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Abstract

In this work, we study implementation of Boolean functions with nano-crossbar arrays where each crosspoint behaves as a four-
terminal switch controlled by a Boolean literal. These types of arrays are commonly called as switching lattices. We propose
optimal and heuristic algorithms that minimize lattice sizes to implement a given Boolean function. The algorithms are mainly
constructed on a technique that finds Boolean functions of lattices having independent inputs. This technique works recursively
by using transition matrices representing columns and rows of the lattice. It performs symbolic manipulation of Boolean literals
as opposed to using truth tables that allows us to successfully find Boolean functions having up to 81 variables corresponding to a
9×9-lattice. With a Boolean function of a certain sized lattice, we check if a given function can be implemented with this lattice
size by defining the problem as a satisfiability problem. This process is repeated until a desired solution is found. Additionally, we
fix the previously proposed algorithm that is claimed to be optimal. The fixed version guarantees optimal sizes. Finally, we perform
synthesis trials on standard benchmark circuits to evaluate the proposed algorithms by considering lattice sizes and runtimes in
comparison with the recently proposed three algorithms.
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1. Introduction

Nano-crossbar arrays have emerged as area and power ef-
ficient structures with an aim of achieving high performance
computing beyond the limits of current CMOS [1, 2, 3]. Com-
puting is achieved with crosspoints behaving as switches, either
two-terminal or four-terminal. This is illustrated in Figure 1.
Depending on the used technology, a two-terminal switch be-
haves as a diode [4, 5], a resistive/memristive switch [6], or a
field effect transistor (FET) [7]. Diode and resistive switches
correspond to the crosspoint structure in Figure 1 a); here, the
switch is controlled by the voltage difference between the ter-
minals. Figure 1 b) shows a FET based switch; here, the red
line represents the controlling input. A four-terminal switch is
given in Figure 1 c). The controlling input, not shown in the
figure, has a separate physical formation from the crossbar that
is thoroughly explained for different technologies in [8].

Comparing the array sizes to implement a given Boolean
function, we see that the four-terminal switch based arrays over-
whelm the two-terminal based ones [9]. In these comparisons
resistive/memristive arrays are not taken into account. How-
ever, it is not difficult to guess that their sizes are much worse
than those of diode and FET based arrays. The reason is that re-
sistive arrays use a minterm/maxterm representation of a given
Boolean function such that each minterm/maxterm is imple-
mented by a crossbar line [6, 10, 11]. On the other hand, diode
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Figure 1: Switching models of a nano-crossbar array: crosspoint as a) two-
terminal switch with terminals in the crossed lines, b) two-terminal switch with
terminals in the same line, and c) four-terminal switch.

and FET based arrays do not have such restriction, so the min-
imal sum of product forms can be used with each product im-
plemented by a line [7, 12, 9]. As a result, four-terminal switch
based arrays offer an important size advantage. Indeed, this is
not surprising since they use two dimensional paths to imple-
ment products of a given function as opposed to using one di-
mensional paths (crossbar lines). In this study, we further inves-
tigate four-terminal switch based arrays to synthesize Boolean
functions. These types of arrays are commonly called as switch-
ing lattices; we use this naming throughout the paper.
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Figure 2: a) four-terminal switch, and b) switching lattice.

A four-terminal switch is shown in Figure 2 a). The four
terminals of the switch are all either mutually connected (ON)
or disconnected (OFF). A 3 ×2 switching lattice having 6 four-
terminal switches is shown in Figure 2 b). Here, each switch
is controlled by a Boolean literal. If the literal takes the value
1 (0) then the corresponding switch is ON (OFF). The Boolean
function for the lattice evaluates to 1 iff there is a closed path
between the top and bottom plates of the lattice. The function is
obtained by taking the sum of the products of the literals along
each path. These products are x1x2x3, x1x2x5x6, x4x5x2x3, and
x4x5x6. We conclude that this lattice of four-terminal switches
implements the Boolean function x1x2x3+x1x2x5x6+x2x3x4x5+

x4x5x6.
The logic synthesis problem of switching lattices is first in-

troduced in [8]. In this work, a systematic technique is pro-
posed to implement a given Boolean function with an m × n
lattice where n and m are the number of products of the func-
tion and its dual, respectively. Although it is a general and a
straightforward technique, the resulting lattices may become
quite large, far from optimal lattice sizes. To achieve smaller
sizes, a Boolean decomposition based technique is proposed
[13]. However, it is only applicable for parity functions (XOR
functions). More comprehensive decomposition based stud-
ies are proposed in [14] and [15] by exploiting P-circuits and
dimension-reducibility, respectively. The results are satisfac-
tory with affordable runtimes, but still no guarantee of being
close to optimal results. Furthermore, dimension-reducibility
can not be applicable to all Boolean functions; there are restric-
tions. Another decomposition based technique is proposed for
a special class of “regular” Boolean functions, called autosym-
metric functions [16]. In this work, the idea of connecting sepa-
rate lattices, not necessarily using a single lattice, is also exam-
ined. Although, using separate lattices can significantly reduce
the total lattice area, it certainly kills the main motivation of
using nano-crossbar arrays that is “overcoming interconnection
problems between separate blocks/gates/transistors of conven-
tional circuits”.

There are also studies aiming at optimal results. A sim-
ple, truth table based brute-force algorithm is presented in [13].
However, as expected it suffers from high runtimes that quickly
grow beyond practical limits with an increase in lattice size.
Another optimal algorithm is proposed in [17]. It is an anytime

algorithm that reduces the problem into a satisfiability problem
with using dichotomic search. Although its runtimes are much
better than those of the above mentioned one, speed of the algo-
rithm is still an issue especially for relatively large benchmarks.
Additionally, the algorithm is claimed to be optimal, but it is
not for some cases. We fix this algorithm to guarantee optimal
sizes.

Considering the mentioned shortcomings in the literature,
we develop optimal and heuristic algorithms, based on a new
technique that finds Boolean functions of lattices having inde-
pendent inputs. For example, a Boolean function of a 3×3 lat-
tice has 9 variables each of which is assigned to each of the 9
switches. This technique works recursively by using transition
matrices representing columns and rows of the lattice. It per-
forms symbolic manipulation of Boolean literals as opposed to
using truth tables that allows us to successfully find Boolean
functions having up to 81 variables corresponding to a 9×9 lat-
tice. After having a Boolean function of a certain sized lattice,
we check if a given target function can be implemented with this
size by defining the problem as a Boolean satisfiability (SAT)
problem, and using a SAT solver. This process is repeated until
a desired solution is found.

