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ABSTRACT
This paper studies the implementation of Boolean functions with

lattices of four-terminal switches. Each switch is controlled by a
Boolean literal. If the literal is 1, the switch is connected to its four
neighbors; else it is not connected. Boolean functions are imple-
mented in terms of connectivity across the lattice: a Boolean func-
tion evaluates to 1 iff there exists a top-to-bottom path. The paper
addresses the following synthesis problem: how should we map
literals to switches in a lattice in order to implement a given target
Boolean function? We seek to minimize the number of switches.
Also, we aim for an efficient algorithm – one that does not ex-
haustively enumerate paths. We exploit the concept of lattice and
Boolean function duality. We demonstrate a synthesis method that
produces lattices with a number of switches that grows linearly with
the number of product terms in the function. Our algorithm runs in
time that grows polynomially.
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1. INTRODUCTION
One-dimensional (1D) switch-based models of computation were

first considered by Shannon [1]. An example of a 1D switch is
shown in in the top part of Figure 1. It is either ON (i.e., closed) or
OFF (i.e., open). Shannon showed how Boolean functions can be
implemented with 1D switches in series/parallel configurations.

In this paper we develop a synthesis method for two-dimensional
(2D) switch-based models of computation. An example of a 2D
switch is shown in the bottom part of Figure 1. It has four ends that
are all either mutually connected (ON) or disconnected (OFF). A
network consisting of 2D switches is shown in Figure 2(a). The cor-
responding lattice form is shown Figure 2(b). Here black and white
squares represent ON and OFF switches, respectively. Through-
out this paper, we will use the lattice representation and focus on
top-to-bottom and left-to-right connectivities.

Figure 1: One-dimensional and two-dimensional switches.
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Figure 2: 3×3 2D-switching network and its lattice form.

Suppose that we are asked to implement the Boolean function
f = x1x2x3+x1x4. With 1D switches, this task is easily achieved:
we implement the function with a series/parallel network, consist-
ing of two parallel paths, one for each product term.

With 2D switches, we implement the computation in terms of
the top-to-bottom connectivity of a lattice. Here the task is not as
straightforward. Figure 3 shows two solutions, only one of which is
correct. The Boolean functions between the top and bottom plates
are different for (a) and (b). In (a) the function is f = x1x2+x1x4.
In (b) the function is f = x1x2x3 + x1x4. The reason for this
difference is that we cannot just consider the column paths; we
must consider all possible paths. These include the paths shown in
red and blue. Since the path in (a) shown in red covers x1x2x3, we
conclude that here f = x1x2 + x1x4.

Figure 3: 3×2 lattices with different Boolean functions.

Motivated by this simple example, we consider the general prob-
lem of implementing Boolean functions with lattices of 2D switches.
We seek to minimize the number of switches. Also, we aim for an
efficient algorithm. In our synthesis strategy, we exploit the con-
cept of lattice and Boolean function duality [2, 3]. This forms a
novel and rich framework for Boolean computation.

1.1 Definitions
Consider k independent Boolean variables, x1, x2, . . . , xk.

Boolean literals are Boolean variables and their complements, i.e.,
x1, x̄1, x2, x̄2, . . . , xk, x̄k. A product (P) is an AND of literals,
e.g., P = x1x̄3x4. A set of a product (SP) is a set contain-
ing all the product’s literals, e.g., if P = x1x̄3x4 then SP =
{x1, x̄3, x4}. A sum-of-products expression (SOP) corresponds
to an OR of product terms.

A prime implicant (PI) of a Boolean function f is a product that
implies f such that removing any literal from the product results



in a new product that does not imply f . An irredundant sum-of-
products expression (ISOP) is an SOP, where each product is a PI,
and no PI can be deleted without changing the Boolean function f
represented by the expression. Among the SOPs for f , one with
the minimum number of products is a minimum sum-of-products
expression (MSOP).

f and g are dual Boolean functions iff

f(x1, x2, . . . , xk) = ḡ(x̄1, x̄2, . . . , x̄k).

