APPROXIMATE FULLY CONNECTED NEURAL NETWORK GENERATION

Tuba Ayhan, Mustafa Altun

Istanbul Technical University, Faculty of Electrical and Electronics Engineering,
Electronics and Communication Engineering Department, 34469-Istanbul, Turkey
{tuba.ayhan, altunmus} @itu.edu.tr

ABSTRACT

Approximate computing is exploited in implementation
of fully connected networks for classification problems. A
multiplier structure whose area is scalable over accuracy
through approximate computing is proposed. In order to
employ the multipliers in a network, an area reduction
algorithm is formed. It can adjust the approximation level
of multipliers while still maintaining the target classification
performance, without prior information on the value of
network weights. Implementing on a Spartan6 FPGA, up to
79% area saving is recorded for various performance targets.

Index Terms— Approximate computing, fully connected
network, area reduction

I. INTRODUCTION

In the last decade machine learning and artificial intelli-
gence era had a great burst with the increasing use of SIMD
processors and cloud computing. Thanks to these powerful
computation platforms, high performance is achieved in ap-
plications such as object detection, segmentation, and image
recognition, where computational overhead is due to the
requirement of large-amount data processing [1]. Relatively
expensive tools such as GPU or remote solutions like cloud
computing are used for artificial intelligence applications.
Area and power aware hardware designs should be presented
in order to benefit from artificial intelligence tools in low-
resource devices such as mobile devices and sensor nodes
with limited computation power. Therefore, a small, fast, and
power efficient hardware implementation of Convolutional
Neural Networks (ConvNets) is a timely research topic.
Power and area reduction can be preformed by accelerators
[2], [3], [4], or approximate computing methods can be used
to trade off system accuracy for area or power. For example
in [5], error critical neurons are detected during training.
Similarly, in [6] an optimization procedure for approximate
network implementation to reduce energy consumption un-
der given quality constraint is proposed. These approaches
tie training phase and implementation phase of a network
together. Considering that Caffe like learning frameworks
are preferred to train large networks, they are not useful for

978-1-5386-5153-7/18/$31.00 © 2018 IEEE

who wants to implement and test their network on FGPA in
as quick and as easy as possible.

To isolate training and implementation platforms from
each other, a framework which estimates the error resiliency
of layers rather than individual neurons is proposed. Given
the classification error tolerance of the application, the tol-
erable approximation level of layers is estimated. Moreover,
an approximate Fully Connected Network (FCN) whose area
can be traded-off for accuracy is implemented. The layer-
based implementation matches with the area saving method
which runs a nonlinear programming solver with constraints.
Implementation and area reduction algorithm are combined
under an easy-to-use framework.

Framework at a glance is illustrated in Figure 1 with two
main parts: an area reduction block, and a network gen-
eration block. Verilog HDL code for FCN implementation
is generated by the network generation block. The block
uses the predefined approximate multipliers, and network
architecture template as well as the user defined weights
and bias. The network architecture and approximate layers
are explained in Section II. The area reduction algorithm
receives basic FCN information, such as the number and
size of layers, and error tolerance set by the user. This error
is propagated through the layers to obtain an approximation
model as explained in Section III. The framework is tested
under different conditions and reported in Section I'V. Finally
the paper is concluded in Section V.

Layer Error
information tolerance

Area
reduction

\\ Area cost estimation

Performance loss estimation

« Multiplier library
« Architecture template
Network implementation

Fig. 1. Proposed framework contains two main parts: an area
reduction algorithm, and a network generation code.

Approximation
model

w, b

Network
generation

X0 9| ?}"’00?+ quwuzﬁwosqwml

X1 ?”w?,‘"’“qwlﬁ‘"’“@“'
! 79' ébn 6131 Obz ¢b3 Ob4 |

/o)
X0 \1::- }sg“‘

Qi
\g/’

LAYER 1
>
=

00 01 02 03 04 1

00
]
01 _} g
<
02 | =
1
v v
00 01

Fig. 2. Simplified network architecture.