Outline of the paper is as follows. In Section 2, we intro-
duce preliminaries for switching lattices and their logic syn-
thesis fundamentals. In Section 3, we present our optimal and
heuristic algorithms. In Section 4, we first show how to fix
the previously proposed optimal algorithm in [17], and then we
give experimental results to evaluate the proposed algorithms
by considering lattice sizes and runtimes in comparison with
the recently proposed three algorithms. Section 5 concludes
this study with insights and future directions.

2. Preliminaries

We first explain key concepts used in this study, and then
define the logic synthesis problem with examples.

2.1. Definitions

Definition 1. Consider k independent Boolean variables, x1,
x2, . . . , xk. Boolean literals are Boolean variables and their
complements, i.e., x1, x̄1, x2, x̄2, . . . , xk, x̄k.

Definition 2. A product (P) is an AND of literals, e.g., P =

x1 x̄3x4. A sum-of-products (SOP) expression is an OR of prod-
ucts.

Definition 3. A sum (S) is an OR of literals, e.g., S = x1 + x̄3 +

x4. A product-of-sums (POS) expression is an AND of sums.

Definition 4. A prime implicant (PI) of a Boolean function f
is a product that implies f such that removing any literal from
the product results in a new product that does not imply f.

Definition 5. An irredundant sum-of-products (ISOP) expres-
sion is an SOP expression, where each product is a PI and no
PI can be deleted without changing the Boolean function f rep-
resented by the expression.
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Figure 4: A 3 × 2 lattice.

Definition 6. Given a Boolean function f in SOP form, let the
degree of f , denoted by degree f , be the maximum number of
literals in a product of f .

For example, if f = x1x2x3 + x̄1x4 then degree f = 3.

Definition 7. f and g are dual Boolean functions iff

f (x1, x2, . . . , xk) = ḡ(x̄1, x̄2, . . . , x̄k).

Given an expression for a Boolean function in terms of AND,
OR, NOT, 0, and 1, its dual can also be obtained by interchang-
ing the AND and OR operations as well as interchanging the
constants 0 and 1.

For example, if f (x1, x2, x3) = x1x2+x̄1x3 then f D(x1, x2, x3)
= (x1 + x2)(x̄1 + x3). A trivial example is that for f = 1, the dual
f D is 0.

Definition 8. An eight-connected path in a lattice, consists of
both directly and diagonally adjacent sites.

An example is shown in Figure 3. Here the paths x1x4x8 and
x3x6x5x8 shown by red and blue lines are both eight-connected
paths; however only the blue one is four-connected. For sim-
plicity, we generally use “path” to refer a four-connected path.

Definition 9. Consider an R × C lattice. A lattice input li j is
assigned to a switch/site in the ith row and the jth column of
the lattice where 1 ≤ i ≤ R and 1 ≤ j ≤ C. A lattice input can
be a Boolean literal, logic 0, or logic 1. The lattice function
fR×C(l11, l12, .., lRC) is defined as OR of all four-connected top-
to-bottom paths.

As an example, consider a lattice in Figure 4. Here, f3×2 =

l11l21l31 + l11l21l22l32 + l12l22l21l31 + l12l22l32.
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Figure 5: Implementation of fT = XOR3 with a) 4×4 lattice (general method
in [8]), b) 4×3 lattice (method for parity functions in [8]), and c) 3×7 lattice
(separation of products with 0’s), and d) 3×3 lattice (optimal solution).

2.2. Synthesis Problem

Given a target Boolean function fT , we aim to find a mini-
mum size lattice with assigned literals, logic 0’s, and logic 1’s
to its lattice inputs such that fR×C = fT (OR of all top-to-bottom
paths equals fT ).

Suppose that fT = XOR3 = x1x2x3 + x1x2 x3 + x1x2x3 +

x1 x2x3. Figure 5 shows different solutions to implement fT .
The first lattice in Figure 5 a) corresponds to a general method
proposed in [8]. Here, R and C are found as the number of
products in f D

T and fT , respectively, so R = 4, C = 4, and the
lattice size is 16. The second one in Figure 5 b) corresponds
to a specific method, only applicable for parity functions (XOR
functions), again in [8]. Here, R and C are the number of vari-
ables and products in fT , respectively, so R = 3, C = 4, and the
lattice size is 12. The third one in Figure 5 c) corresponds to a
general method based on separating products with 0’s. Here, R
is the degree of fT and C is two times the number of products
in fT minus one, so R = 3, C = 7, and the lattice size is 21. Fi-
nally, Figure 5 d) shows the optimal solution with a lattice size
of 9 that is found by applying the proposed optimal algorithm
in this study.

3. Proposed Algorithms

We propose optimal and heuristic algorithms that minimize
lattice sizes to implement a target Boolean function fT . The
general structure of the algorithms is presented in a flow chart in
Figure 6. It has four steps; while Step 3 and Step 4 are the same
for both of the algorithms, Step 1 and Step 2 have some differ-
ences. In Step 1 to determine the upper bound, we use three dif-
ferent formulas for the heuristic algorithm. On the other hand,
we achieve a more strict upper bound for the optimal algorithm
by first running the heuristic algorithm. In Step 2, the optimal
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Figure 6: Flow chart of the proposed algorithms.

algorithm needs to include all probable lattice sizes into the trial
list. However, only a few (or a limited number of) lattice sizes
are considered for the heuristic algorithm.

In the following subsections, we elaborate on the steps fol-
lowed by evaluation of the proposed algorithms.

3.1. Step 1: Upper and Lower Bounds
We directly use the lower bound (LB) values found in [8].

For the upper bound (UB), we use different approaches for the
heuristic and the optimal algorithms. For the heuristic one, we
consider three general implementation techniques. The first one
from [8] gives lattice sizes as the number of products in f D

T ,
denoted by N f D

T
, times the number of products in fT , denoted

by N fT . As a result:

Lattice S ize1 = N f D
T
× N fT . (1)

The second one is based on separating products of fT with
columns of 0’s. Therefore,

Lattice S ize2 = degree fT × (2 × N fT − 1). (2)

Finally, the third one is achieved by separating products of
f D
T by rows of 1’s. Note that each product of f D

T is implemented
with a row, that corresponds to a sum for fT , and rows of 1’s
makes product operations, so a product-of-sum implementation
of fT is obtained. Here,

Lattice S ize3 = (2 × N f D
T
− 1) × degree f D

T
. (3)

We have the minimum of these three UB values:

UB = min(Lattice S ize1,

Lattice S ize2,

Lattice S ize3).
(4)

As an example, for a given fT1 suppose that NT1 = 8, N f D
T1

=

5, degree fT1 = 4, and degree f D
T1

= 6. Using (4), we find that
UB = 40. Additionally, from [8] we find that LB = 15.

