
Efficient Hardware Implementation of Artificial
Neural Networks Using Approximate

Multiply-Accumulate Blocks
Mohammadreza Esmali Nojehdeh, Levent Aksoy and Mustafa Altun

Department of Electronics and Communication Engineering, Istanbul Technical University
34469, Maslak, Istanbul, Turkey

Email: {nojehdeh, aksoyl, altunmus}@itu.edu.tr

Abstract—In this paper, we explore efficient hardware im-
plementation of feedforward artificial neural networks (ANNs)
using approximate adders and multipliers. We also introduce
an approximate multiplier with a simple structure leading to a
considerable reduction in the ANN hardware complexity. Due to
a large area requirement in a parallel architecture, the ANNs
are implemented under the time-multiplexed architecture where
computing resources are re-used in the multiply-accumulate
(MAC) blocks. The efficient hardware implementation of ANNs
is realized by replacing the exact adders and multipliers in
the MAC blocks by the approximate ones taking into account
the hardware accuracy. Experimental results show that the
ANNs designed using the proposed approximate multiplier have
smaller area and consume less energy than those designed using
previously proposed prominent approximate multipliers. It is also
observed that the use of both approximate adders and multipliers
yields respectively up to a 64% and 43% reduction in energy
consumption and area of the ANN design with a slight decrease
in the hardware accuracy when compared to the exact adders
and multipliers.

I. INTRODUCTION

In recent years, artificial neural networks (ANNs) have
achieved a remarkable performance in different research areas,
including medical image processing [1], face detection [2], and
semantic segmentation [3]. Recent developments in graphics
processing units (GPUs) and central processing units (CPUs)
provide generous memory resources and high computation
speeds for training and operation of ANNs. However, for
portable devices, due to their limited memory, the number of
processing units, and the battery capacity, the realization of
ANNs in these devices is impractical. Here, the main concern
is to reduce the ANN hardware complexity taking into account
the hardware accuracy.

Fig. 1(a) presents the fundamental block of ANN, i.e.,
neuron, which sums the multiplication of input variables by
weights, adds the bias value to this summation, and propagates
this result to the activation function. The purpose of the
activation function is to bound the amplitude of the neuron
output. In mathematical terms, the neuron is described as
y =

∑n
i=1 ωixi and z = φ(y + b) where n denotes

the number of inputs and weights. Fig. 1(b) presents an ANN
design including hidden and output layers where each circle
denotes a neuron.

Observe from Fig. 1 that adders and multipliers are fre-
quently used in ANNs and dominate the hardware complexity.
To reduce the ANN design area, taking into account an

x1

x2

xn

Activation 

Function

(ϕ)w1

wn

z
y

b

Bias

WeightsInputs

+
Outputw2

Ʃwixi

X1

X2

X3

Z1

Z2

ANN

Inputs
Hidden Layers

Output

Layer

(b)(a)

Fig. 1. (a) Artificial neuron; (b) ANN with two hidden layers.

x1

x2

xn

w1 w2 wn

x +
y

Control 

Logic

R + z

MAC

b

Fig. 2. Multiply-accumulate (MAC) block in the neuron computation.

increase in latency, ANNs can be designed under the time-
multiplexed architecture using multiply-accumulate (MAC)
blocks. Fig. 2 shows a MAC-based realization of the neuron
computation given in Fig. 1(a), re-using the multiplication and
addition operations. In this figure, clock and reset signals are
omitted for the sake of clarity. Observe that the multiplication
of a weight by an input variable is realized at a time synchro-
nized by the control block, which is actually a counter, and
is added to the accumulated value stored in the register R.
Under this architecture, the neuron computation is obtained
after n+ 1 clock cycles.