II. NETWORK ARCHITECTURE

The network structure is explained on an example given in
Fig. 2. In this example, the network has three layers with 5, 3
and 2 neurons from input layer to output layer, as given in the
grey box. Layers employ constant multipliers followed by
accumulators. Multiplication scheme is illustrated for layer
1. Layer 1 has two inputs, moreover the bias is interpreted
as a constant 1 input. Then, layer 1 process 3 inputs in
total. Joining bias into data input is followed in the other
layers, as well. Each input of the layer 1 is multiplied with
5 weights, since the layer has 5 neurons. Similarly, constant
1 is multiplied by 5 bias of the neurons. The multipliers are
combined under Constant Multiplier Blocks (CMBs), each
having 5 outputs. Further information on CMBs is in Section
II-A. Related outputs are accumulated to result the layer
outputs. For example, the first arrow on the left of the figure

is an adder calculating Og of layer 1:
OO = wWo1To + W11 + bo. (1)

Large amount of registers to store weights and biases are
avoided by using constant multipliers. On the other hand,
register blocks can be inserted between the consecutive
layers in order to provide pipeline. The control circuity that
stages reading input, pipelined layers and printing output is
not shown in the figure, to keep it concise on this paper’s
scope. Moreover, this structure do not show any activation
function such as ReLu or sigmoid, because the activation
function is not relevant with the area reduction technique
analysed in this work.

II-A. Constant multiplier block

In Fig. 3, CMB for layer 1 is shown. This block calculates
5 outputs: 5 multiplications with input z;. The output j is

Xi

—?am«ﬂ< =4 1 [0

CMB-L1

[l

Fig. 3. Constant multiplier block with two addends.

04

- -
F [=1] =] [=] 5]
(=] o (=] [=] =]

Cost of one adder (in #LUTs)
[
(=)

[=]

0 2 4 6 8 10 12 14
Approximation error (in STD)

Fig. 4. Error of multiplication is inversly proportional to the
area of combinational adder in the proposed CMB.

w;; T4, which is approximated by sum of IV shifted versions
of the input z;:

K
Oj = Z AT, (2)
n=1

where a,, is either 0 or power of 2. Multiplication with power
of 2 means calculating the shifted version of the input. Shift
operation is implemented by reorganizing the input bits. For
an 8-bit long input 8 shifted versions are generated, as shown
in the example. The output j is result of an adder with K
addends. This structure allow us to generate CMBs with
different approximation levels: accuracy of multiplication
increases with the number addends.

The shifted versions which are not used as an addend will
be trimmed by the circuit compiler, in a later stage. Number
of registers in CMB does not depend on the accuracy score
of the block but, increasing the number of addends increase
the accuracy as well as the combinational circuit area. In
this work, networks are implemented on a Spartan6 FPGA,
so area of a circuit is measured by number of LUTs. The
error of an approximate multiplier is reported as the standard
deviation on error over all possible multiplications. For
signed computations, mean error for shift-add approximate
multiplication will be 0. In the example, an exact multiplica-
tion is performed with 8 addends, consuming 120 LUTSs on
FPGA. We can reduce the cost of combinational circuitry by
decreasing the number of addends down to 2, as illustrated
in Fig. 4.

III. AREA REDUCTION

Thanks to the CMB structure, area reduction is possible in
exchange with accuracy loss. In this section, area vs accuracy
trade-off for FCNs is analysed in order to reduce area con-
sumption when an ultimate error tolerance is set by the user.
The ultimate error tolerance, er is defined as an acceptable
error margin on classification performance. Therefore, unit
for er is percent, i.e. if classification performance of an
FCN is already 95%, but 90% classification performance is
acceptable for some sub-application, then that network has
an ultimate error tolerance er = 5%.

In Section III-A, er is propagated through the FCN in
order to calculate the tolerable computation error of network
layers. e can be distributed over layers in many different
ways, so a distribution to reduce the total network size is to
be found. A method to select the smallest CMB combination
while maintaining er is offered in Section III-B.