For the optimal algorithm, we use a more strict UB that is
achieved by running the heuristic algorithm. The found solution
with a certain lattice size becomes the UB.

3.2. Step 2: Trial List

We have constructed the trial list according to UB and LB,
sorted in ascending order. The reason of using an ascending
order is that the algorithm stops when there is a solution. How-
ever, for a descending order the algorithm cannot stop when
there is ”no solution” for a certain sized lattice since a smaller
lattice might give a solution. For example, a Boolean function
can be implemented with a lattice size of 20, but cannot be im-
plemented with a lattice size of 21. However, we can state that
if both the number of rows and columns are smaller or equal
to the previously used sizes, then “no solution” in the previous
trial is directly applicable for the new one.

For the optimal algorithm, we consider all possible sizes
between UB and LB. One thing to mention is that in forming
the list we consider LB values not just for the lattice size, but
also for the number of lattice columns and rows as given in [8].
Thus, we eliminate many trivial cases.

For the heuristic algorithm, we consider three UB values of

degree fT , N f D
T

, and 2N f D
T
−1 as well as two averages b

degree fT +N f D
T

2 c

and b
N f D

T
+2N f D

T
−1

2 c for the number of rows. Similarly, we con-
sider three UB values of degree f D

T
, N fT , and 2N fT − 1 as well

as two averages b
degree f D

T
+N fT

2 c and bN fT +2N fT −1
2 c for the number

of columns. Figure 7 illustrates these levels. As a result, there
are total of 25 different lattice sizes. Since 13 of them are larger
than or equal to UB and 4 of them are almost equal to UB, we
only consider the remaining 8. Note that a size close to UB is
not worth to try while we already have an UB solution.

3.3. Step 3: Lattice Function

We aim to find lattice functions in ISOP form. For this pur-
pose, we need to determine paths implementing products that
are not covered by products of other paths. We call this type
of paths irredundant paths. Indeed, in general number of re-
dundant paths in a lattice is much higher than the number of
irredundant ones. Therefore eliminating redundant paths is cru-
cial for the sake of computational time.

We propose two techniques. The first one considers paths
that cannot go up, so it might calculate wrong lattice functions.
On the other hand, the second one deals with all types of paths
and guarantees a correct lattice function. It is fundamentally
constructed on the first technique. Figure 8 shows a path hav-
ing an up movement, so it is neglected by the first technique,
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Figure 9: Illustration of fTOP−XY , fX×C , and fR×C .

but accounted by the second one. Although the first one is not
fully correct – we call it semi-correct, one can efficiently use it
since paths having up movements are not likely being used to
implement products of target functions. In terms of the com-
putational load, the first one is much better, especially for large
lattices.

For both of our algorithms, we use the second correct one.

3.3.1. Semi-correct lattice function
We obtain the lattice function by considering paths having

left, right, and/or down movements. We only use Boolean op-
erators (not arithmetic) for all of the following expressions.

Consider an R×C lattice. We define a dummy Boolean func-
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C∏
j=1

lX j

2∏
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Figure 10: Matrix representation of (7). 1

tion fTOP−XY as a sum of products of the paths between the
“TOP plate” and the “upper part of the site lXY”.This is illus-
trated in Figure 9 Therefore,

fX×C =

C∑
Y=1

lXY fTOP−XY . (5)

Recursively, we can obtain

f(X+1)×C =

C∑
Y=1

l(X+1)Y fTOP−(X+1)Y (6)

where fTOP−(X+1)Y can be expresses in terms of lXY and fTOP−XY

such that

fTOP−(X+1)1 =lX1 fTOP−X1 + lX1lX2 fTOP−X2 + ...

+ lX1lX2...lXC fTOP−XC

fTOP−(X+1)2 =lX1lX2 fTOP−X1 + lX2 fTOP−X2 + ...

+ lX2lX3...lXC fTOP−XC

...................

fTOP−(X+1)C =lX1...lXC fTOP−X1 + lX2...lXC fTOP−X2+

... + lXC fTOP−XC .

As a result,

fTOP−(X+1)Y =

C∑
i=1

fTOP−Xi

max(Y,i)∏
j=min(Y,i)

lX j (7)

where max(Y, i) and min(Y, i) are the largest and the smallest
values among Y and i, respectively.

Matrix representation of (7) is shown in Figure 101. In this
representation, if we name the column matrices having C num-
ber of fTOP−(X+1)Y and fTOP−XY functions as FX+1 and FX , re-
spectively, and the transition matrix as T(X,X+1) which relates
F(X+1) with FX then

FX+1 = T(X,X+1) · FX ,

FT
X+1 = FT

X · T(X,X+1), and extensively

FT
X+1 = FT

X−1 · T(X−1,X) · T(X,X+1)

(8)

where T(X,X+1) = T T
(X,X+1).

It means that we can recursively calculate FT
X+1 using FT

1

and related transition matrices. Since FT
1 =

[
1 1 · · · 1

]
1×C

1Matrix multiplication is denoted with “·”.
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and FT
2 =

[
l11 l12 · · · l1C

]
which represents the lattice in-

puts for the first row, called as L1, FT
2 = L1. Similarly, we

define a row matrix LR having the lattice inputs for the last row.
To conclude,

fR×C =

C∑
k=1

lRk fTOP−Rk,

fR×C = FT
R · L

T
R ,

fR×C = FT
R−1 · T(R−1,R) · LT

R ,

fR×C = FT
R−2 · T(R−2,R−1) · T(R−1,R) · LT

R ,

....

fR×C = FT
1 · T(1,2) · T(2,3) · · · T(R−1,R) · LT

R , and finally

fR×C = L1 · T(2,R) · LT
R .