Over the years, many efficient algorithms have been pro-
posed for the reduction of ANN hardware complexity [4]–
[9]. In this paper, ANNs are implemented under two different
architectures using MAC blocks to explore the area and latency
tradeoff. In the first one, called SMAC NEURON, a single
MAC is used to realize each neuron computation in each
layer and in the second one, called SMAC ANN, a single
MAC is used to implement the whole ANN. Moreover, we
present efficient hardware implementation of ANNs under the
time-multiplexed architectures using approximate adders and
multipliers taking into account the ANN hardware accuracy. To
do so, the exact adders and multipliers in the MAC blocks are
replaced by the approximate ones. Furthermore, we introduce
an approximate multiplier where the tradeoff between the
hardware complexity and error at the multiplier output can
be explored by changing its approximation level. We note
that the generation of an approximate multiplier with different
bitwidths of inputs under the given approximation level can be



done in linear time as opposed to the methods of [10], [11].
Thus, as shown in [12], the ANN hardware complexity can be
significantly reduced by using approximate multipliers with
different approximation levels for the neuron computations at
different layers. Experimental results indicate that the ANNs
including the proposed approximate multiplier occupy less
area and consume less energy than those including previously
proposed approximate multipliers [11], [13]. It is also shown
that the ANN hardware complexity can be further reduced
using approximate adders.

The rest of this paper is organized as follows. Background
concepts and related work are given in Section II. Section III
presents the MAC-based design architectures. In Section IV,
the implementation of approximate adders and multipliers used
in this work are described and an approximate multiplier is
introduced. Section V presents the experimental results and
finally, Section VI concludes the paper.

II. BACKGROUND

A. ANN Structure

An ANN is comprised of a network of neurons which
are connected to each other. The weight and bias values of
ANN are determined in a training phase where the error
between the desired and actual response is reduced using an
iterative optimization algorithm. During training, inputs are
generally normalized between -1 and 1. Such a normalization
may decrease the training run-time and yield an ANN with
a less number of neurons and layers when compared to the
ANN trained with un-normalized inputs, both achieving a
similar accuracy. Furthermore, the test data are used to provide
an unbiased evaluation of the final model after the training
process and the accuracy, or misclassification rate, is computed
as a performance metric [14].

B. ANN Implementation

To reduce the ANN hardware complexity, in [4], [5], it is
shown that the weights of ANNs can be determined to include
a small number of non-zero digits in training and hence, their
multiplications by input variables can be realized using a small
number of adders and subtractors. The floating-point weights
in each layer are quantized dynamically and the fixed-point
weights are expressed in binary representation in [6].

To reduce the high latency of the MAC block, a delay-
efficient structure, which uses accumulators and carry-save
adders, is introduced in [15]. Efficient implementation of ANN
designs using MAC blocks on FPGAs is presented in [15].
Recently, MAC blocks have been used in the realization
of neuromorphic cores using two models, namely axonal-
based and dendritic-based [16]. A post-training method and
a multiplierless design technique, that can reduce the design
complexity of a time-multiplexed ANN, are given in [17].

C. Approximate Adders and Multipliers

Approximate computing refers to a class of methods that
relax the requirement of exact equivalence between the speci-
fication and implementation of a computing system [18]. This

relaxation allows trading the accuracy of numerical outputs
for reductions in area, delay, or power dissipation of the
design [19], [20]. Due to a high error-tolerance in ANNs,
the use of approximate adders and multipliers in ANNs is an
alternative way for the reduction of hardware complexity [9].

In [21], [22], at transistor level, approximate 1-bit adders are
derived from the conventional mirror adders and XOR/XNOR
based adders by removing transistors and/or replacing some
parts of the adders with a small circuitry and then, a generic
approximate adder is implemented using approximate 1-bit
adders. In [10], [11], at gate level, design tools are generated
to develop efficient approximate adders. Motivated by the
drawbacks of approximation methods at transistor and gate
level, a systematic synthesis technique based on a new error
calculation method is introduced in [13].

