Student ID:

Date: 4/4/2022

EHB322E Digital Electronic Circuits MIDTERM I

Duration: 60 Minutes
Grading: 1) 35%, 2) 35%, 3) 30%
Exam is in closed-notes and closed-books format; calculators are allowed
For your answers please use the space provided in the exam sheet
GOOD LUCK!

1) Consider a buffer shown below. Use the following equations for your calculations.

Saturation region current-voltage equation: $I_{D}=\frac{1}{2} k_{p, n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{T 0 p, n}\right)^{2}$
Linear region current-voltage equation: $I_{D}=\frac{1}{2} k_{p, n}^{\prime} \frac{W}{L}\left[2\left(V_{G S}-V_{T 0 p, n}\right) V_{D S}-V_{D S}^{2}\right]$
Transistor parameters: $k_{p}{ }^{\prime}=\mu_{p} c_{o x}=35 \mathrm{uA} / \mathrm{V}^{2}, k_{n}{ }^{\prime}=\mu_{n} c_{o x}=98 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{TP}}=-0.5 \mathrm{~V}$, $\mathrm{W}_{\mathrm{N}-1}=5 \mathrm{u}, \mathrm{W}_{\mathrm{N}-2}=5 \mathrm{u}, \mathrm{L}_{\mathrm{P}}=\mathrm{L}_{\mathrm{N}}=1 \mathrm{u}$.

a) Find the maximum value of $\mathbf{W}_{\mathbf{P}-1}$ satisfying that $\boldsymbol{V}_{\text {in }}=\mathbf{5 V}$ results in $\boldsymbol{V}_{\text {out }}=\mathbf{5 V}$.
b) Find the value of $\mathbf{W}_{\mathrm{P}-2}$ if $\boldsymbol{V}_{\text {in }}=\mathbf{0} \mathbf{V}$ results in $\boldsymbol{V}_{\text {out }}=\mathbf{1 V}$.
c) Find the buffer's static power consumption values when $\boldsymbol{V}_{\boldsymbol{i n}}=\mathbf{0 V}$ and $\boldsymbol{V}_{\boldsymbol{i n}}=\mathbf{5 V}$.
2) Consider a buffer circuit consisting of two CMOS NAND gates, shown below. An external capacitor of $48 f F$ is connected to the output. A signal switching from high to low is applied to the input.
Equivalent resistor for an NMOS transistor: $\boldsymbol{R}_{N}=(\mathbf{1 2 k \Omega}) /(\mathbf{W} / \mathbf{L}) \mathbf{N}$
Equivalent resistor for a PMOS transistor: $\boldsymbol{R}_{P}=(\mathbf{2 4 k} \mathbf{\Omega}) /(\mathbf{W} / \mathbf{L}) \mathbf{p}$
Gate capacitors $\boldsymbol{C}_{G S-N}=c_{o x} \mathrm{~W}_{\mathrm{N}} \mathrm{L}_{\mathrm{N}}$ and $\boldsymbol{C}_{G S-P}=c_{o x} \mathrm{~W}_{P} \mathrm{~L}_{P}$; neglect $\boldsymbol{C}_{\boldsymbol{G}}$ capacitors.
Transistor parameters: $c_{o x}=1 \mathrm{fF} / \mathrm{um} 2, \mathrm{~L}_{\mathrm{N}}=\mathrm{L}_{\mathrm{P}}=1 \mathrm{u}, \mathrm{W}_{\mathrm{N} 1}=2 \mathrm{u}, \mathrm{W}_{\mathrm{P} 1}=3 \mathrm{u}, \mathrm{W}_{\mathrm{N} 2}=4 \mathrm{u}, \mathrm{W}_{\mathrm{P} 2}=6 \mathrm{u}$.

Digital circuit with two CMOS NAND gates
a) Implement a NAND gate with a Boolean function $f=\overline{x_{1} x_{2}}$ using CMOS transistors. If inputs of a NAND gate are shorted, as we use in our circuit, then find its Boolean function. Draw the CMOS implementation of the above circuit.
b) Find the total propagation delay value (delay of NAND1 + delay of NAND2) between the input and the output.

- You should consider $C_{G S}$ capacitors as well as the external $C=48 f F$ capacitor
- Do not consider capacitors at nodes other than the node of gate inputs/outputs.

3) Consider $f=x_{1} x_{2} x_{3}+x_{1} \overline{x_{2}} \overline{x_{3}} x_{4}+\overline{x_{1}} \overline{x_{2}} x_{3} x_{4}$.
a) Implement f with a CMOS circuit using minimum number of transistors. Draw the circuit. How many PMOS and NMOS transistors do you use?
b) Suppose that both NMOS and PMOS transistors have equivalent resistance values of $1 \mathrm{k} \Omega$; a total output load capacitor is $2 f F$ (Neglect all other internal capacitors). Find the worst case (largest) $\boldsymbol{t}_{\boldsymbol{P H L}}$ and $\boldsymbol{t}_{\boldsymbol{P L H}}$ values.