(9)

In this calculation, it is not guaranteed that the final form
of fR×C is in ISOP form, so a further simplification might be
needed. An example of a redundant path is given in Figure
11. This type of paths occur iff there are opposite movements
in adjacent rows. To completely eliminate them, we add ex-
tra products consisting of negated inputs into the elements of
transition matrices. Thus, redundant paths have both an input
and its negated form, so they evaluate to 0. Excluding the ele-
ments in the matrix diagonal, we add l(X−1)(i−1) for the elements
in the lower triangle part, and l(X−1)(i+1) for the upper triangle
part; i represents the row number. This is illustrated in Figure
12. Final version of a transition matrix is given in (10):

T(X,X+1)(k, l) =


l(X−1)(k+1)

∏l
j=k lX j l > k

lXk l = k
l(X−1)(k−1)

∏k
j=l lX j l < k

(10)

where k and l represent row and column numbers of the matrix,
respectively.

We present a few examples to elucidate our technique of
obtaining lattice functions in ISOP forms.

Example 1. Calculate f3×3; R = 3 and C = 3.

L1 =
[
l11 l12 l13

]
T(2,3) =

 l21 l21l22 l21l22l23
l21l22 l22 l22l23

l21l22l22 l23l23 l23



L3 =
[
l31 l32 l33

]
f3×3 =L1 · T(2,3) · LT

3

f3×3 =l11l21l31 + l12l22l32 + l13l23l33

+ l11l21l22l32 + l12l22l23l33 + l13l23l22l32

+ l12l22l21l31 + l11l21l22l23l33 + l13l23l22l21l31

Example 2. Calculate f4×2; R = 4 and C = 2.

L1 =
[
l11 l12

]
T(2,3) =

[
l21 l21l22

l21l22 l22

]
T(3,4) =

[
l31 l22l31l32

l21l31l32 l32

]
L4 =

[
l41 l42

]
f4×2 =L1 · T(2,3) · T(3,4) · LT

4

f4×2 =L1 · T(2,4) · LT
4

f4×2 =l11l21l31l41 + l11l21l31l32l42 + l11l21l22l32l42+

l12l22l32l42 + l12l22l32l31l41 + l12l22l21l31l41

3.3.2. Correct lattice function
We obtain the lattice function by considering paths having

left, right, up, and/or down movements. Therefore, all types
of paths are considered including paths having up movements
that are neglected in calculation of semi-correct lattice func-
tions. For this purpose, we update transition matrix elements.
Each element of a transition matrix T(X,X+1) in (10) represents a
path between two sites in the Xth row of the lattice that makes
left or right movements, but no up movements. To consider
up movements, we calculate a semi-correct function between
the sites by transposing the related sub-matrix – later, we call
this function flXk−lXl . Note that left and right movements in the
transposed matrix correspond to down and up movements in the
original matrix. The elements of the transition matrix become,

T(X,X+1)(k, l) =



l(X−1)(k+1) flXk−lXl l ≥ k + 4
l(X−1)(k+1)

∏l
j=k lX j k + 4 > l > k

lXk l = k
l(X−1)(k−1)

∏k
j=l lX j k − 4 < l < k

l(X−1)(k−1) flXk−lXl l ≤ k − 4

(11)

where k and l represent row and column numbers of the matrix,
respectively. Here, a dummy Boolean function flXk−lXl is used.

Note that the only difference between (10) and (11) is on
the calculation of T(X,X+1)(k, l) where l ≥ k + 4 and l ≤ k − 4.
In (11), instead of calculating a single path between lXk and lXl

(
∏l

j=k lX j) without an up movement as in (10), we are calcu-
lating all probable paths having all types of movements. Cal-
culation of flXk−lXl gives these paths between lXk and lXl. This
function is obtained by calculating a semi-correct lattice func-
tion in Figure 13. Note that, it mainly consists of the transpose
of the related part of the original lattice (Figure 9). In (11), in-
equalities to represent the cases are obtained by considering the
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T(X,X+1) =



1∏
j=1

lX j l(X−1)2

2∏
j=1

lX j · · · l(X−1)2

C−1∏
j=1

lX j l(X−1)2

C∏
j=1

lX j

l(X−1)1

2∏
j=1

lX j

2∏
j=2

lX j · · · l(X−1)3

C−1∏
j=2

lX j l(X−1)3

C∏
j=2

lX j

...
...

. . .
...

...

l(X−1)(C−2)

C−1∏
j=1

lX j l(X−1)(C−2)

C−1∏
j=2

lX j · · ·

C−1∏
j=C−1

lX j l(X−1)C

C∏
j=C−1

lX j

l(X−1)(C−1)

C∏
j=1

lX j l(X−1)(C−1)

C∏
j=2

lX j · · · l(X−1)(C−1)

C∏
j=C−1

lX j

C∏
j=C

lX j


Figure 12: Transition matrix formation to eliminate redundant paths.

lX(k+1) l(X-1)(k+1) l2(k+1)

1 0 0

BOTTOM

TOP

lXl l(X-1)l l2l

1 0 0

lXk l(X-1)k l2k

Figure 13: Lattice realizing a flXk−lXl that represents the connection between
lXk and lXl.

l21 0

l11 0

l31 l32

l23

0

l33

BOTTOM

TOP

l24

0

0

l25

0

l35

0 0 0 0 l45

Figure 14: A 4 × 5 lattice with a path having an up movement.

fact that the smallest lattice having up movements should have
at least 4 rows and 5 columns as previously shown in Figure 8.

We present an example to elucidate our technique of obtain-
ing correct lattice functions.

Example 3. Calculate the correct function f of the 4×5 lattice
in Figure 14 (Note that if we calculated a semi-correct function
of the lattice, it would be 0).

L1 =
[
l11 0 0 0 0

]

T(2,3) =


l21 0 0 0 0
0 0 0 0 0
0 0 l23 l23l24 l23l24l25
0 0 l23l24 l24 l24l25
0 0 l23l24l25 l24l25 l25



T(3,4) =


l31 l22l31l32 l22l31l32l33 0 l22 fl31−l35

l21l31l32 l32 l23l32l33 0 0
l22l31l32l33 l22l32l32 l33 0 0

0 0 0 0 0
l24 fl31−l35 0 0 0 l35


fl31−l35 =l31l32l33l23l24l25l35

LR =
[
0 0 0 0 l45

]
f =L1 · T(2,3) · T(3,4) · LT

4

f =L1 · T(2,4) · LT
4

f =l11l21l31l32l33l23l24l25l35l45

Pseudo code of the algorithm is given below.

