
1

Realization of Logic Functions Using Switching
Lattices Under a Delay Constraint

Levent Aksoy, Nihat Akkan, Herman Sedef, and Mustafa Altun

Abstract—Switching lattices, consisting of four-terminal
switches, present an alternative structure for the realization of
Boolean logic functions. Although promising algorithms have
been introduced to find a realization of a logic function using
a switching lattice with the fewest number of four-terminal
switches, the delay of a switching lattice has not been examined
yet. In this article, we generate a switching lattice using a
recently proposed CMOS-compatible four-terminal device model
and formulate the delay of a path in a switching lattice. It is
observed that the delay of a design realizing a logic function on a
switching lattice heavily depends on the number of four-terminal
switches in the critical path. With this motivation, we introduce
optimization algorithms, called PHAEDRA and TROADES, that can
find the realization of a logic function on a switching lattice
with the fewest number of switches under a delay constraint
given in terms of the number of switches in the critical path.
While PHAEDRA is a dichotomic search algorithm that can obtain
solutions with a small number of switches on small size logic
functions, TROADES is a divide-and-conquer method that can find
a solution using less computational effort and can easily handle
larger size logic functions with respect to PHAEDRA. Experimental
results show that the proposed algorithms can reduce the delay
of a lattice realization of a logic function significantly at a cost
of an increase in the number of switches. They can explore
alternative lattice realizations of a logic function by changing
the delay constraint, enabling a designer to choose the one that
fits best in an application.

Index Terms—emerging technologies, four-terminal switch,
switching lattice, logic synthesis, satisfiability, Elmore delay,
binary search, divide and conquer.

I. INTRODUCTION

As the Moore’s law [1] is reaching its limits, new structures
and architectures for the nano-electronic computation have
been introduced [2]–[5]. As shown in Fig. 1(a), a four-terminal
switch, developed for the cross-points of nanoarrays, connects
all its terminals if its control input x has the logic value 1,
otherwise its terminals are disconnected. A switching lattice
is formed as a network of four-terminal switches where each
switch is connected to its horizontal and vertical neighbors.
Fig. 1(b) presents the 4× 2 lattice where x1 . . . x8 denote the
control inputs of switches. The lattice function evaluates to
logic value 1 if there is a path between the top and bottom
plates of the lattice. In a lattice with four-terminal switches, a
path is a sequence of switches connected by taking horizontal

L. Aksoy and M. Altun are with the Emerging Circuits and Computation
Group, Department of Electronics and Communication Engineering, Istan-
bul Technical University, Maslak, 34469, Istanbul, Turkey (e-mail: {aksoyl,
altunmus}@itu.edu.tr).

N. Akkan and H. Sedef are with the Department of Electronics and
Communication Engineering, Yıldız Technical University, Esenler, 34220,
Istanbul, Turkey (e-mail: {nakkan, sedef}@yildiz.edu.tr).

x1

x3

x5

x2

x4

x6

(a) (b) (c)

ONOFF

x

x = 0 x = 1
x7 x8

f4x2 = x1x3x5x7 +

x2x4x6x8 + 
x1x3x4x6x8 + 
x2x4x3x5x7 + 
x1x3x5x6x8 + 
x2x4x6x5x7 

Fig. 1. (a) Four-terminal switch; (b) the 4×2 four-terminal switching network;
(c) the 4× 2 switching lattice function.

and vertical moves. Thus, the lattice function can be written
as the sum of products of control inputs of switches in each
path from the top to bottom plates. Fig. 1(c) presents the 4×2
lattice function f4×2. The lattice function is unique and does
not include any redundant products. For example, the path
x1x3x4x6x5x7 in the 4×2 lattice is eliminated by x1x3x5x7.