A dual of a function can also be obtained by interchanging AND
and OR operations as well as the constants 0 and 1. For example, if
f = x1x2 + x̄1x3 then fD = (x1 +x2)(x̄1 +x3). Another trivial
example is that for f = 1 the dual is fD = 0.

2. SYNTHESIZING LATTICE-BASED COM-
PUTATION

In our approach, the input Boolean literals are applied to sites
of the lattice. Each site is a 2D switch that is ON (OFF) if the
corresponding input literal is 1 (0). Call the Boolean functions that
are implemented according to the top-to-bottom and left-to-right
plate connectivities fL and gL, respectively.

Note that the Boolean functions fL and gL are the OR of all top-
to-bottom and left-to-right paths, respectively. Since each path cor-
responds to the AND of inputs, the paths taken together correspond
to the OR of these AND terms, so implement a sum-of-products
expression.

Figure 4: 2×3 lattice with assigned literals.

Consider the example shown in Figure 4: here there are 6 switches,
3 top-to-bottom paths and 4 left-to-right paths. So fL is the OR of
the 3 products x1x3, x̄1x2, x3x4 and gL is the OR of the 4 prod-
ucts x1x2x3, x1x̄1x2x4, x̄1x2x3x3, x̄1x3x4. As a result, fL =
x1x3 + x̄1x2 + x3x4 and gL = x̄1x3x4 + x2x3 (both in MSOP
form).

This paper address the following logic synthesis problem: given
a target Boolean function fT , how should we map literals to the
sites in a lattice such that fL = fT ?

2.1 Mathematical Preliminaries
We propose two useful theorems. The first pertains to lattice

functions and their duality relation. Suppose we are given a lat-
tice and asked to compute fL and gL. As suggested above, fL
and gL are obtained by OR’ing all top-to-bottom and left-to-right
paths, respectively. So we can compute fL and gL by examining all
possible paths. Unfortunately, enumerating paths quickly becomes
prohibitive as the size of the lattice grows. Indeed, the number of
paths grows exponentially. For instance, a 3 × 3 lattice has 9 top-
to-bottom paths, compared to 2 in a 2 × 2 lattice. The following
theorem suggests a different approach.

Theorem 1 If we can find two dual functions f and fD that are
implemented as subsets of all top-to-bottom and left-to-right paths,
respectively, then fL = f and gL = fD .

Before presenting the proof, we provide some examples to eluci-
date the theorem.

Example 1 We analyze the two lattices shown in Figure 5.

Lattice (a): The top-to-bottom paths shown by red lines imple-
ment a Boolean function f = x1x2 + x̄1x3. The left-to-right
paths represented by blue lines implement a Boolean function g =
x1x3 + x̄1x2. Since g = fD , we can apply Theorem 1: fL =
f = x1x2 + x̄1x3 and gL = fD = x1x3 + x̄1x2. Relying on the
theorem, we obtained the functions without examining all possible
paths. Let us check the result by using the formal definition of fL
and gL, namely the OR of all corresponding paths. Since there are
9 total top-to-bottom paths, fL = x1x̄1 + x1x2 + x1x̄1x2x3 +
x1x̄1x2x3 + x2x3 + x̄1x2x3 + x1x̄1x2x3 + x2x3 + x̄1x3 which
is equal to x1x2 + x̄1x3. Since there are 9 total left-to-right paths,
gL = x1x3+x1x2x3+x1x̄1x2x3+x1x2x3+x1x2x3+x1x̄1x2+
x̄1x2x3 + x̄1x2x3 + x̄1x2 which is equal to x1x3 + x̄1x2. So The-
orem 1 holds true for this example.