In [11], a cartesian genetic programming (CGP) method
is used to generate approximate multipliers. The deliberately
designed approximate multiplier (DDAM) of [9] is obtained
through simplifications in the truth table of the multiplication
operation. A novel approximate multiplier based on the input
probabilities of 1-bit adders is proposed in [13].

III. MAC-BASED ANN DESIGN

Since the floating-point multiplication and addition opera-
tions occupy larger area and consume more energy than their
integer counterparts [23], after the floating-point weight and
bias values are found in the training phase, they are converted
to integers. This conversion is simply done by multiplying each
floating-point weight and bias value by 2q , where q denotes
the quantization value, and finding the least integer greater
than or equal to this multiplication result.

In following, the SMAC NEURON and SMAC ANN design
architectures are described in detail.

1) SMAC NEURON Architecture: Fig. 3 presents the neuron
computations at the kth layer of an ANN using m MAC
blocks and a common control block where m and n denote
the number of outputs (or neurons) and inputs at this layer,
respectively. The control block synchronizes the multiplication
of input variables by the associated weights. Assuming that an
ANN includes ηi neurons at each layer, where 1 ≤ i ≤ λ and
λ denotes the number of layers, the required number of MAC
blocks is

∑λ
i ηi, i.e., the total number of neurons. Note that

the complexity of operations and registers in the MAC blocks
are determined by the number of inputs and outputs at each
layer and the weight values related to each neuron of each
layer. The complexity of the control block is determined by the
number of inputs at each layer. Since the neuron computations
are obtained layer by layer, the neuron computations in the
latter layer are started after the ones in the former layer are
finished. This is simply done by generating an output signal
at each layer indicating that all the neuron computations are
obtained, which also disables the hardware to do unnecessary
computations and enables us to reduce the power dissipation.
The computation of whole ANN with λ layers and ιi inputs
at each layer, where 1 ≤ i ≤ λ, is obtained after

∑λ
i (ιi + 1)

clock cycles.



xk1 xk2 xkn

wk11

wk12

wk1n

R

x

yk1

+

wk21

wk22

wk2n

R

x

yk2

+

wkm1

wkm2

wkmn

R

x

ykm

+

Control 

Logic
x

+bk1

zk1

+bk2

zk2

+bkm

zkm

MAC MAC MAC

Fig. 3. Neuron computations at the kth layer of ANN using MAC blocks.

2) SMAC ANN Architecture: Fig. 4 shows the ANN design
using a single MAC block where clock and reset signals are
omitted for the sake of clarity. In this figure, the control block
includes three counters to synchronize the multiplication of a
weight by an input variable, the addition of a bias value to each
inner product, and the application of the activation function.
These counters are associated with the number of layers,
number of inputs at each layer, and number of outputs (or
neurons) at each layer. Note that the variables X1, X2, . . . , Xn

denote the primary inputs of ANN and these variables are
multiplied by the related weights during the computations at
the first hidden layer. While the size of multiplexers for the
input variables is determined by the maximum number of
inputs at all layers, the size of multiplexers for the weight and
bias values are defined by the total number of weight and bias
values, respectively. In the MAC block, the size of multiplier
is determined by the maximum bitwidth of all input variables
and weights. The sizes of adder and register are defined by
the maximum bitwidth of the multiplication of weights by
input variables in the whole ANN. Moreover, the number of
registers used to store the outputs at each layer is determined
by the maximum number of outputs at each layer. We note
that the computation of whole ANN with λ layers, ιi inputs
at each layer, and ηi neurons at each layer, where 1 ≤ i ≤ λ,
is obtained after

∑λ
i (ιi + 2)ηi clock cycles.

IV. IMPLEMENTATION OF ANNS USING APPROXIMATE
ARITHMETIC UNITS

In this section, we present the approximate adder of [13] and
multipliers of [11], [13] used in the ANN designs, introduce
an approximate multiplier and describe the implementation of
ANNs using approximate adders and multipliers.