III-A. Error propagation through layers

According to the layer structure given in Section II, each
layer is composed of only one type of neuron, in other
words accuracy of layers are in concern rather than accuracy
of individual neurons. Assume an FCN with L layers has
N, neurons in layer ¢ and each layer has an input size
of M;. Layer ¢ is implemented with same type of CMBs:
M; CMBs are required for layer i. As explained with
Figure 4, we can construct as many CBMs with different
approximation levels as the input word length of the layer.
The approximation level of a CBM is quantified with the
standard deviation on error and shown with A; for layer 7.
Therefore, the ultimate error tolerance er in percent has to
be converted into approximation error in std. To demonstrate
this conversion, binary classification is considered, because
binary classification can then be generalized for multiple
class problems.

Binary classification uses a threshold to interpret the
FCN output. If the FCN output is close to the threshold,
computation error may cause classification error. Ideally,
FCN output shows a distribution away from the threshold.
If the deviation on the output distribution increase, the
chance of crossing the threshold increases. Therefore, ep is
associated with the standard deviation of the output neurons.
Moreover, this distribution depends on the noise injected to
the system, by approximate CMBs. Let’s call the standard
deviation of noise infused at layer ¢ as H;. Then, Hy, the
error injection at the output layer cannot override er:

Hy, <[Ver | €

Layer receive erroneous inputs from the preceding approxi-
mate layers. However, if the mean of approximation error is
0, as in our approximate CMBs, then noise is moderated as
the number of neurons increase:

H =~ A, + i—1

V2N @

As (4) shows, the error contribution of layer 7 is related with
both the approximate CMBs, and the noise inherited from
the previous layer.

III-B. Area reduction algorithm

The goal of this algorithm is to minimize the area of
combinational computation circuits while still maintaining
the target performance in terms of classification rate. It
should be noted that the area reported by this algorithm is
not a global minimum: smaller network may be possible with
different weights and architecture. However, the motivating
applications of this work require separating FCN training
from circuit implementation.

An optimization problem with linear constraints is con-
structed and solved by a built-in nonlinear programming
solver of Matlab (fimincon). The optimizer finds the best
combination of CMBs. Therefore, the result returned by
the solver is a vector x with approximation levels of a
CBMs in all layers from 1 to L. This vector is denoted
as x = [Ay Ay Ar]. The objective function to minimize
the total combinational computation area of the network:

L
f=> N, (5)
=1

where C; is the combinational area of the CMB adder used
in layer 7. C; is a function of A;, the cost of a CMB changes
with computation accuracy as in Fig. 4. An exponential
function in the form of C; = aexp(bA;) + cexp(dA;) is
fitted on the curve, resulting in the following parameters:
a=54.93 b= —-2.505c=63.13 d = —0.1082.

The constraints are derived by minimum and maximum
possible adder area. Lower bound is set to a 0 vector of size
(1, L) for exact CMB adder. Upper bound depends on the
word length, maximum error is 14 when input word length
is 8-bit for this work. The last linear constraint is derived
by using the error propagation conditions (3) and (4). For a
three layer network, error contribution of the output layer is

Ay 1
Hp=Hz;=A3+ A2+ —=—) =, 6
" ’ ’ (? \/§N1> V2N, ©
which has to ensure (3). Then, an inequality constraint
1 1
—— — 12T < e 7

is found.

IV. SIMULATION RESULTS

Experimental set up which is simplified on Fig. 5 is
constructed with three layers. The input data precision is
limited to 8 bits. Implementation is performed on Xilinx
Spartan6 FPGA with ISE 14.7 design tools. LUT counts of
these networks are acquired from place & route reports.

