 1, 2 or 3 months. After starting 
with Mf=1, Mf is increased by adding months one-by-
one (Mf= 2, 3, 4…36). In other words, the forward 
time window is gradually expanding to the end of the 
TTF line as seen in the upper part of Figure 5. In 
forward time window analysis, we see that 2 
parameter Weibull distribution is a good fit for almost 
all different Mf values.  Although in some cases the 
best fitting is achieved with Lognormal or Gamma 
distribution, these distributions show almost the same 
DFR pattern as that from Weibull distribution in our 
analysis. Therefore we determine Weibull 
distribution for ℎ1(𝑡). Note that in forward analysis 

we do not see a change point for Mf from which the 
DFR pattern changes significantly.  

 
The backward analysis is conducted by using the 

filtered data with TTF values between Mb and 36 
months (1-36, 2-36 …30-36…). In other words, one 
end of the backward time window is fixed at 36-
month and the other is gradually expanding to the 
beginning of the TTF line as seen in the lower part of 
Figure 5. In the backward time window analysis, we 
always achieve the best fitting with Lognormal or 
Gamma distribution for Mb < 14 (months) and 
Exponential distribution for Mb ≥ 14 (months). 
Therefore there is a change point approximately in the 
14th month and we determine Exponential distribution 
for ℎ2(𝑡). The change point  𝜏 =14 (months) also 
results in Mf =14 for ℎ1(𝑡) and Mb=14 for ℎ2(𝑡) that 
are shown in Figure 6 and Figure 7, respectively. 

 
Note that in this study we determine the change 

point from the backward analysis, but this is not a 
necessary and sufficient condition. For different field 
data, corresponding to different products, we could 
have had multiple change points or a single change 
point derived from the forward analysis.  These cases 
are beyond the scope of this paper and considered as 
future work. 
 

 

 
 
After determination of the change point, two phase 

hazard rate function, consisting of Weibull and 

Figure 5. Demonstration of forward and backward time 
windows 
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Figure 6. Hazard rate function ℎ1(𝑡) of forward analysis 
with Weibull distribution for Mf =14 months.   Beta: 
0,715 Eta (Day):2.44E+6 
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Figure 7.  Hazard rate function ℎ2(𝑡) of backward 
analysis with Exponential distribution for Mb =14 
months. Mean time (Day):303179.252, Gamma 
(Day):382.086  



Exponential distributions, can be constructed 
directly. In this case, there is a discontinuity problem 
at the change point; overall hazard rate function is not 
continuous.  In order to solve this problem, we 
propose a smoothing and fitting method similar to the 
method suggested by Selmic & Levis (2002) for 
neural networks.   

 
    We achieve smoothing with a sigmoid function as 
a smooth step function approximation. Sigmoid 
function is given as follows. 

𝑠(𝑡, 𝜏) =
1

1+𝑒−𝑏(𝑡−𝜏)
                   (2) 

In Equation 2, 𝜏  is the change point in a unit of 
day. In our case its value is 14 30 days. Sharpness 
parameter 𝑏 of the sigmoid function, can be 
calculated empirically. As a result, overall hazard rate 
function is given as: 

ℎ𝑜 = (1 − 𝑠(𝑡, 420)) × ℎ1 + 𝑠(𝑡, 420) × ℎ2         (3) 

ℎ𝑜 = (1 −
1

1+𝑒−𝑏(𝑡−420))
𝛽𝑡𝛽−1

𝜂𝛽 +
1

1+𝑒−𝑏(𝑡−420)  𝜆         (4)   

where 𝛽 and 𝜂 are the shape and scale parameters of 
the Weibull distribution ℎ1(𝑡), respectively. 
Additionally, 𝜆 is the hazard rate of the Exponential 
distribution ℎ2(𝑡). A plot of  ℎ𝑜(𝑡), ℎ1(𝑡)  and ℎ2(𝑡) 
are shown in Figure 8 that clearly shows the idea 
under our smoothing operation.  

 
 
A small distortion and error around the change 

point is an expected situation with this kind of 
smoothing. In our smoothing process, there is a slight 
difference between the overall hazard function ℎ𝑜(𝑡)  
and ℎ1(𝑡) just before the change point at the 14th 
month (420th day). This can be seen in Figure 8. 
Fortunately, hazard rate values of ℎ1(𝑡) and ℎ2(𝑡) 
near the change point are very close to each other’s 
because of neutrality of the data that results in very 
low error values. 

 
It should be noted that there may be seen different 

distributions in the forward and backward analysis. 
The distributions do not have to be only Weibull and 

Exponential. We already know that distributions like 
Gamma, Lognormal, etc. can give all phases of 
bathtub curves with DFR, CFR and IFR tendencies 
according to values of the distribution parameters. 
Therefore, the proposed method of having continuous 
hazard rate functions can be directly applicable to 
different distributions. 

4 CONCLUSION 

In this study, we propose a methodology to process 
field return data and model the hazard rate function of 
electronic boards. We cooperate with one of the 
Europe’s largest manufacturers and use their well-
maintained data with over 1000 electronic board 
failures. The main goal of our study is developing a 
precise reliability model for electronic boards 
including warranty forecasting. To reach our goal, we 
follow two steps that are filtering and modeling.  

 
In the filtering step, we propose a new systematic 

approach to determine and eliminate both obvious 
and hidden errors. Our method separately investigates 
the data in six-month time intervals, and shows us the 
problematic time spans corresponding to incomplete 
data that need to be excluded. In the modeling step, 
we use the filtered data to develop our reliability 
model. Our model is achieved by performing forward 
and backward time analysis of the data, and 
eventually finding the best fitting distributions for 
different time-to-failure intervals. In the fitting 
process we use “rank regression” and “maximum 
likelihood” methods. Throughout our analysis we 
benefit from Weibull++ by ReliaSoft Corporation. 

 
The proposed methodology, targeting a specific 

electronic board, can also be applied to the return data 
of other electronic boards.  We apply it and the 
results, not to be disclosed here, show us clear 
evidence of our methodology’s success.   
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