A. Approximate Adder

Fig. 5 illustrates an n-bit ripple carry adder which consists
of n 1-bit full adders (FAs). In this figure, A, B, and carry-in
(Cin) represent the input bits of FA and Sum and carry-out
(Cout) denote its output bits. The truth table of 1-bit FA

X1

X2

Xn

w111 w112 wkmn

x +

Control 

Logic

R +

z11

b11 b12 bkm

R

R

R

z12

zkmMAC

Fig. 4. ANN design using a single MAC block.

A B

Cin

Sum

Cout

A B

Cin

Sum

Cout

A B

Cin

Sum

Cout

Full Adder 1Full Adder 2Full Adder n

0

b0a0b1a1bn-1an-1

sn

sn-1 s1 s0

Fig. 5. Ripple carry adder.

is given in Table I. In the related studies on approximate
ripple carry adders [10], [21], it is assumed that simultaneous
errors on both Sum and Cout outputs of FA may generate a
larger erroneous result on the adder output than an error on a
single output. However, this assumption neglects the fact that
while an error on one output of an FA block increases the
error at the adder output, another error on the other output
may decrease the error at the adder output. For example, as
given in Table I, on the entry of ABCin = 010 for the
approximate 1-bit adder APAD1, both errors on the outputs
of FA generate only an error with a magnitude of 1. Thus,
alternating errors on both the Sum and Cout outputs can
provide an opportunity to simplify the hardware complexity of
an approximate 1-bit adder. Based on this fact, 4 approximate
1-bit adders (APADs) with different error values and hardware
complexity are introduced in [13]. The truth tables of these
APADs are given in Table I. To obtain an n-bit approximate
ripple carry adder, a synthesis method, that replaces the exact
FAs by APADs with different approximation levels under the
given error value, is also presented in [13].

B. Approximate Multipliers

The implementation of an exact multiplier consists of
two stages, i.e, partial product generation using AND gates
and accumulation of these partial products using half adders
(HAs)1 and FAs. An exact 4-bit unsigned multiplier structure
is shown in Fig. 6(a) where rectangular blocks with 2 and
3 entries denote an HA and FA, respectively. In the design
of an approximate multiplier, based on the probability of
occurrences of logic 0 and 1 at the outputs of each HA and FA,
the synthesis tool of [13] replaces exact HA and FA blocks
in the exact multiplier by their approximate versions taking
into account the error at the multiplier output and generates
approximate multipliers called probability based approximate
multipliers (PBAM). Also, the CGP method of [11] generates
approximate multipliers which are derived from the exact
multipliers.

In addition to these approximate multipliers, we propose
another one, called LEBZAM, which is implemented by

1Half adder is obtained when one of the inputs of FA is set to 0.



TABLE I
TRUTH TABLES OF EXACT AND APPROXIMATE 1-BIT ADDERS.

Inputs FA APAD1 APAD2 APAD3 APAD4
A B Cin Cout Sum Decimal Cout Sum Error Decimal Cout Sum Error Decimal Cout Sum Error Decimal Cout Sum Error Decimal