Algorithm Calculation of Correct or Semi-Correct Lattice
Function fR×C

1: Input: R: number of Rows, C: number of Columns, FlagCorrect:
Flag indicates Correct or Semi-Correct Calculation

2: Output: fR×C function in ISOP form
3:
4: function Create Trans Mat(LM, X, FlagCorrect)
5: for k in 1 : C do
6: for l in 1 : C do
7: if FlagCorrect == FALS E then
8: T(X,X+1)(k, l)← elements of LM according to (10)
9: end if

10: if FlagCorrect == TRUE then
11: T(X,X+1)(k, l)← elements of LM according to (11) .

calculate flXk−lXl recursively.
12: end if
13: end for
14: end for
15: return T(X,X+1)
16: end function
17:
18: create LM Matrix with elements of li j with size of R×C .

1 ≤ i ≤ R, 1 ≤ j ≤ C
19: L1 ←

[
l11 · · · l1(C−1) l1C

]
(first row of LM)

20: LR ←
[
lR1 · · · lR(C−1) lRC

]
(last row of LM)

21: T2R← Unit matrix
22: for X in [2,R-1] do
23: T(X,X+1) ← Create Trans Mat(LM, X, FlagCorrect)
24: T2R = Logic Matrix Multiplication(T2R,T(X,X+1)) . Logic

OR and AND operations used in matrix multiplications instead of
conventional algebraic additions and multiplications.

25: end for
26: temp← Logic Matrix Multiplication(L1,T2R)
27: fR×C ← Logic Matrix Multiplication(temp, LT

R )
28: Store fR×C
29: return fR×C
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3.4. Step 4: SAT Equivalence

We use a SAT solver to check if a given target function can
be implemented with a certain lattice size. First, the problem
needs to be turned into a satisfiability problem using a conjunc-
tive disjoint form (CNF) or a POS form. Since we calculate
lattice functions in SOP form, and the target function is given
in a PLA form that is also a SOP form, we can easily combine
them into one function fS AT in CNF. If fS AT is satisfiable, it
means that the target function fT can be implemented with an
R×C lattice. Core of this relation is that fT is TRUE iff fR×C is
TRUE:

fT ⇐⇒ fR×C (12)

that is also used in [17]. More explicitly,

a) fR×C ⇒ fT ( fR×C

∧
fT )

b) fR×C ⇒ fT ( fR×C

∧
fT ).

(13)

We need both fR×C and fR×C in CNF, preferably in irredun-
dant CNF for the sake of computational time. Indeed, fR×C in
ISOP form is same as fR×C in irredundant CNF with negated
inputs. Similarly, fR×C in ISOP form is the same as fR×C in
irredundant CNF with negated inputs. Therefore, along with
fR×C in ISOP form, we also need fR×C in ISOP form that can
be computed using logic minimization tools such as Espresso
[18].

Summary of how we use SAT equivalence in Step-4 of our
algorithm is given in Figure 15. As an example, assume that
check whether a target function fT = x1 x2+x3 is implementable
with a 2 × 2 lattice. Here, fR×C = f2×2 = l11l21 + l12l22 and
fR×C = f2×2 = l11 l12 + l11 l22 + l21 l12 + l21 l22. Since fT has
three variables, there are 23 = 8 truth table cases; 5 of them
make fT = 1 (TRUE) and 3 of them make fT = 0 (FALS E).
Thus, to calculate fS AT in CNF form we use the relation in (13a)
for the five cases and the relation in (13b) for the remaining
three.

Our treatment does not fit the 3-SAT rule, since paths are di-
rectly used as SAT problem clauses. Although it is possible to
turn these clauses into 3-termed clauses, this would extensively
enlarge the number of clauses in the final form that causes dra-
matic runtime increases. In [17], they build their SAT problem
with constraints considering the 3-SAT rule. However, at the
end, the total number of variables and clauses are much lower
for our case compared to those used in [17].

3.5. Evaluation of Algorithms

Suppose that a given function fT and its dual f D
T have a

total of m products in their SOP form. Also suppose that fT
has n variables. Total time needed for our algorithms can be
represented as (time needed to determine UB and LB in Step
1) + (number of trials of lattice sizes in Step 2)×((time needed
to obtain fR×C in Step 3)+(time needed for the SAT solver to
check an equivalence in Step 4)).

The third and the fourth terms, corresponding to Step 3 and
Step 4 of the algorithms respectively, are the same for both the

Step 4
Check if 

fR×C  equals fT with

 a SAT solver

Relate fT  

with fR×C

Check if  

a row (case) of truth table

 of fT  returns TRUE 

(logic-1)

Relate fT 

with fR×C

Initilaze the fSAT 

with variable 

pairing between 

fR×C  and fT 

Finalize fSAT in 

CNF and give it 

to a SAT solver

Repeat for all truth 
table cases

Figure 15: Flow chart of Step-4 of the algorithm.

heuristic and the optimal algorithms. For the third term, matrix
multiplications are performed to calculate fR×C in ISOP form.
For both the number of transition matrices and the matrix di-
mensions are upper bounded by m. There are m − 2 number of
transition matrices with dimensions of m × m. Therefore, the
time complexity becomes O(mm). If a truth table based tech-
nique was used then the total number of truth table rows would
be upper bounded by 2(m2) and for each row to determine the
output as logic 0 or 1, we would need m2 operations. As a result
the complexity would be O(m22(m2)) (still not in ISOP form).
This is much worse than what we have. Another important as-
pect is that the cost of obtaining fR×C is mostly independent of a
given function. Therefore, we can share this cost among target
functions by initially creating a library of all probable fR×C’s.

The fourth term corresponds to a SAT solver. Here, the total
time is linearly dependent on the number of truth table rows that
is upper bounded by 2n, the number of the clauses that is upper
bounded by m2, and the number of literals in a clause that is also
upper bounded by m2. As a result, the complexity is O(m42n).

For the heuristic algorithm, the first term corresponding to
Step 1 has a complexity of O(1) since a fixed number of cal-
culations is done. The second term also has a O(1) complexity
since the number of trials is upper bounded by 8. As a result,
the time complexity for the whole algorithm becomes O(mm) if
no library of fR×C’s is constructed, and O(m42n) is the library is
constructed.

For the optimal algorithm, the first term corresponding to
Step 1 has the same complexity of the heuristic algorithm since
we run the heuristic algorithm to obtain the UB. The second
term corresponding to Step 2 has a O(m2) complexity since UB
is upper bounded by m2. As a result, the time complexity of the
optimal algorithm is m2 times larger than that of the heuristic
algorithm.

