A Study on Hardware-Aware Training Techniques
for Feedforward Artificial Neural Networks

Sajjad Parvin and Mustafa Altun
Department of Electronics Engineering
Istanbul Technical University
parvinsl7, altunmus@itu.edu.tr

Abstract—This paper presents hardware-aware training tech-
niques for efficient hardware implementation of feedforward
artificial neural networks (ANNSs). Firstly, an investigation is
done on the effect of the weight initialization on the hardware
implementation of the trained ANN on a chip. We show that
our unorthodox initialization technique can result in better area
efficiency in comparison to the state-of-art weight initialization
techniques. Secondly, we propose training based on large floating-
point values. This means the training algorithm at the end finds
a weight-set consisting of integer numbers by just ceiling/flooring
of the large floating-point values. Thirdly, the large floating-
point training algorithm is integrated with a weight and bias
value approximation module to approximate a weight-set while
optimizing an ANN for accuracy, to find an efficient weight-set
for hardware realization. This integrated module at the end of
training generates a weight-set that has a minimum hardware
cost for that specific initialized weight-set. All the introduced
algorithms are included in our toolbox called ZAAL. Then, the
trained ANNSs are realized on hardware under constant multipli-
cation design using parallel and time-multiplexed architectures
using TSMC 40nm technology in Cadence.

Index Terms—artificial neural networks, hardware-aware
training, parallel and time-multiplexed architecture, weightset
approximation

I. INTRODUCTION

Artificial neural networks (ANNs) have been successfully
implemented on various design platforms, such as, analog,
very large scale integrated circuits (VLSI), etc [1]. ANN is
constructed from basic blocks called neuron, shown in Fig. 1
(a). The behavior of each neuron can be defined mathemati-
callyasy = > | w;x; and z = ¢(y+b) where n denotes the
number of input signals, weights, and ¢ denotes the activation
function on the summation. By connecting several cascaded
neurons together we can form an ANN, shown in 1 (b), where
each circle denotes a neuron.

From Fig. 1, we can conclude, the hardware implementation
of ANN is severely dependent on the weight and bias values
and it is heavily influenced by a large number of multipli-
cation of constant weights by input signals. In recent years,
many studies have been investigating approaches for efficient
implementation of ANN on chip, devising both new training
algorithms and novel hardware architectures [2]-[9]. In this
paper, we solely investigate training algorithms and techniques
that result in more efficient hardware implementation. We
utilize two hardware architectures to implement our ANNS as a

This work is supported by the TUBITAK-1001 project #119E507.

Bias ANN

Activation
Function

X10 ()

Output
Layer

Inputs Weights

Output

Fig. 1: (a) Artificial neuron; (b) ANN with two hidden layers.

proof of concept for our proposed algorithms; constant multi-
plication design of parallel and time-multiplexed architectures.
These two architectures are implemented in a behavioral fash-
ion and then synthesized and optimized in the Cadence Genus
tool. Moreover, there is a trade-off between area, latency, and
consumed energy for each of these architectures. Hence, based
on the size of each ANN, we choose one of these architectures
for the hardware implementation. But the main contribution of
this paper is the hardware-aware training algorithms.

As in conventional ANN training algorithms, the trained
weight and bias values are high precision small floating-
point numbers. Since floating-point multiplication hardware
implementation occupies a large area and consumes a great
amount of energy, ANN’s weight-set must be converted to
integer with a quantization factor [10] for hardware imple-
mentation. In this work, we explore a pre-quantized weightset
based training where the network is trained based on the
large floating-point values. Unlike conventional approaches
for hardware implementation where the weightset is quantized
after training, in this approach, the quantization value is set
before starting the training. Eventually, we apply a smart
ceiling/flooring approach to convert the trained weightset to
an integer weightset with having minimum hardware cost.
Furthermore, we propose a hardware-aware training algorithm
for considering the hardware cost during training phase and
try to train an ANN with minimum hardware cost while
optimizing the network for accuracy. Plus, we investigated the
effect of weight initialization on hardware implementation as
well. The experimental results are in favor of our proposed
techniques in terms of hardware implementation.

This paper is organized as follow. Section II discusses
the preliminaries and related works. Our hardware aware-
training and ZAAL toolbox are discussed in Section III. The
experimental results are discussed in Section IV. Finally,
Section V concludes this paper.