A switching lattice can be used to realize a logic function by
simply finding an appropriate assignment to the control inputs
of switches from the logic function variables and also, constant
logic values 0 and 1. Thus, the fundamental problem, called
lattice mapping (LM), is defined as: given a target function f
and an m × n lattice, find an appropriate assignment to the
control inputs of the given lattice such that f can be realized
using the given lattice or prove that there exists no such
assignment. Note that the LM problem is NP-complete [6].
The design complexity of a switching lattice is determined
as the number of switches, i.e., lattice size. Thus, the main
optimization problem, called lattice synthesis (LS), is defined
as: given a target function f , find an m × n lattice such that
there exists an appropriate assignment to the control inputs of
the given lattice and m times n is minimum. Over the years,
exact and approximate algorithms have been introduced for
the LS problem [6]–[13]. Recently, it is shown that switching
lattices can be implemented under the CMOS technology [14].
It is observed that logic functions designed by switching
lattices occupy significantly less area due to the dense and
compact structure of a lattice and have comparable delay and
power dissipation with respect to the conventional designs
including two-terminal switches.

As an example, consider the target function f = abc +
abc + acd. Fig. 2(a) presents the realization of f using
a switching lattice1 with a minimum size found using the
algorithm of [6]. However, this solution does not guarantee

1Keeping the same order in the products and variables of f4×2 in Fig. 1(c),
the function realized by the lattice can be given as g = dcca + b1ca +
dc1ca + b1cca + dccca + b1cca. After the application of Boolean algebra
laws, it can be written as g = acd+ abc+ abc.



2

d c

c b

a a

b

a

a

a

dc

a

b c

b

c

a

(a) (b) (c)

d

a

c

c

a

b

1

c

Fig. 2. Realizations of f = abc+abc+acd using switching lattices where a
critical path is highlighted: (a) with a minimum lattice size; (b) under a delay
constraint of 4; (c) under a minimum delay constraint of 3.

that the lattice realization has the minimum delay. To the
best of our knowledge, previously proposed algorithms did
not consider the delay of the design while searching for a
solution with a minimum lattice size. In this article, we show
that the delay of a switching lattice depends heavily on the
longest path between the top and bottom plates, called critical
path. It corresponds to an irredundant product in the lattice
function and consists of a maximum number of switches. It
does not include any constant logic value 0 or both a variable
and its complement as a control input of a switch, meaning
that there is an assignment to the control inputs of switches
in the critical path which opens a way in between the top and
bottom plates. The solution of [6] in Fig. 2(a) has a critical
path with 5 switches corresponding to the b1cca product.

In this article, we initially present the CMOS-compatible
four-terminal switch model of [14] and then, introduce the
Elmore delay formulation of a path in a lattice using this
four-terminal switch model and discuss the factors that have
an impact on the delay of a lattice. Taking into account these
factors, the Elmore delay estimation clearly indicates that the
number of switches in the critical path has a significant effect
on the worst-case delay of a lattice realization of a logic func-
tion. Inspired by this motivation, we introduce optimization
algorithms, called PHAEDRA and TROADES, developed to find
a realization of a logic function using a switching lattice with
the smallest size while respecting the delay constraint dc given
as the number of switches in the critical path. In PHAEDRA,
the initial lower and upper bounds of the search space are
determined respecting dc. Then, the search space is explored
in a binary search manner where for each lattice candidate,
the problem of checking if the target function can be realized
using the lattice candidate respecting dc is formulated as a
satisfiability (SAT) problem. The SAT problem includes the
constraints to ensure that the target function is realized using
the lattice candidate and as well as the constraints to avoid
the violation of dc. Returning to our example, Figs. 2(b)-(c)
present solutions of PHAEDRA with 3 × 3 lattices2 when dc
is 4 and 3, respectively, increasing the lattice size by only 1
with respect to the exact solution given in Fig. 2(a). In these
figures, the switches in the critical path correspond to the baca
and acb products, respectively. We note that in our simulations
described in Section III, the delay of lattice realizations given

2The 3 × 3 lattice function can be given as f3×3 = x1x4x7 +
x2x5x8 +x3x6x9 +x1x4x5x8 +x2x5x4x7 +x2x5x6x9 +x3x6x5x8 +
x1x4x5x6x9 +x3x6x5x4x7. Starting from the top-left switch in the lattice
with an index 1, indices of control inputs are determined as traversing each
switch in the lattice to right and down and increasing the index by 1 as done
in Fig. 1(b).

in Figs. 2(a)-(c) is respectively found as 1.53ns, 1.25ns, and
1.02ns where a solution with a minimum dc leads to a 33%
reduction in delay when compared to the solution with a
minimum number of switches.

