Student ID:

Date: 21/03/2022

EHB322E Digital Electronic Circuits QUIZ I
 Duration: 60 Minutes
 Grading: 1) 50%, 2) 50%

For your answers please use the space provided in the exam sheet GOOD LUCK!

1) Consider a buffer shown below. Use the following equations for your calculations.

Saturation region current-voltage equation: $I_{D}=\frac{1}{2} k_{p, n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{T 0 p, n}\right)^{2}$
Linear region current-voltage equation: $I_{D}=\frac{1}{2} k_{p, n}^{\prime} \frac{W}{L}\left[2\left(V_{G S}-V_{T 0 p, n}\right) V_{D S}-V_{D S}^{2}\right]$
Transistor parameters: $k_{p}{ }^{\prime}=\mu_{p} c_{o x}=54 \mathrm{uA} / \mathrm{V}^{2}, k_{n}{ }^{\prime}=\mu_{n} c_{o x}=96 \mathrm{u} A / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{TP}}=-1 \mathrm{~V}$, $\mathrm{W}_{\mathrm{N}-1}=\mathrm{W}_{\mathrm{N}-2}=12 \mathrm{u}, \mathrm{L}_{\mathrm{P}}=\mathrm{L}_{\mathrm{N}}=1 \mathrm{u}$.

Buffer
a) Find the minimum value of $\boldsymbol{R}_{\mathbf{1}}$ if $\boldsymbol{V}_{\text {in }}=\mathbf{5 V}$ results in $\boldsymbol{V}_{\text {out }}=\mathbf{5 V}$.
b) Find the value of $\mathbf{W}_{\text {P- } 11}$ if $\boldsymbol{V}_{\text {in }}=\mathbf{0 V}$ results in $\boldsymbol{V}_{\text {out }}=\mathbf{0 . 5 V}$.
c) Find the buffer's static power consumption values when $\boldsymbol{V}_{i n}=\mathbf{0 V}$ and $\boldsymbol{V}_{i n}=\mathbf{5 V}$.
2) Consider a circuit with three CMOS inverters and three outputs shown below. External capacitors with values of $2 f F, 4 f F$, and $6 f F$ are connected to output-1, output-2, and output3 , respectively. A signal switching from high to low is applied to the input.
Transistor parameters: $c_{o x}=1 f F / \mathrm{um}^{2}, \tau_{n}=\tau_{p}=1 \mathrm{ps}, \mathrm{W}_{\mathrm{N} 1}=2 \mathrm{u}, \mathrm{W}_{\mathrm{P} 1}=4 \mathrm{u}, \mathrm{W}_{\mathrm{N} 2}=2 \mathrm{u}, \mathrm{W}_{\mathrm{P} 2}=6 \mathrm{u}$, $\mathrm{W}_{\mathrm{N} 3}=1 \mathrm{u}, \mathrm{W}_{\mathrm{P} 3}=4 \mathrm{u}$, and $\mathrm{L}_{\mathrm{N} 1}=\mathrm{L}_{\mathrm{P} 1}=\mathrm{L}_{\mathrm{N} 2}=\mathrm{L}_{\mathrm{P} 2}=\mathrm{L}_{\mathrm{N} 3}=\mathrm{L}_{\mathrm{P} 3}=1 \mathrm{u}$.

Digital circuit with three CMOS inverters

Propagation delays of an inverter are formulized as follows. C_{L} represents the total (internal and external) load capacitor of an inverter.

$$
\begin{array}{ll}
t_{P H L}=\left(C_{L} / C_{N}\right) \tau_{n} & C_{N}=c_{o x} \mathrm{~W}_{N} \mathrm{~L}_{\mathrm{N}} \\
t_{P L H}=\left(C_{J} / C_{P}\right) \tau_{p} & C_{P}=c_{o x} \mathrm{~W}_{P L_{P}}
\end{array}
$$

a) Neglect the inverters' internal output capacitors and find total propagation delay values at output-1 (delay of I1), output-2 (delay of I1+delay of I2), and output-3 (delay of I1+delay of I2).
b) Suppose that each inverter has an input internal capacitor $C_{\text {I-in }}=c_{o x}\left(\mathrm{~W}_{\mathrm{N}}+\mathrm{W}_{\mathrm{P}}\right)(1 \mathrm{um})$ and an output internal capacitor $C_{\text {I-out }}=c_{o x}\left(\mathrm{~W}_{\mathrm{N}}+\mathrm{W}_{\mathrm{P}}\right)(0.5 \mathrm{um})$. Find total propagation delay values (by considering both internal and external capacitors) at output-1, output-2, and output-3.