Lattice (b): The top-to-bottom paths shown by red lines im-
plement a Boolean function f = x1x2 + x2x3. The left-to-right
paths represented by blue lines implement a Boolean function g =
x1x3 + x2. Since g = fD , we can apply Theorem 1: fL = f =
x1x2 + x2x3 and gL = fD = x1x3 + x2. Again, we can confirm
that the theorem holds.
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Figure 5: Examples to illustrate Theorem 1.
.

PROOF. If f(x1, x2, . . . , xk) = 1 then fL = 1. From the defi-
nition of duality, if f(x1, x2, . . . , xk) = 0 then g(x̄1, x̄2, . . . , x̄k) =
f̄(x1, x2, . . . , xk) = 1. This means that there is a left-to-right
path consisting of all 0’s, i.e., fL = 0. Thus, we conclude that
fL = f . Following the same argument for g, we conclude that
gL = fD .

Note that Theorem 1 serves not only for analyzing lattice func-
tions; it also provides a constructive method for synthesizing lat-
tices with the requisite property, namely that the top-to-bottom and
left-to-right functions are duals. In particular, the theorem suggests
that we need only consider paths that are straight lines, i.e., columns
and rows, in order to implement a target Boolean function. Before
describing our approach, we present some useful properties of dual
functions.

Suppose that functions f(x1, x2, . . . , xk) and fD(x1, x2, . . . , xk)
are given in ISOP form such that

f = P1 + P2 + · · ·+ Pn and
fD = P ′1 + P ′2 + · · ·+ P ′m

where the P ’s and P ′’s are prime implicants.1 We will use set
representations for the prime implicants:

Pi → SPi, i = 1, 2, . . . , n

P ′j → SP ′j , j = 1, 2, . . . ,m

where each SPi is the set of literals in the corresponding Pi and
each SP ′j is the set of literals in the corresponding P ′j . Suppose
1Here ′ is used to distinguish symbols. It does does not indicate negation.



that SPi and SP ′j have zi and z′j elements, respectively. We first
present a property of dual Boolean functions from [2]:

Lemma 1 Dual pairs f and fD must satisfy the condition

SPi ∩ SP ′j 6= ∅ for every i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

PROOF. The proof is by contradiction. Suppose that we focus
on one product term Pi from f and assign all its literals, namely
those in the set SPi, to 0. In this case fD = 0. However if there
is a product term P ′j of fD such that SP ′j ∩ SPi = ∅, then we
can always make P ′j equal 1 because SP ′j does not contain any
literals that were previously assigned 0. If follows that fD = 1, a
contradiction.

Theorem 2 Assume f and fD are in ISOP form. For any prod-
uct term Pi of f , there exist m non-empty intersection sets, (SPi ∩
SP ′1), (SPi∩SP ′2), . . . , (SPi∩SP ′m). Among these m sets, there
must be zi single-element disjoint sets that each represents one of
the zi literals of Pi.

We can make the same claim for products of fD: For any prod-
uct P ′j of fD there exist n non-empty intersection sets, (SP ′j ∩
SP1), (SP ′j ∩ SP2), . . . , (SP ′j ∩ SPn). Among these n sets there
must be z′j single-element disjoint sets that each represents one of
the z′j literals of P ′j .

Before proving the theorem we elucidate it with examples.

Example 2 Suppose we are given a target function fT and its dual
fD
T in ISOP form such that

fT = x1x̄2 + x̄1x2x3 and fD
T = x1x2 + x1x3 + x̄1x̄2.

Thus,

SP1 = {x1, x̄2}, SP2 = {x̄1, x2, x3},
SP ′1 = {x1, x2}, SP ′2 = {x1, x3}, SP ′3 = {x̄1, x̄2}.

Let us apply Theorem 2 for SP2 (z2 = 3).

SP2 ∩ SP ′1 = {x2}, SP2 ∩ SP ′2 = {x3}, SP2 ∩ SP ′3 = {x̄1}.

Since these three sets are all the single-element disjoint sets of the
literals of SP2, Theorem 2 is satisfied.