0 0 0 0 0 0 03 03 0 0 03 03 0 0 03 03 0 0 03 03 0 0

0 0 1 0 1 1 03 13 0 1 03 13 0 1 03 13 0 1 03 07 -1 0

0 1 0 0 1 1 17 07 +1 2 03 13 0 1 03 13 0 1 03 13 0 1

0 1 1 1 0 2 13 03 0 2 07 17 -1 1 07 17 -1 1 07 17 -1 1

1 0 0 0 1 1 03 13 0 1 17 07 +1 2 1 7 07 +1 2 17 07 +1 2

1 0 1 1 0 2 13 03 0 2 13 03 0 2 13 03 0 2 13 03 0 2

1 1 0 1 0 2 13 03 0 2 13 03 0 2 13 17 +1 3 13 17 +1 3

1 1 1 1 1 3 13 13 0 3 13 13 0 3 13 13 0 3 13 13 0 3

34

1

a1b0
a0b1

2

a0b0

a3b2

a2b3a3b3

a3b3 s1

s1

a0b0

a0b0s6

a1b1
a0b2

a2b0a3b0
a2b1
a1b2

a3b1
a2b2
a1b3

c1

s2

6

c3

s4

8

a3b2
a2b3
c4

9

s7

c6

10

c8

s9

12

a3b3

13

c9

12

a3b2

a2b3a3b3

a3b3

a3b0
a2b1
a1b2

a3b1
a2b2
a1b3

s1

a3b0

3

c1

s2

4

a3b2
a2b3
c2

5

c3

s4

6

c4

s5

7

a3b3

8

c5

a0b0s6 s1s10s11s12s13c13

(a)

s3

a3b0

c2
7

c10
11

c7

s8

c11c12

00 0s3s6s7s8c8

(b)

c6c7

a0b3 a0b3

Fig. 6. (a) Exact 4-bit unsigned multiplier; (b) Approximate 4-bit unsigned multiplier with the least significant 3 bits are set to logic value 0.

setting r least significant outputs of an exact multiplier to
zero, where r denotes its approximation level. The synthesis
method is described as follows: i) set r least significant outputs
of the exact multiplier to 0; ii) eliminate all the FA and HA
blocks required to realize r least significant outputs of the
exact multiplier. Fig. 6(b) illustrates the realization of 4-bit
approximate multiplier when r is 3.

We note that given the approximation level and the bitwidths
of the inputs, an approximate multiplier LEBZAM can be
easily obtained as opposed to the approximate multipliers
of [10], [11]. Thus, by using approximate multipliers with
different sizes and approximation levels in the MAC blocks of
ANN designs under the architectures presented in Section III,
a significant reduction in the ANN hardware complexity can be
achieved taking into account the hardware accuracy. Similarly,
by using approximate adders of [13], the ANN hardware
complexity can be further reduced.

V. EXPERIMENTAL RESULTS

As an application, we considered the pen-digit handwritten
digit recognition problem [24]. In the convolution neural net-
work design of this application, we implemented a feedforward
ANN which has 16 inputs, a hidden layer with 16 neurons,
and a output layer with 10 neurons. The activation functions in
the hidden and output layer were symmetric saturating linear
and softmax, respectively. The ANN was trained using the
deep learning toolbox of MATLAB [25] where the training
and test inputs were normalized in between -1 and 1, the
weights were initialized randomly, and they were adjusted to

minimize the error in between the actual and desired response
using a backpropagation-based learning method. The ANN
was trained using 7494 data and tested using 3498 data. After
the training, the misclassification rate was computed as 4.85%.

After the floating-point weight and bias values were con-
verted to integers when the quantization value q was set to
8, the ANN design using exact adders and multipliers was
described in a behavioral fashion and the hardware misclas-
sification rate (HMR) was found as 5%. In this study, the
ANN designs were implemented using approximate adders
and multipliers without exceeding the HMR limit which
was set to 5.5%. The ANNs were implemented under the
SMAC NEURON and SMAC ANN architectures using the ap-
proximate adders of [13], the approximate multipliers of [11],
[13] and our approximate multiplier LEBZAM. The approxi-
mate multipliers of [11], mul12s 2NM and mul12s 2KM, have
12-bit inputs and are respectively chosen for their minimum
area and error among other multipliers. Note that we system-
atically determined the approximation levels of adders and
multipliers on the hidden and output layers taking into account
the HMR limit value and presented the results of ANN designs
with promising hardware complexity and accuracy values. The
ANN designs were described in Verilog and synthesized using
the Cadence Genus tool with the TSMC 40nm design library.

Tables II-V present the gate-level results of ANN designs
where area, delay, and power stand respectively for total area
in µm2, the delay in the critical path which is determined to
be the clock period in ns, and total power dissipation in mW .
Also, latency denotes the time in ns required for the ANN



TABLE II
RESULTS OF SMAC NEURON ARCHITECTURE USING APPROXIMATE MULTIPLIERS.