II. PRELIMINARIES AND BACKGROUND

A. ANN Basics

In this work we use feedforward neural networks for hard-
ware implementation for their simple structure. For a given
ANN configuration, the number of inputs, outputs, hidden
layers, and activation function of each layer is determined
and the network is trained using an iterative optimization
algorithm to minimize the difference between desired output
values and computed output values. After training, the weight
and bias values of the ANN are determined. State-of-art
ANN toolboxes [9], [11], [12] include various initialization
techniques, optimizers, stopping criteria, and various choices
of activation functions for each layer of the ANN. ANN
training is done on processors and/or GPUs. In the testing
procedure, the trained weight and bias values of the model
are used to compute the response of the ANN upon unseen
data. The testing phase of the ANN is computed on a hardware
design platform such as application-specific integrated circuit
(ASIC) and FPGAs, for on-field operation.

B. Cost Metric for Hardware During Training

For our hardware-aware training algorithms, we use the
CSD! representation as a hardware cost metric during the
training of a network. This means an ANN with a weightset
consisting of less number of non-zero digits in their CSD
representation results in a smaller area on chip. This is because
while realized in the synthesis tool, the constant multiplica-
tions can be divided into sub-expressions and then the constant
multiplication can be implemented using additions/subtraction,
and shifts. The hardware complexity of an ANN is heavily
influenced by how large the weight and bias values of the
ANN are. Hence, CSD is a suitable metric for hardware before
implementation. CSD representation gives a sense of how large
an ANN can be on hardware without even realizing it on
hardware under constant multiplication design.

C. Related Works

Multiplierless design has been extensively studied in the
literature, to eliminate the need for conventional multipliers
which require a huge area on chip in the design of ANNSs.
For example in [2], [3], binary neural networks (BNNs) are
studied where the weights, biases, and activation functions are
all constrained to -1 or +1. It is shown that BNNs reduces
the memory size and number of access time to memory
while training. Plus hardware implementation of BNNs are
simple and efficient; since all the multipliers in BNNs are
substituted with XOR operators. Since all the weights and
output of each neuron are limited to -1 or +1, the accuracy
of BNNs are worse than the conventional ANNs [4]. In [4],
[7], while training the network, the weights are determined
to have less number of nonzero digits. Hence, this resulted
in the multiplication operation of each neuron to be imple-
mented with fewer adders and subtractors. Moreover, training
algorithm of [4] just quantizes the weights for the forward

'An integer can be written in CSD using n digits as Z;L;Ol d;2%, where

d; € {—1,0,1}. The nonzero digits must not be adjacent and a constant is
represented with a minimum number of nonzero digits under CSD.

Fig. 2: Neuron Computation of a time-multiplexed architecture
using multiply-accumulate (MAC) unit.

path to calculate the output but the backpropagation is done
on the dequantized values of a weightset. In [5], the floating
point weights of the network are mapped to 8-bit dynamic
fixed-point with integer power-of-two weight. This allows the
network to be implemented more efficiently. Moreover, since
the multiplication of weights and input signals is the major
bottleneck of ANN implementation multiplierless design of
ANN using bit-serial fashion multiplication is proposed in [8].

D. Design Architecture

In this work, we implement constant multiplication based
realization of parallel and time-multiplexed architecture. Basi-
cally, in parallel design architecture, when the input for the
ANN is applied, neurons in each layer compute the result
concurrently until the results are propagated to the output
neurons. Parallel architecture results in smaller delay but larger
area overhead. On the other hand, for larger ANNSs, we utilize
time-multiplexed architecture, illustrated in Fig. 2, where it
uses its resources multiple time. This results in having smaller
area overhead but worse delay than parallel architecture. In this
study, for pen-digit recognition dataset [13] which is small,
parallel architecture is used and for MNIST dataset [14], due
to its larger size, time-multiplexed architecture is used.

ITI. HARDWARE-AWARE TRAINING

In this section, we will discuss our hardware-aware training
approaches for training an ANN to be efficiently implemented
on hardware. Firstly, we will discuss the effect of the weight
initialization on the hardware implementation cost of the
trained ANN and propose a simple uncanonical weight ini-
tialization technique. Secondly, we discuss a pre-quantized
weightset training (PQ) approach to train an ANN using large
floating-point values. This approach allows us to have integer
weight and bias values after the training is done with just
ceiling/flooring ANN’s weightset. Thirdly, we take our PQ
training approach and integrate the training algorithm with
modules to both reduce the size of weight and bias values
during training and also to track and choose the final cost of
the hardware implementation.