Example 3 Suppose we are given a target function fT and its dual
fD
T in ISOP form such that

fT = x1x2 + x1x3 + x2x3 and fD
T = x1x2 + x1x3 + x2x3.

Thus,

SP1 = {x1, x2}, SP2 = {x1, x3}, SP3 = {x2, x3},
SP ′1 = {x1, x2}, SP ′2 = {x1, x3}, SP ′3 = {x2, x3}.

Let’s apply Theorem 2 for SP ′1 (z′1 = 2).

SP ′1∩SP1 = {x1, x2}, SP ′1∩SP2 = {x1}, SP ′1∩SP3 = {x2}.

Since {x1} and {x2}, the single-element disjoint sets of the literals
of SP ′1, are among these sets, Theorem 2 is satisfied.

PROOF. The proof is by contradiction. Consider a product term
Pi of f such that SPi = {x1, x2, . . . , xzi}. For one of the el-
ements of SPi, say x1, assume that none of the intersection sets
(SPi ∩ SP ′1), (SPi ∩ SP ′2), . . . , (SPi ∩ SP ′m) are {x1}. This
means that if we extract x1 from SPi then the new set {x2, . . . , xzi}
also has non-empty intersections with every SP ′j . Note that that the
product x2x3 . . . xzi is one of the products of f . This product cov-
ers Pi. However in an ISOP there is no product that covers another
one. This is a contradiction.

2.2 Mapping Boolean Functions onto Lattices
Based on these mathematical preliminaries, we turn to the task of

mapping input literals onto a lattice in order to implement a target
function. Suppose that we are given a target Boolean function fT
and its dual fD

T , both in ISOP form,

fT = P1 + P2 + · · ·+ Pn and
fD
T = P ′1 + P ′2 + · · ·+ P ′m.

where each P and P ′ is a prime implicant.
Mapping problem: How should we map the literals of a given
Boolean function onto sites of the lattice such that fL = fT and
gL = fD

T ?
We propose a solution that implements fT with an m × n lat-

tice where n and m are the number of products of fT and fD
T ,

respectively. The time complexity of computing this solution is
polynomial in n and m: O(n2m2).

 f L
 =

f Td

 gL = fT
D

11 SPSP I 12 SPSP I 11 SPSPn I− 1SPSPn I

21 SPSP I 2SPSPn I

11 −mSPSP I 1−mn SPSP I

mSPSP I1 mSPSP I2 mn SPSP I1− mn SPSP I

Figure 6: Proposed mapping technique.

The proposed technique is illustrated in Figure 6. As shown in
the figure, each site has its own intersection set. After computing
these intersection sets, we select an arbitrary literal from each set
and assign this literal to the corresponding lattice site. This imple-
ments the requisite target function fT .

Example 4 Suppose that we are given the following target function
fT in ISOP form:

fT = x1x2 + x1x3 + x2x3.

We compute its dual fD
T in ISOP form:

fD
T = x1x2 + x1x3 + x2x3.

We have:

SP1 = {x1, x2}, SP2 = {x1, x3}, SP3 = {x2, x3},
SP ′1 = {x1, x2}, SP ′2 = {x1, x3}, SP ′3 = {x2, x3}.

Figure 7 shows the implementation of the target function. Grey
sites represent sets having more than one literal. Selection of the
final literal for grey sites is arbitrary, e.g., selecting x2, x3, x3 in-
stead of x1, x1, x2 does not change fL and gL. In order to imple-
ment the target function and its dual, we only use paths of columns
and rows. Thus all other paths must be redundant. For example,
there are a total of 9 top-to-bottom paths: the 3 column-paths and
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Figure 7: Mapping fT = x1x2 +x1x3 +x2x3. (a): Lattice sites with
corresponding sets. (b): Lattice sites with corresponding literals.

6 more paths; however the Boolean function implemented by the
6 non-column-paths is covered by the column-paths. The lattice
implements fL = fT = x1x2 + x1x3 + x2x3 and gL = fD

T =
x1x2 + x1x3 + x2x3.