Multiplier Type Approximation Level
Hidden Output area delay latency power energy HMR area gain energy gain

Behavioral 0 0 15327 3.58 121.68 1.44 174.77 5.00 0% 0%
mul12s 2NM [11] NA NA 13929 3.72 126.31 1.23 155.04 5.12 9% 11%
mul12s 2KM [11] NA NA 17227 3.70 125.80 1.44 181.33 5.00 -12% -3%

PBAM [13] 7 11 13276 3.57 121.35 1.31 159.14 4.84 9% 13%
PBAM [13] 7 12 12992 3.66 124.37 1.30 161.52 5.03 15% 8%
PBAM [13] 8 11 12761 3.41 115.91 1.26 145.51 5.37 17% 17%
LEBZAM 6 9 11999 3.68 125.02 1.00 125.21 5.03 22% 28%
LEBZAM 7 11 10224 3.45 117.40 1.04 122.05 4.80 33% 30%
LEBZAM 7 12 9723 3.41 116.01 0.94 109.41 5.09 37% 37%

TABLE III
RESULTS OF SMAC NEURON ARCHITECTURE USING APPROXIMATE MULTIPLIERS AND ADDERS.

Multiplier Type
Approximation Level

Hidden Output
Mul Add Mul Add

area delay latency power energy HMR area gain energy gain

Behavioral 0 0 0 0 15327 3.58 121.62 1.44 174.77 5.00 0% 0%
mul12s 2NM [11] NA 10 NA 14 11854 3.92 133.14 0.59 78.76 5.17 22% 55%
mul12s 2KM [11] NA 9 NA 15 13133 3.95 134.30 0.69 92.48 5.34 14% 47%

PBAM [13] 7 7 12 11 10226 3.66 124.37 0.61 76.25 5.03 33% 57%
PBAM [13] 7 7 12 12 9798 3.64 123.86 0.61 75.70 5.20 33% 57%
PBAM [13] 7 7 12 13 9534 3.66 124.37 0.62 77.25 5.17 39% 56%
LEBZAM 6 10 9 13 10392 3.58 121.72 0.58 70.11 5.31 32% 60%
LEBZAM 7 12 10 13 8801 3.61 122.88 0.55 67.32 4.88 43% 61%
LEBZAM 7 11 10 14 8989 3.61 122.81 0.52 63.68 4.97 41% 64%

output to be obtained after an input is applied, determined
as the multiplication of clock period by the number of clock
cycles to obtain the ANN output. The number of clock cycles
required to obtain the ANN output under the SMAC NEURON
and SMAC ANN are respectively computed as 34 and 468 for
our ANN. Moreover, energy presents the energy consumption
in pJ computed as the multiplication of latency by power
dissipation. We note that the clock period was improved using
the retiming technique in the synthesis tool iteratively. The
switching activity data required for the computation of power
dissipation was generated using the test data in simulation.
This test data set was also used to verify the ANN design.

Table II presents the gate-level results of ANN designs
under the SMAC NEURON architecture where only the exact
multipliers in the MAC blocks are replaced by the approximate
ones. Observe that since the approximate multipliers of [11]
are optimized for a fixed size, the ANN designs including these
multipliers may have worse area, latency, and energy consump-
tion values than those of ANN using exact multipliers. This is
also due to the fact that the logic synthesis tool uses optimized
exact multipliers and adders. On the other hand, the use of
approximate multipliers of [13] can reduce the ANN hardware
complexity by finding the appropriate approximation levels of
multipliers at the hidden and output layers. Furthermore, our
approximate multiplier leads to the largest reduction in area,
latency, and energy consumption. Observe that the tradeoff
between hardware complexity and accuracy can be explored
by simply changing the approximation level of multipliers.