A. Weight Initialization Effect on Hardware Cost

Many initialization techniques have been proposed in the
literature for ANNs depending on what type of activation
function hidden layers utilize [15], [16]. These initialization
techniques are proposed to prevent the training algorithm
from experiencing weight explosion or weight vanishment.
Because, if the weights are initialized too large or too small

the network in deep network structures will suffer from the
weight explosion and vanishment. This means that the training
algorithm will not be able to find good minimas due to the bad
weight initialization. However, these initialization techniques
take the assumption that for a certain network in each training
iteration, the weightset of each layer will be having a variance
of 1 and the mean of 0 [15]. In reality, during the training, the
variance of each layer will not be 1 and it deviates far from
the value of 1, especially for deep structures. This assumption
is just valid on paper.

Moreover, we observed that the initialization of weightset
can have a major effect on the hardware implementation of
the network. This means when the weight and bias values
are initialized from a distribution with a smaller standard
deviation, the trained weightset will be smaller in comparison
to the time when ANN is initialized from a distribution with
a larger standard deviation. Hence, less non-zero digit in the
CSD representation of the weightset values after quantizing
the floating point weightset values.

To answer the question of how small we can choose the
initialization standard deviation of distribution for initializ-
ing our weightset, we apply a greedy search starting from
the Xavier or/He method. Then, we search for the standard
deviation ranges for random initialization of weightset that
results in the least hardware cost while keeping the accuracy
the same as Xavier [15] or He [16] initialization methods or
even better. In this process, we will be initializing the ANN
from a Gaussian distribution and we will be shrinking the
standard deviation after each run of the ANN training. We keep
the standard deviation of all the ANN’s layer the same for the
sake of simplicity. We can continue this process until we find
a standard deviation range that results in weight vanishment
or until we have enough resources to run the search.

B. Training with pre-quantized weightset

We train the network with pre-quantized weightset. Hence,
the quantization value and the output bitwidth are determined
before starting the training algorithm. This means that the acti-
vation function bounds are set to a pre-determined quantization
value that we have in our hardware. As an example, if our
hardware is capable of 8 bits computations at the output of
each neuron, we set the boundaries of activation function to
8 bits, which includes the numbers between [-256, 256] (with
the assumption that the activation functions are the linearized
version of sigmoid and tanh with boundaries constraint to
29 where ¢ is the predefined quantization value. Moreover,
the training is done using the conventional algorithms in the
literature such as Adam [17], stochastic gradient descent,
etc. Also we need to multiply the initialized weightset with
the same pre-defined quantiization value. Otherwise, if we
initialize the network’s weightset for training with the numbers
between [-1, +1], the training will not converge to a good
minima. This is because during the training process, all the
weights will be operating around the linear region of the
activation function. We can say that no non-linearity exists
from the input side of the ANN to the output of the ANN.

Moreover, it should be mentioned that if the initialized weights
are multiplied by any factor less than the quantization factor
“g” for the output bitwidth (W; x 27), then it takes longer
for the ANN to converge to a good minima. This is because,
during the backpropagation, it takes longer for the weights to
grow and operate on the whole region of the each neuron’s
activation function.

1) Smart Ceiling/Flooring the Trained Network Weight Set:
To convert all the weightset values to integer, we need to
ceil/floor the weightset. Since, our ANNSs is going to be imple-
mented in constant multiplication fashion according to Section
II, we need weight and bias values with less non-zero digit in
their CSD representation. Hence, we go through all the weight
and bias values, and check which operation, ceiling/flooring
results in less non-zero digit in CSD representation of each
weight and bias values of the weightset. It is worth to mention
if the pre-defined quantization value is chosen large enough,
a fractional loss in accuracy is cause after ceiling/flooring the
weightset.