Below is the detailed explanation and proof of correctness for
the proposed mapping technique.

Mapping technique:

1. Begin with fT and its dual fD
T in ISOP form. Suppose that

fT and fD
T have n and m product terms, respectively.

2. Start with an m × n lattice. Implement every product term
of fT by a column-path and every product term of fD

T by a
row-path. Theorem 1 allows us to do this.

3. Compute intersection sets for every site, as shown in Fig-
ure 6.

4. From Lemma 1 we know that all the intersection sets are
non-empty. If the intersection set consists of a single literal,
then we map it to the corresponding site. If the intersection
set has more than one literal, then the question arises: which
one should we use? Here we exploit Theorem 2. It says that
the intersection sets of a product term include single-element
sets for all of its literals. So the corresponding site can be
any of them. We pick arbitrarily. We obtain a lattice in which
columns and rows implement product terms of fT and fD

T ,
respectively.

We give another example, this one somewhat more complicated.

Example 5 Suppose that fT and fD
T are given in ISOP form:

fT = x1x̄2x3 + x1x̄4 + x2x3x̄4 + x2x4x5 + x3x5 and

fD
T = x1x2x5 + x1x3x4 + x2x3x̄4 + x̄2x̄4x5.

Figure 8 shows the implementation of the target function. Grey
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Figure 8: Mapping fT = x1x̄2x3+x1x̄4+x2x2x̄4+x2x4x5+x3x5.

sites represent intersection sets having more than one literal. For
these sites, selection of the final literal is arbitrary. The result is
fL = fT = x1x̄2x3 + x1x̄4 + x2x2x̄4 + x2x4x5 + x3x5 and
gL = fD

T = x1x2x5 + x1x3x4 + x2x3x̄4 + x̄2x̄4x5.

2.3 Experimental results
We report synthesis results for some benchmark circuits in Fig-

ure 9. We used the usual suspects, namely the Espresso and LGSynth93
collections. We selected circuits based on size and suitability. We
considered each output as a separate Boolean function. We ob-
tained MSOPs for the Boolean functions and their duals using the
Berkeley SIS environment (using Espresso minimization) [4]. Here
n and m are the number of products of the corresponding Boolean
function and its dual, respectively, in MSOP form.

Circuit n m Lattice Circuit n m Lattice
size size

C17 3 3 9 rd53 16 16 256
C17 4 2 8 rd53 10 10 100

9symm 84 72 6048 rd53 5 10 50
alu2 4 4 16 rd73 64 64 4096
alu2 33 33 1089 rd73 35 35 1225
alu2 67 68 4556 rd73 42 42 1764
alu2 2 2 4 rd84 128 128 16384
alu2 1 2 2 rd84 1 8 8
alu2 36 37 1332 rd84 84 79 6636
clip 42 42 1764 rd84 70 57 3990
clip 21 21 441 cm85a 16 24 38
clip 24 24 576 cm85a 16 9 144
clip 20 20 400 cordic 143 774 110682
clip 31 31 961 cordic 771 149 114879

Figure 9: Lattice sizes for the output functions of benchmark
circuits.

3. DISCUSSION
Our method produces lattice sizes that are linear in the number of

product terms of the target Boolean function. The time complexity
of our algorithm is polynomial in the number of product terms. We
do not claim that our method always produces the optimal lattice
size for every target function, but it performs well in this regard.

This work is related to our prior work on synthesizing robust
digital computation in lattices with random connectivity based on
the phenomenon of percolation [5].

A significant tangent for this work is its mathematical contri-
bution: lattice-based implementations present a novel view of the
properties of Boolean functions. We are curious to study the appli-
cability of these properties to the famous problem of testing whether
two monotone Boolean functions in ISOP form are mutually dual.
This is one of the few problems in circuit complexity whose precise
tractability status is unknown [6].
Acknowledgments: We would like to thank Ivo Rosenberg for his contri-
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