Table III presents the gate-level results of ANN designs un-
der the SMAC NEURON architecture where both exact adders
and multipliers in the MAC blocks are replaced by the
approximate ones. Observe that the use of approximate adders
with the approximate multipliers reduces the ANN hardware

complexity significantly. The maximum gain on area and
energy consumption reaches up to 43% and 64% using our
approximate multipliers.

Table IV presents the gate-level results of ANN designs
under the SMAC ANN architecture where only the exact mul-
tiplier in the MAC block is replaced by the approximate one.
Although there exists only one multiplier to be replaced, the
proposed approximate multiplier leads to the largest gains
on area and energy consumption. Moreover, in addition to
the approximate multiplier, the use of approximate adder can
further reduce the hardware complexity as shown in Table V.

It is also interesting to note that the use of approximate
adders and multipliers can also increase the hardware accuracy
as can be observed from these results.

VI. CONCLUSION

In this paper, we presented hardware efficient implementa-
tion of ANN designs under the time-multiplexed architecture
using approximate adders and multipliers. We also introduced
an approximate multiplier which leads to a significant reduc-
tion in area and energy consumption in the ANN design when
compared to the previously proposed approximate multipliers.
Experimental results clearly show that the use of approximate
adders and multipliers in the ANN designs reduces the design
complexity significantly decreasing the hardware accuracy
slightly when compared to the ANN designs using exact
adders and multipliers. As a future work, we plan to develop an
algorithm that finds the most appropriate approximate adders
and multipliers used to replace the exact counterparts taking
into account both the hardware complexity and accuracy.

ACKNOWLDGEMENT

This work is supported by the TUBITAK-1001 projects
#117E078 and #119E507 and Istanbul Technical University
BAP projects #42446.



TABLE IV
RESULTS OF SMAC ANN ARCHITECTURE USING APPROXIMATE MULTIPLIERS.

Multiplier Type Approximation Level area delay latency power energy HMR area gain energy gain
Behavioral 0 3180 3.52 1646.42 0.35 569.33 5.00 0% 0%

mul12s 2NM [11] NA 3278 3.72 1738.62 0.29 499.80 5.00 -3% 12%
mul12s 2KM [11] NA 3279 3.77 1764.83 0.29 504.74 5.00 -3% 11%

PBAM [13] 0 3287 3.79 1774.19 0.29 518.38 5.00 -3% 9%
PBAM [13] 7 3194 3.76 1760.15 0.28 499.60 4.83 -1% 12%
PBAM [13] 8 3148 3.24 1518.19 0.28 431.60 5.34 2% 24%
LEBZAM 5 3189 3.69 1725.98 0.27 472.95 4.94 -2% 8%
LEBZAM 6 3152 3.68 1724.58 0.28 489.60 4.90 1% 14%
LEBZAM 7 3091 3.56 1664.68 0.27 449.89 4.80 3% 21%

TABLE V
RESULTS OF SMAC ANN ARCHITECTURE USING APPROXIMATE MULTIPLIERS AND ADDERS.

Multiplier Type Approximation Level
Mul Add area delay latency power energy HMR area gain energy gain

Behavioral 0 0 3180 3.52 1646.42 0.35 569.33 5.00 0% 0%
mul12s 2NM [11] NA 13 2908 3.40 1590.26 0.25 391.63 5.06 9% 31%
mul12s 2KM [11] NA 13 3140 3.68 1721.30 0.26 451.51 5.46 1% 21%

PBAM [13] 7 10 2972 3.55 1659.53 0.26 426.62 5.03 7% 25%
PBAM [13] 8 9 2978 3.59 1679.18 0.25 421.98 5.03 6% 26%
PBAM [13] 7 11 3029 3.84 1798.52 0.25 448.54 4.66 5% 21%
LEBZAM 6 14 3046 3.53 1652.51 0.28 469.89 4.95 4% 17%
LEBZAM 7 12 3041 3.62 1692.29 0.26 440.25 4.66 4% 23%
LEBZAM 7 13 3021 3.53 1650.17 0.26 426.73 5.40 5% 25%

REFERENCES

[1] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical
image classification with convolutional neural network,” in International
Conference on Control Automation Robotics Vision, 2014, pp. 844–848.