C. Hardware-Aware Training

Our hardware-aware training basically trains the ANN based
on the training technique discussed in Section III-B, but the
difference is, while performing the regular back-propagation
and forward-propagation to maximize the ANN’s accuracy,
we perform an approximation on the weight and bias values
of the ANN. The approximation technique on the weight and
bias values essentially removes the least significant non-zero
digit in the CSD representation of each weight or/bias value
in the ANN with a tolerable range of loss in the accuracy of
the ANN on validation dataset. After applying this approx-
imation on the CSD representation of each weight and bias
value, the algorithm resumes performing back-propagation and
forward-propagation to find better local minimas. Actually this
approximation introduces a new form of stochastic search into
the optimizer’s algorithm, which results in better accuracy
in software and better hardware cost (fewer non-zero digit
in the CSD representation of the model’s weightset). For
large ANNS, approximating all the weights is not efficient,
hence, for large networks instead of going through all the
weights, we approximate all the weights that are connected
to a neuron. According to [18], a network is less sensitive
to a change in the whole neuron rather than a change in
each and every single weight in the network. Hence, this
approach is used for approximating weights during training
of a large networks. It must be concluded, since we do this
approximation of weights during the training using integers,
this approximation must be done in every p iterations of the
optimization algorithm; here we use the Adam optimizer [17].
If we do it in each and every iteration of the optimizer,
since the rate of changes in the weight and bias values are
relatively small, after ceiling/flooring of the weight and bias
values, the optimizer stucks at a point in the search space and
cannot proceed further to find a better minima. During the
training, while performing this approximation on the weight
and bias values, we set the network to have a tolerance on the

accuracy loss while performing this approximation (we choose
z = 1% loss in the accuracy). This allows the ANN to find
better models with better accuracy and hardware cost, after
the training is done.

Moreover, while training we also keep track of the accuracy
and hardware cost. This allows us at the end of training to
have a list of weightset that have close accuracy result but
different hardware cost. In this approach, while training, at
each q iterations, we save the model’s accuracy and weightset.
And if in the upcoming iterations of the optimizer algorithm,
we find a model with better accuracy more than the predefined
tolerable accuracy drop (we use z = 1% tolerable accuracy
drop), we save the current network model. And at the end, we
choose the model with the best hardware cost, for hardware
implementation.

D. ZAAL: The Hardware-Aware Training Tool for ANN

We present our ANN training tool called ZAAL developed
to include all the hardware-aware algorithms mentioned in this
work. For a given dataset, ZAAL can train the network both
with conventional float-point based numbers (ZAAL FP) and
also it can train the network with pre-quantized weightset
ZAAL PQ as discussed in Section III-B, and pre-quantized
weightset training with approximation (ZAAL PQAX) discussed
in III-C . ZAAL’s training optimizers include Adam [17],
stochastic gradient descent and conventional gradient descent
algorithm. Also, it includes various initialization techniques
such as Xavier [15], He [16] and random weight initializa-
tion method. Our tool includes several optimization stopping
criterias, e.g., number of optimizer’s iterations, early stopping
using validation data set, and saturation of loss function. Also,
it includes several activation functions for each layer of the
network, namely, sigmoid, hard sigmoid (hsig), hyperbolic
tangent, hard hyperbolic tangent(htanh), linear (lin), rectified
linear unit (ReLU), saturating linear (satlin), and softmax [19].

IV. EXPERIMENTAL RESULTS

To show the performance of our hardware-aware techniques
for training of an ANN, we used the pen-based hand-digit
recognition dataset [13] and the MNIST dataset [14]. We used
different network structures with different number of hidden
layers and different number of neurons in each hidden layer.
We show the network structure as follow; pin/ph,/Ph, —
<. — Dh,, /Dout>» Where the p;, and py,: denote the number
of input and output signals for the network, respectively, and
pr; wWhere 1 < j < n shows the number of neurons in 4th
hidden layer of the network. These ANNs are trained using
our hardware-aware algorithms, and the results are compared
with other ANN tools which are not targeting hardware such
as PYTORCH and MATLAB [12] toolboxes. To keep everything
consistent with our techniques, we used the hardtanh(htanh)
for hidden layers and hardsigmoid(hsig) for output layer
as the activation functions for ANNs trained model using
PYTORCH and ZAAL and for MATLAB ANN toolbox, we used
satlins for hidden layers and satlin at the output layer.

The weightset is initialized using Xavier initialization [15]
for PYTORCH and MATLAB due to having htanh and satlins

as activation function. Then due to existence of randomness
in the training process, the network is trained 30 times, with
various initialization points. Then the network is trained using
Adam optimizer [17]. The optimizer is stopped once the
accuracy on the validation set started to deviate from the
training set’s accuracy. And after the 30 rounds of train-
ing, we chose the trained parameters that resulted in the
best software accuracy for hardware realization. It must be
noted that for floating-based training the weights were quan-
tized with minimum quantization value [9] and for our pre-
quantized weightset training algorithm discussed in Section
III-B, the weightset is converted to integers using the smart
ceiling/flooring discussed in Section III-B1. In our training
approaches, we use the same quantization value as found
using MATLAB and PYTORCH. The quantization value found
by toolbox in [9] for the weightset generated using MATLAB
and PYTORCH for the pen-digit hand-based dataset and the
MNIST dataset is 7 and 10, respectively.