Of course, all these analyses are based on the worst-case
scenarios. Therefore, real runtimes given in the next section
might be different, generally better, than what we expect.
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Figure 16: a) A redundant path needs to be eliminated, and b) a valid path needs
to be accounted.

4. Experimental Results

Before presenting experimental results, we first show how
we fix the the optimal algorithm in [17].

4.1. Fixing the Optimal Algorithm

We fix the previously proposed algorithm in [17] that is
claimed to be optimal, but it is not for some cases. The fixed
version guarantees optimal sizes.

While constructing eight-connected paths between left and
right plate, they put a constraint to eliminate redundant paths
such as the one shown in Figure 16 a). However, this causes
elimination of irredundant paths such as the one shown in Fig-
ure 16 b). The reason of this mis-elimination is their constraint
definition:

• “A redundant path should have at most one element from
the 2nd and the (C − 1)th columns.”

A redundant path in Figure 16 b) is a counter example for
this constraint. We have corrected it as:

• “A redundant path should have a single element from the
first and the last (Cth) column such that this element has
a single neighbor element in the path. ”

Thus, irredundant paths having more than one element in
the 2nd and the (C − 1)th columns, such as the one in Figure 16
b), are considered.

In the following part, benchmark simulation results show
some cases such that the fixed algorithm gives a correct result,
but the previously proposed algorithm does not.

4.2. Comparing Optimization Algorithms

We compare six different algorithms by considering runtime
and lattice sizes for different benchmarks2. We treat each output
of a benchmark circuit as a separate target function. We limit
the runtime with 10800 seconds (3 hours). Among these six
algorithms, three of them are previously proposed algorithms
in [14], [15], and [17]; one of the them is the fixed version of
the optimal algorithm in [17]; and the remaining two are the
proposed optimal and heuristic algorithms. Experiments run on
a 3.20GHz Intel Core i7 CPU (only single core used) with 4GB
memory. Used SAT solver is glucose 3.0 [19].

2Source codes of all algorithms are available at http://www.ecc.itu.
edu.tr/images/3/33/Algorithms_for_Switching_Lattices.zip

Results are given in Table 1 and Table 2. In Table 2, we
aim to compare non-optimal algorithms with the guidance of
the fixed optimal algorithm by using relatively large benchmark
functions. Examining the numbers in Table 1, we see that the
proposed optimal algorithm outperforms the other optimal al-
gorithms with the best runtime for most of the cases. Also note
that for three cases corresponding to the benchmarks “b12 01”,
“dc1 02” and “ex5 12”, the optimal algorithm in [17] does not
find the optimal solution, but both the fixed version of it and the
proposed algorithm find the solution.

Considering the results for the non-optimal algorithms in
Table 1 and Table 2, we see the superiority of the proposed
heuristic algorithm offering small sizes and high speed. For 65
benchmarks out of 70, it results in optimal sizes. For exam-
ple, consider “clpl 03”. Algorithm “Proposed (Optimal)” finds
the optimal solution in 53 seconds; ”Fixed Version of [17] (Op-
timal)” finds in 156 seconds; and “Proposed Heuristic (non-
Optimal)” finds just in 18 seconds. For couple of relatively
large functions, “Proposed (Optimal)” could not find the solu-
tion inside the time limit yet other optimal algorithms do. The
reason is that the proposed optimal algorithm does not fit to the
3-SAT rule but “Fixed Version of [17] (Optimal)” fits.

For relatively small number of cases, decomposition based
algorithms in [14] and [15] give the best runtime values, but
their solutions are generally much larger than the optimal ones.
When we compare our non-optimal heuristic algorithm with
them, we observe that our algorithm offers an average of 23.07%
and 20.51% lattice size improvements over the alorithms in [14]
and [15], respectively. The compared algorithms even yield
larger sizes than the upper bound used for the proposed optimal
algorithm, for the benchmark “mp2d 08”. Additionally, appli-
cability of the dimension-reducing based algorithm is quite lim-
ited.

5. Conclusion

In this study, we propose logic synthesis algorithms for switch-
ing lattices. We offer both optimal and heuristic algorithms
to implement a given Boolean function with optimized lattice
sizes. Our algorithms are fundamentally constructed on a tech-
nique that finds Boolean functions of lattices having indepen-
dent inputs. This technique can also be used to find a Boolean
function of a given lattice with assigned inputs. For our algo-
rithms, we translate the problem of checking whether a given
Boolean function can be implemented with a certain sized lat-
tice, to the SAT problem. Our algorithms give considerably
better results in terms of lattice size and runtime compared to
previously proposed algorithms.

As a future work, we aim to construct multi-output lattices
to implement multi-output Boolean functions. So far, the liter-
ature only considers single output lattices. Another direction is
the investigation of reconfigurability in switching lattices.
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Table 1: Comparison of Optimization Algorithms
Optimal in [17]
(non-Optimal)

Proposed
(Optimal)

Fixed Version
of [17] (Optimal)

Proposed Heuristic
(non-Optimal)

P-Decomposition
(non-Optimal) [14]

D-Reducing
(non-Optimal) [15]