[2] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional neural
network cascade for face detection,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 5325–5334.

[3] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in IEEE International Conference on Computer
Vision, December 2015, pp. 1520–1528.

[4] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy,
“Multiplier-less artificial neurons exploiting error resiliency for energy-
efficient neural computing,” in Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2016, pp. 145–150.

[5] R. Ding, Z. Liu, R. D. Blanton, and D. Marculescu, “Quantized deep
neural networks for energy efficient hardware-based inference,” in Asia
and South Pacific Design Automation Conference, 2018, pp. 1–8.

[6] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda, “Hardware-software
codesign of accurate, multiplier-free deep neural networks,” in Design
Automation Conference (DAC), 2017, pp. 28:1–28:6.

[7] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or -1,” arXiv e-prints, 2016,
arXiv:1602.02830.

[8] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,” in
Design, Automation and Test in Europe Conference and Exhibition,
2015, pp. 701–706.

[9] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 28, no. 2, pp. 317–328, 2020.

[10] A. Bernasconi and V. Ciriani, “2-spp approximate synthesis for error
tolerant applications,” in Euromicro Conference on Digital System
Design, 2014, pp. 411–418.

[11] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapproxsb:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2017, pp. 258–261.

[12] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,” in
Design, Automation and Test in Europe Conference Exhibition (DATE),
2015, pp. 701–706.

[13] M. E. Nojehdeh and M. Altun, “Systematic synthesis of approximate
adders and multipliers with accurate error calculations,” Integration,
vol. 70, pp. 99 – 107, 2020.

[14] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice-
Hall, 1999.

[15] N. Nedjah, R. M. da Silva, L. M. Mourelle, and M. V. C. da Silva,
“Dynamic MAC-based architecture of artificial neural networks suitable
for hardware implementation on FPGAs,” Neurocomputing, vol. 72,
no. 10, pp. 2171 – 2179, 2009.

[16] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy,
S. Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar,
and D. S. Modha, “Building block of a programmable neuromorphic
substrate: A digital neurosynaptic core,” in International Joint Confer-
ence on Neural Networks (IJCNN), 2012, pp. 1–8.

[17] L. Aksoy, S. Parvin, M. E. Nojehdeh, and M. Altun, “Efficient time-
multiplexed realization of feedforward artificial neural networks,” in
International Symposium on Circuits and Systems, 2020, accepted for
publication.

[18] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in European Test Symposium,
2013, pp. 1–6.

[19] M. Schaffner, F. Gurkaynak, A. Smolic, H. Kaeslin, and L. Benini,
“An approximate computing technique for reducing the complexity of
a direct-solver for sparse linear systems in real-time video processing,”
in Design Automation Conference (DAC), 2014, pp. 1–6.

[20] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,
and J. T. Ludwig, “Approximate Signal Processing,” Journal of VLSI
signal processing systems for signal, image and video technology,
vol. 75, pp. 177 – 200, 1997.

[21] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
xor/xnor-based adders for inexact computing,” in IEEE International
Conference on Nanotechnology, 2013, pp. 690–693.

[22] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: Imprecise adders for low-power approximate computing,” in
IEEE/ACM International Symposium on Low Power Electronics and
Design, 2011, pp. 409–414.

[23] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE International Solid-State Circuits Conference, 2014.

[24] F. Alimoglu and E. Alpaydin, “Combining multiple representations and
classifiers for pen-based handwritten digit recognition,” in International
Conference on Document Analysis and Recognition, 1997, pp. 637–640.

[25] The MathWorks Inc., Deep Learning Toolbox, Natick,
Massachusetts, United States, 2020. [Online]. Available:
https://www.mathworks.com/help/deeplearning/