Networks with different sizes are considered for test:
neuron counts of the networks vary between 12 and 120. The

Network Exact | e =05 | ep =5 | ep =10
120 Neurons 1826 1521 513 380
96 Neurons 1463 1431 529 328
72 Neurons 1026 927 497 286
60 Neurons 745 617 314 216
36 Neurons 614 292 165 163
12 Neurons 252 252 106 104

Table I. Area utilization of three network architectures with
three tolerance settings.

optimizer is run for 3 ultimate error tolerance values: er =
{0.5, 5 10}. For each network architecture and problem,
3 approximate and 1 exact implementations are possible.
Weights of networks depend on the classification problem (5
linearly separable and 5 linearly non-separable problems), so
10 weight sets has to be used for each approximate and exact
implementation. That makes in total 40 implementations per
network architecture. In Table I, each cell shows the average
LUT count of the related 10 implementations. The generated
binary classification problems can be solved with 0 % to
2.4 % classification rate with exact networks. It should be
noted that classification error rates of the implementations
are calculated to be lower than the tolerated values (er).
LUT counts show a decreasing pattern as the ultimate
error tolerance er increase. An area saving up to 52.44%,
73.13%, and 79.19% is obtained for 0.5%, 5%, and 10%
error tolerance, respectively. Exact implementation area is
significantly larger than any approximate one, except for
the smallest network architecture. Benefits of approximate
computation for area saving can be quantified more easily as
the network layers get larger. Exact networks and networks
with 2-addends are investigated in Figure 6. Increasing the
number of neurons does not necessarily increase the LUT
count, because the weights are carved in a way that require
less addends, for some larger networks. Regardless of this
deduction, approximate version of a network consumes less
LUT than the exact network.

Implement
Approximation Include weights

Define architecture

™ Exact 4>—[: Problem 1
+Approx.with Problem 2
er=0.5
120 Neurons T
. Ly
e=5
Approx.with
(12 Neurons | '~ ppro > Problem 10
er=10

Fig. 5. The experiments are carried out as follows: first a
network architecture is defined with 12-~120 neurons, then
each architecture is implemented 40 times, in total.

3000
—— Approximate network "
l'-_"‘ 2000 H~ - —Exact network . e
= r A
- - ’ A
3 1000 PR - NPT
0
20 40 60 80
" 300
&
o 200
]
2 100
w
+=*
0
20 40 60 80
Neurons

Fig. 6. Area reduction with 2-addend CMBs is more evident
as the layer sizes insrease.

V. CONCLUSION

In this work, an approximate FCN generation framework,
which includes an FCN structure and an area reduction
algorithm utilizing the proposed structure is presented. By
the proposed FCN structure employing CMBs, the approxi-
mation error of the multipliers could be gradually increased.
Moreover, best approximation levels are determined to re-
duce the area consumption of the network, yet the network
can provide targeted classification performance. The area
optimization can be completely detached from FCN training.
Thus, without prior information on network constants, the
framework can still achieve up to 73% area saving with less
than 5% loss in classification accuracy.

ACKNOWLEDGEMENTS

This project is funded by TUBITAK (The Scientific and
Technological Research Council of Turkey), with the grant
number 117E078.

VI. REFERENCES

[1] R. Ranjan, S. Sankaranarayanan, A. Bansal, N. Bodla, J. C. Chen,
V. M. Patel, C. D. Castillo, and R. Chellappa, “Deep learning for
understanding faces: Machines may be just as good, or better, than
humans,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 66-83,
Jan 2018.

[2] J. H. Kim, B. Grady, R. Lian, J. Brothers, and J. H. Anderson, “Fpga-
based cnn inference accelerator synthesized from multi-threaded c
software,” in 2017 30th IEEE International System-on-Chip Conference
(SOCC), Sept 2017, pp. 268-273.

[3] Y. H. Chen, T. Krishna, J. Emer, and V. Sze, “14.5 eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” in 2016 IEEE International Solid-State Circuits Conference
(ISSCC), Jan 2016, pp. 262-263.

[4] B. Moons and M. Verhelst, “A 0.3-2.6 tops/w precision-scalable
processor for real-time large-scale convnets,” in 2016 IEEE Symposium
on VLSI Circuits (VLSI-Circuits), June 2016, pp. 1-2.

[5]1 V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design
of power-efficient approximate multipliers for approximate artificial
neural networks,” in 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov 2016, pp. 1-7.

[6] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann:
An approximate computing framework for artificial neural network,”
in 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2015, pp. 701-706.