For our training approaches we used the initialization
technique discussed in Section 3. To investigate the effect
of initialization on the hardware implementation, we used
PYTORCH and ZAAL FP training with floating-point values
(conventional training with small floating-point values) to
show the effect of the initialization. We needed to use a
large network with a large number of parameters to see the
effect of shrinking distribution’s standard deviation on the
hardware realization. Hence, we used the MNIST dataset
[14] where it has 784 input feature. Then, we have trained
each the model for 30 run but the random weight and bias
values were chosen from a smaller distribution with standard
deviation rather than the Xavier initialization [15]. And after
the model was trained after 30 run, we chose the model with
best accuracy among all 30 runs of training and implemented
the hardware using toolbox in [9]. And we ran the tool to
find the minimum quantization value for each network to
be implemented under time-multiplexed architecture. Fig. 3
shows that the smaller the standard deviation of initialized
network is the smaller area of realized ANN on chip will
be, in comparison to the conventional initialization technique
used in the literature, in this case Xavier technique [15]. The
smallest standard deviation yielded 119% better area using
ZAAL and 19% less area occupation using PYTORCH. This
simple approach can save good amount of area on hardware.
This is because when the distribution of weights become
smaller during the process of training the quantized weight and
bias values become smaller. Yet, this initialization approach is
random and might not always result in huge improvement on
the occupied area (Compare ZAAL and PYTORCH area from
Fig. 3; area(um?), latency (ns), and energy (p.J)). It must be
noted that we trained the networks to prevent from weight
vaninshment and explosion. This means the all the results in
Fig. 3 were set to have the accuracy of 96% using the 784-256-
256-10 architecture. In this experiment, all the layers are set
to have the same standard deviation for the sake of simplicity.

Moreover, we implemented our proposed training algo-

038
07

06
05
4
3
2
0.1
0

Xavier 1.00€-03 1.00E-12 1.00E-30 Xavier

Area

o o

Latency
cRrNwALDNw® O

°

1.00€-03

Standard Deviation

W ZAAL ® Pytorch

Standard Deviation

HZAAL M Pytorch

Energy

1.00€-12

35
30
25
20
15
10 l
. | N

1.00E-30 Xavier 1.00€-03 1.00E-12 1.00E-30

Standard Deviation

HZAAL Pytorch

Fig. 3: A performance comparison on the effect of initialization of ANN weightset on hardware of the trained ANN.

rithms discussed in Section III on hardware. Table I and Table
IT compare the results of the accuracy and hardware of each
training algorithm for the pen-digit recognition dataset [13]
and the MNIST [14] dateset, respectively. In these tables, sta,
hta, and tnzd indicate software accuracy, hardware accuracy,
and total non-zero digits in the CSD representation of integer
weight and bias values of the trained network, respectively.
Table I and Table II, shows that different training algorithms
results in different hardware complexity but it yields quite
similar hardware accuracy. For example, according to Table
I, our proposed hardware-aware training algorithm with pre-
quantized weighset (ZAAL PQ) and pre-quantized weightset
training with approximation (ZAAL PQAP) outperformed the
conventional floating point training approaches (MATLAB and
PYTORCH) by very good amount in terms of having less tnzd.
Our proposed training algorithms ZAAL PQ using pen-digit
recognition dataset, on average resulted in 19% and 30% less
tnzd in comparison to MATLAB and PYTORCH, respectively.
Beside ZAAL PQAP using pen-digit recognition dataset, on
average resulted in 42% and 39% less mzd in comparison
to MATLAB and PYTORCH, respectively. According to Table
I, using the MNIST dataset [14], on average ZAAL PQ
outperformed the MATLAB and PYTORCH by 537 % 526%
in terms of less tnzd, respectively. Again, according to Table
II, using the MNIST dataset [14], on average ZAAL PQAP
outperformed the MATLAB and PYTORCH by 606 % 594%
in terms of less tnzd, respectively.