Benchmark
Name

Elapsed
Time (s) Size Elapsed

Time (s) Size Elapsed
Time (s) Size Elapsed

Time (s) Size Elapsed
Time (s) Size Elapsed

Time (s) Size
alu1 00 0.003 2x3 0.002 2x3 0.008 2x3 0.004 2x3 0.081 2x3 N/A -
alu1 01 0.002 3x2 0.005 3x2 0.004 3x2 0.004 3x2 0.031 3x2 0.04 4x2
b12 00 0.838 4x3 0.139 4x3 0.747 4x3 0.04 4x3 0.407 4x3 0.28 5x3
b12 01* 6.066 4x4 1.102 5x3 3.218 5x3 0.05 4x4 0.963 4x4 0.71 6x3
b12 02 15.395 4x4 5.440 4x4 15.949 4x4 0.665 4x4 2.118 5x8 N/A -
b12 03 0.060 3x2 0.022 3x2 0.059 3x2 0.023 3x2 0.092 2x5 N/A -
b12 04 0.004 2x4 0.002 2x4 0.005 2x4 0.002 2x4 0.111 2x5 N/A -
b12 06 72.327 5x4 ** ** 79.957 5x4 14.303 5x4 9.035 6x8 15.21 8x3
b12 07 2.130 3x6 6.362 3x6 2.602 3x6 0.088 3x6 1.433 5x7 N/A -
b12 08 0.003 2x7 0.003 2x7 0.004 2x7 0.002 2x7 0.285 2x10 N/A -
c17 00 0.064 2x3 0.018 2x3 0.064 2x3 0.022 2x3 0.048 2x4 N/A -
c17 01 0.060 3x2 0.019 3x2 0.057 3x2 0.020 3x2 0.138 3x2 N/A -
clpl 00 0.569 3x4 0.402 3x4 0.555 3x4 0.042 3x4 0.104 4x5 N/A -
clpl 01 0.003 3x3 0.003 3x3 0.003 3x3 0.002 3x3 0.059 3x6 N/A -
clpl 02 0.003 2x2 0.002 2x2 0.003 2x2 0.002 2x2 0.065 2x3 N/A -
clpl 03 103.284 3x6 53.047 3x6 156.242 3x6 18.150 3x6 3.547 6x9 N/A -
clpl 04 15.388 3x5 3.362 3x5 13.730 3x5 0.158 3x5 0.672 5x8 N/A -
dc1 00 0.157 3x3 0.022 3x3 0.148 3x3 0.030 3x3 0.145 4x4 N/A -
dc1 01 0.004 3x2 0.003 3x2 0.003 3x2 0.002 3x2 0.050 3x3 0.03 4x2
dc1 02* 0.119 3x4 0.029 3x4 0.080 4x3 0.037 3x4 0.091 3x5 N/A -
dc1 03 0.203 4x3 0.070 4x3 0.187 4x3 0.070 4x3 0.070 4x5 N/A -
dc1 04 0.066 2x3 0.025 2x3 0.064 2x3 0.023 2x3 0.056 2x4 N/A -
ex5 03 0.003 7x1 0.002 7x1 0.003 7x1 0.004 7x1 0.199 7x1 N/A -
ex5 04 0.003 8x1 0.003 8x1 0.003 8x1 0.002 8x1 0.113 8x1 N/A -
ex5 05 0.003 6x1 0.003 6x1 0.003 6x1 0.002 6x1 0.058 6x1 N/A -
ex5 06 2.777 3x6 5.814 3x6 3.575 3x6 0.955 3x6 0.477 3x10 N/A -
ex5 07 167.767 4x6 ** ** 578.060 4x6 26.843 4x6 0.288 3x13 N/A -
ex5 08 11.254 3x7 325.598 3x7 50.687 3x7 0.004 3x7 1.389 3x9 N/A -
ex5 09 9.757 4x6 ** ** 261.837 4x6 6.642 4x6 5.424 3x11 N/A -
ex5 10 1.463 3x6 3.994 3x6 1.828 3x6 0.39 3x6 0.178 3x9 N/A -
ex5 11 0.003 2x8 ** ** 0.004 2x8 0.002 2x8 0.997 2x10 N/A -
ex5 12* 6.026 3x6 1.450 3x5 8.097 3x5 0.208 3x5 2.969 5x9 N/A -
ex5 13 41.045 4x6 ** ** 231.295 4x6 11.494 3x8 0.720 3x13 N/A -
ex5 14 3.751 2x8 211.941 2x8 4.091 2x8 0.368 2x8 0.231 3x11 N/A -
ex5 15 ** ** ** ** ** ** 59.780 4x7 1.658 4x13 N/A -
ex5 16 0.002 2x5 0.003 2x5 0.003 2x5 0.004 2x5 0.108 2x7 N/A -
ex5 17 ** ** ** ** ** ** 8483.315 4x7 121.374 4x10 N/A -
ex5 18 0.003 2x7 0.002 2x7 0.024 2x7 0.005 2x7 0.214 2x9 N/A -
ex5 19 3.962 3x6 8.337 3x6 4.109 3x6 0.286 3x6 1.238 5x7 N/A -
ex5 20 0.003 2x6 0.002 2x6 0.003 2x6 0.003 2x6 0.332 3x8 N/A -
ex5 21 287.766 3x7 185.592 3x7 12.478 3x7 0.956 3x7 1.368 4x9 N/A -
ex5 22 3.002 3x6 9.851 3x6 4.303 3x6 0.146 3x6 0.031 3x8 N/A -
ex5 23 ** ** ** ** ** ** 10598.277 4x8 0.116 4x11 N/A -
ex5 24 ** ** ** ** ** ** 698.092 5x6 0.163 5x14 N/A -
ex5 25 14.172 3x7 513.478 3x7 56.508 3x7 0.386 3x7 0.740 3x8 N/A -
ex5 26 108.275 3x7 ** ** 167.706 3x7 15.257 3x7 1.368 4x11 N/A -
ex5 27* 1779.261 3x8 ** ** 1348.150 4x6 21.092 4x6 1.130 4x10 N/A -
ex5 28* 25.564 4x6 ** ** 51.239 6x4 1.374 3x8 1.232 3x13 N/A -
misex1 00 0.087 4x2 0.038 4x2 0.083 4x2 0.024 4x2 0.040 4x3 0.08 2x4
misex1 01 1.872 3x5 0.516 3x5 1.981 3x5 0.242 3x5 0.401 5x5 N/A -
misex1 02 15.966 5x4 425.897 5x4 26.032 5x4 14.289 5x4 0.702 5x5 N/A -
misex1 03 1.574 4x3 0.235 4x3 1.413 4x3 0.361 4x3 0.130 4x6 0.53 6x4
misex1 04 0.266 3x4 0.085 3x4 0.227 3x4 0.231 3x5 0.0762 4x7 N/A -
misex1 05 3.211 4x4 6.360 4x4 3.870 4x4 0.966 4x4 0.345 4x6 N/A -
misex1 06 1.854 5x3 2.354 3x5 1.689 5x3 0.799 5x3 0.124 4x7 N/A -
misex1 07 0.667 4x3 0.167 4x3 0.601 4x3 0.208 4x3 0.062 5x5 N/A -
mp2d 00 0.003 1x11 0.002 1x11 0.004 1x11 0.003 1x11 1.250 2x13 N/A -
mp2d 01 ** ** ** ** ** ** 68.428 5x7 0.514 4x11 N/A -
mp2d 02 ** ** ** ** ** ** 22.846 4x9 0.395 4x13 N/A -
mp2d 03* 1241.821 4x6 ** ** 2603.411 6x4 191.469 5x5 0.545 7x6 N/A -
mp2d 04 1816.681 7x3 ** ** 3512.153 7x3 23.751 7x3 24.020 7x3 3.68 6x5
mp2d 05 0.003 5x1 0.002 5x1 0.003 5x1 0.003 5x1 0.539 5x1 N/A -
mp2d 06 0.397 4x3 0.161 6x2 0.395 4x3 0.103 6x2 220.463 5x4 0.14 5x5
mp2d 07 0.003 8x1 0.002 8x1 0.009 8x1 0.003 8x1 0.034 8x1 N/A -
mp2d 08 0.003 1x5 0.002 1x5 0.003 1x5 0.003 1x5 0.034 2x7 N/A -
newapla2 00 0.003 6x1 0.002 6x1 0.003 6x1 0.003 6x1 0.023 6x1 N/A -
newbyte 00 0.003 5x1 0.002 5x1 0.004 5x1 0.003 5x1 0.064 5x1 N/A -
newtag 00 6.103 3x6 10.921 3x6 7.719 3x6 0.262 3x6 0.842 3x8 N/A -