After the networks are trained, we implemented all the
networks in constant multiplication fashion under parallel
and time-multiplexed architectures as discussed in Section
I. Hardware description of our networks is generated using
toolbox discussed in [9] and all the design are synthesized in
Cadence Genus tool using TSMC 40nm technology. To show
the effectiveness of our algorithms on hardware implementa-
tion, we calculate the values for area (in m?), latency in (ns),
and energy consumption in (pJ).

As illustrated in Fig. 4 and Fig. 5, our training algorithms
resulted in very good hardware implementation in comparison
to the conventional floating point based training. For pendigit
dataset, we used parallel architecture due to its small number
of ANNs parameters. On average, hardware implementation
of ZAAL PQ achieved 20% and 25% less area occupation
in comparison to PYTORCH and MATLAB, respectively. On
average energy consumption of ZAAL PQ using pen-digit

dataset is 75% and 78% less than the MATLAB and PYTORCH,
respectively.

Moreover, our proposed ZAAL PQAP on pen-digit recogni-
tion dataset on average resulted in 40% and 43% less area
occupation on chip in comparison to the the MATLAB and
PYTORCH, respectively. Plus, the ZAAL PQAP achieved 56%
and 50% less energy consumption in comparison to the the
MATLAB and PYTORCH, respectively.

Furthermore, we tested our proposed techniques on the
MNIST dataset [14]. As shown in Fig. 5, both of our proposed
approaches outperformed the conventional floating-point based
ANN training drastically. For the MNIST dataset [14], we
utilized the time-multiplexed architecture due to ANN’s large
size. Otherwise, using the parallel architecture would have
resulted in huge area on chip. MATLAB and PYTORCH re-
sulted in 4.18 and 3.34 times larger area in comparison to
our ZAAL PQ training algorithm, respectively. And also the
energy consumption of MATLAB and PYTORCH is 17.7 and
8.7 times larger than the ZAAL PQ, respectively. Beside, for
our proposed ZAAL PQAP, on the MNIST dataset [14], the
overall performance on hardware had 10% improvement in
comparison to the ZAAL PQ.

The reason our PQ based training algorithm achieved this
much improvement is that the majority of trained ANN’s
weight and bias values become zero. On the other hand, in
floating-point based training, most weight and bias values are
small and after quantizing them, still they will not be zero.
Hence, they will add up to the cost of the ANN. When a weight
becomes zero, it means that synapse can be remove from the
ANN. As a result, smaller area is achieved on hardware.

V. CONCLUSION

In this work, we investigated hardware-aware training al-
gorithms for training ANNSs. Our training algorithm is based
on training an ANN using a pre-quantized weightset. Unlike
conventional floating-point based training, the quantization
value is fixed before training. Besides, we also minimize
hardware cost during training. Above all that, we showed
our unorthodox approach to weight initialization can have a
descent impact on final hardware implementation cost.

REFERENCES

[1] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey
of two decades of progress,” Neurocomputing, vol. 74, no. 1-3, 2010.

[2] M. Courbariaux and et. al, “Binaryconnect: Training deep neural net-
works with binary weights during propagations,” in /CNIPS, 2015.

TABLE I: A design comparison among various ANN toolboxes using pen-digit dataset [13].

Structure ZAAL PQ ZAAL PQAP MATLAB PYTORCH
swa hwa tnzd swa hwa | tnzd swa hwa tnzd swa hwa tnzd
16/10 88.3 | 875 407 87.1 | 87.1 294 | 89.1 | 89.3 374 85.5 | 85.1 374
16/10/10 94.6 | 94.5 667 952 [957 | 474 | 959 | 959 857 959 | 952 950
16/16/10 944 | 942 | 1004 | 96.5 | 96.4 | 698 | 96.9 | 95.0 | 1291 | 956 | 95.6 | 1338
16/10/10/10 | 95.6 | 95.5 897 96.1 | 962 | 904 | 964 | 94.7 | 1121 | 95.8 | 95.6 | 1190
16/16/10/10 | 96.5 | 96.4 | 1218 | 96.6 | 96.5 | 797 | 96.6 | 952 | 1560 | 96.7 | 96.7 | 1608
Average 93.9 | 93.6 839 943 [944 | 633 | 950 | 94.0 | 1041 | 93.9 | 93.6 | 1092

TABLE II: A design comparison among various ANN toolboxes using the MNIST dataset [14].

Struct ZAAL PQ ZAAL PQAP MATLAB PYTORCH
ucture swa hwa tnzd swa hwa tnzd swa hwa tnzd swa hwa tnzd
784/10 91.1 | 90.0 | 13839 | 91.0 | 89.8 | 12432 | 919 | 91.1 29285 91.8 | 90.7 15277
784/128/10 94.8 | 945 | 67442 | 94.6 | 942 | 62721 | 98.0 | 97.8 | 262938 | 96.4 | 95.8 | 252113
784/256/256/10 | 96.5 | 95.8 | 79987 | 96.7 | 95.8 | 70317 | 98.2 | 96.1 | 735221 | 96.8 | 96.1 | 742584
Average 94.1 | 934 | 53756 | 94.1 | 932 | 48490 | 96.0 | 95.0 | 342481 | 95.0 | 94.2 | 336719
gsoooo I . ‘ g z I I || I' I :E“zon
10000 [{ ““‘ 2 | | ‘ . IZZ | -
 yone TR no REY AL SV W : Ll

16-10 161010 16-16-10 16-10-10-10 16-16-10-10 Average 16-10 16-10-10

Structure
HZAALPQ M ZAALPQAP

HZAALPQ W ZAALPQAP ® MATLAB ™ PYTORCH

16-16-10 16-10-10-1016-16-10-10 Average
Structure

= MATLAB

16-10 16-10-10 16-16-10 16-10-10-1016-16-10-10 Average

Structure

PYTORCH W ZAALPQ ®ZAALPQAP ® MATLAB PYTORCH

Fig. 4: Hardware results comparison of various ANN toolboxes using parallel architecture design for the pen-digit dataset [13].

800000 10 50.0
700000 9 8.0
8 40.0
600000
7 35.0
500000 -
° 3o - g 300
£ 400000 g 5 g 25.0
< ® s
300000 = 4 B.200
3 1 | f 15.0 L
200000 | |
2 10.0
100000 I 1 1 50
0 —— []| . 1] | o o6 - i - —— |

784-10 784-128-10 784-256-256-10 Average 784-10 784-128-10

Strucutre
MZAALPQ mZAALPQAP = MATLAB

PYTORCH WZAALPQ mZAALPQAP

784-256-256-10

Structure

u MATLAB

784-10 784-128-10 784-256-256-10

Structure

Average Average

PYTORCH WZAALPQ mZAALPQAP m MATLAB PYTORCH

Fig. 5: Hardware results comparison of various ANN toolboxes using time-multiplexed arhitecture design for the MNIST
dataset [14].

[3]

[4]

[5]
[6]
[7]
[8]
[9]

[10]
(1]

[12]

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” arXiv e-prints, 2016.

R. Ding, Z. Liu, R. D. Blanton, and D. Marculescu, “Quantized deep
neural networks for energy efficient hardware-based inference,” in Asia
and South Pacific Design Automation Conference, 2018, pp. 1-8.

H. Tann and et. al, “Hardware-software codesign of accurate, multiplier-
free deep neural networks,” in DAC, 2017.

H. Park and T. Kim, “Structure optimizations of neuromorphic comput-
ing architectures for deep neural network,” in DATE 2018, pp. 183—188.
S. S. Sarwar and et. al, “Multiplier-less artificial neurons exploiting error
resiliency for energy-efficient neural computing,” in DATE 2016.

T. Szabo, L. Antoni, G. Horvath, and B. Feher, “A full-parallel digital
implementation for pre-trained NNs,” in [JCNN, 2000, pp. 49-54.

L. Aksoy, S. Parvin, M. E. Nojehdeh, and M. Altun, “Efficient time-
multiplexed realization of feedforward artificial neural networks,” in
ISCAS, 2020.

M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE ISSCC, 2014.

A. Paszke and et. al, “Automatic differentiation in pytorch,” in Confer-
ence NIPS, Autodiff Workshop, 2017.

The MathWorks Inc., Deep Learning Toolbox, Natick, Massachusetts,
United States, 2020.

[13]

(14]

[15]

[16]

(17]

[18]

[19]

F. Alimoglu and E. Alpaydin, “Combining multiple representations and
classifiers for pen-based handwritten digit recognition,” in /ICDAR, 1997.
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in ICAIS, 2010, pp. 249-256.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” arXiv
e-prints, 2015, arXiv:1502.01852.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv e-prints, 2014, arXiv:1412.6980.

S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn:
Energy-efficient neuromorphic systems using approximate computing,”
ser. ISLPED, 2014.

C. Nwankpa, W. [jomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep
learning,” arXiv e-prints, 2018.