+ Bold values represent the best results; “*” indicates the non-optimal solutions of Algorithm in [17] that are different than the fixed version; “**” indicates
time-out; “N/A” is used for non-D-reducible functions.
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Table 2: Comparison of Optimization Algorithms
Fixed Version

of [17] (Optimal)
Proposed Heuristic

(non-Optimal)
P-Decomposition

(non-Optimal) [14]
D-Reducing

(non-Optimal) [15]
Benchmark

Name
Elapsed
Time (s) Size Elapsed

Time (s) Size Elapsed
Time (s) Size Elapsed

Time (s) Size
5xp1 00 21.867 5x4 2.305 5x5 3.599 5x8 N/A -
5xp1 01 ** ** 1405.815 5x5 1.697 5x10 N/A -
5xp1 03 ** ** 1062.801 4x15 10.716 4x11 N/A -
5xp1 04 15.812 4x3 0.020 4x3 0.609 5x10 N/A -
5xp1 05 0.285 3x4 0.209 3x4 0.065 4x6 N/A -
5xp1 06 0.003 3x3 0.002 3x3 0.031 3x3 N/A -
5xp1 07 0.002 2x2 0.002 2x2 0.015 2x2 0.03 2x2
5xp1 08 0.002 1x1 0.002 1x1 0.017 1x1 N/A -
5xp1 09 1.179 4x3 0.039 4x3 0.237 4x4 0.06 5x3
bw 00 1.147 5x3 0.341 5x3 0.069 4x6 N/A -
bw 01 0.002 3x3 0.003 3x3 0.04 3x4 0.05 5x2
bw 02 0.33 4x3 0.046 4x3 0.062 3x5 0.06 5x3
bw 03 0.248 3x4 0.020 3x4 0.084 3x6 N/A -
bw 04 0.412 4x3 0.049 4x3 0.212 5x5 N/A -
bw 05 0.513 5x3 0.04 5x3 0.069 3x7 N/A -
bw 06 0.657 4x3 0.165 4x3 0.283 5x6 N/A -
bw 07 0.134 4x3 0.071 4x3 0.11 4x5 0.06 5x4
bw 08 0.766 3x4 0.319 5x4 0.121 3x6 N/A -
bw 09 0.002 3x3 0.007 3x3 0.056 3x4 N/A -
bw 10 0.036 4x2 0.003 4x2 0.143 5x2 0.07 2x4
bw 11 0.358 4x3 0.04 4x3 0.058 3x5 0.15 5x3
bw 12 0.002 3x3 0.005 3x3 0.051 3x4 N/A -
bw 13 0.42 4x3 0.087 4x3 0.068 4x5 N/A -
bw 14 0.357 5x2 0.064 5x2 0.066 3x4 0.16 5x5
bw 15 0.236 4x3 0.059 4x4 0.279 4x4 0.13 5x4
bw 16 0.002 3x3 0.002 3x3 0.056 3x4 N/A -
bw 17 1.463 3x5 0.215 4x4 0.38 4x7 0.16 6x3
bw 18 0.368 3x4 0.066 4x4 0.078 4x5 0.17 6x3
bw 19 1.005 3x5 0.112 3x5 0.104 3x6 N/A -
bw 20 0.223 3x4 0.015 3x4 0.231 4x5 N/A -
bw 21 0.002 5x1 0.003 5x1 0.028 5x1 N/A -
bw 22 1.392 3x5 0.072 4x4 0.364 4x6 N/A -
bw 23 1.099 5x3 0.163 4x4 0.504 5x6 N/A -
bw 24 0.261 2x5 0.094 2x5 0.112 2x6 N/A -
bw 25 1.258 3x5 0.082 4x4 0.172 4x7 N/A -
bw 26 0.898 3x5 0.135 5x4 0.078 3x6 N/A -
bw 27 0.002 5x1 0.003 5x1 0.071 5x1 N/A -
inc 00 8.420 4x4 1.557 5x4 0.451 5x7 N/A -
inc 01 17.425 5x4 12.512 5x5 0.506 5x7 N/A -
inc 02 ** ** 6020.116 4x11 5.227 5x10 N/A -
inc 04 7.395 4x4 0.833 5x4 0.033 6x8 N/A -
inc 05 0.567 5x2 0.107 5x2 0.03 4x3 0.04 5x3
inc 06 1.277 4x3 0.003 4x3 0.02 4x3 N/A -
inc 07 0.994 4x3 0.072 5x3 0.18 5x4 0.16 5x3
inc 08 0.003 3x2 0.003 3x2 0.021 3x2 0.03 4x2
misex3c 00 1.145 3x5 0.073 3x5 ** ** N/A -
misex3c 01 3.908 3x5 0.072 4x5 ** ** N/A -
misex3c 02 0.065 4x3 0.024 4x3 36.467 5x10 N/A -
misex3c 03 165.451 4x5 16.155 3x8 259.354 4x7 N/A -
misex3c 04 262.09 3x7 9.294 4x6 164.132 5x5 N/A -
misex3c 06 ** ** 1563.699 5x6 3.996 4x5 N/A -
rd73 02 ** ** 81.927 35x4 4.195 5x16 N/A -
t481 ** ** 91.894 9x8 ** ** N/A -
vg2 00 ** ** 68.74 9x4 ** ** N/A -
vg2 02 ** ** 3.509 9x4 ** ** N/A -
vg2 05 22.738 4x4 1.857 4x5 0.5 4x5 N/A -
vg2 07 16.067 4x4 1.679 4x5 15.782 4x4 N/A -

+ Bold values represent the best results; “**” indicates time-out; “N/A” is used for non-D-reducible functions.
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