Experimental results show that PHAEDRA can reduce the
number of switches in the critical path significantly, increas-
ing the number of switches slightly when compared to the
previously proposed algorithms. However, due to a dramatic
increase in the SAT problem complexity as the number of
variables and products increases in the target and lattice
functions, it cannot handle logic functions with a large number
of variables and products. Hence, in this article, we also
introduce TROADES that partitions a large logic function into
a number of small sub-functions, find their realizations in a
binary search manner as done in PHAEDRA, and combine these
solutions into a single lattice. Experimental results show that
the solutions of TROADES on small size instances are close
to those of PHAEDRA and its solutions on large size instances
are obtained using less computational effort than PHAEDRA.
Experimental results on the simulation of lattice realizations
of logic functions clearly indicate that shortening the critical
path can reduce the delay of a lattice realization significantly.

The rest of this article is organized as follows: Section II
presents the background concepts and Section III introduces
the Elmore delay formulation of a path in a switching lattice.
Section IV describes the SAT encoding of the LM problem
under a delay constraint and Section V introduces the proposed
algorithms. Experimental results are given in Section VI and
finally, Section VII concludes the article.

II. BACKGROUND

A. Boolean Logic Function

A logic function, f : Br → B, over r variables y1, . . . , yr
maps each truth assignment in Br to 0 or 1. The logic
function f in sum of products (SOP) form on r variables
is a disjunction of s products p1, . . . , ps, where a product
pi = li1 · li2 · . . . · lij , i ≤ s and j ≤ r, is a conjunction of
literals. A literal lij , i ≤ s and j ≤ r, is either a variable yj
or its complement yj . A product is an implicant if and only
if it evaluates f to 1 and it is a prime implicant if it is an
implicant and there exists no other implicant whose literals
are subset of its literals. In an irredundant SOP (ISOP) form
of f , every product is a prime implicant and no product can
be deleted without changing f . The degree of f , denoted as
δ, is the maximum number of literals in the products of f .

A logic function ϕ in product of sums (POS) form on r
variables is a conjunction of t clauses c1, . . . , ct, where a
clause ci = li1 + li2 + . . . + lij , i ≤ t and j ≤ r, is a
disjunction of literals. If a literal of a clause is set to 1, the
clause is satisfied. If all literals of a clause are set to 0, the
clause is unsatisfied. The satisfiability (SAT) problem is to find
an assignment to the variables of a function ϕ in POS form
that makes ϕ to be equal to 1 or to prove that ϕ is equal to
0. The SAT problem is NP-complete [15].

A combinational circuit is a directed acyclic graph with
nodes and directed edges corresponding to logic gates and
wires connecting the gates, respectively. The POS formula of



3

y1

y2

y3

y4

y5

y6

y7

φ = (y1+y5)·(y2+y5)·(y1+y2+y5)·

(y3+y6)·(y4+y6)·(y3+y4+y6)·

(y5+y7)·(y6+y7)·(y5+y6+y7)

Fig. 3. A combinational network and its POS formula.

a combinational circuit is the conjunction of POS formula of
each gate which denotes the valid input-output assignments to
the gate. The derivation of POS formulas of basic logic gates
can be found in [16], [17]. Fig. 3 shows a combinational circuit
and its formula in the POS form.

B. Lattice Function

Recall that a path in a switching lattice is a sequence of
switches connected by taking horizontal and vertical moves
and a lattice function includes all irredundant paths between
the top and bottom plates. Table I presents the number of
products in an m× n lattice function at the top of each entry
and degree of the lattice function at the bottom of each entry
where 2 ≤ m,n ≤ 8. The minimum number of variables in
products of an m × n lattice function is equal to m. Thus,
the number of switches in a path of an m × n lattice ranges
between m and δ, i.e., the degree of the lattice function fm×n.

Observe from Table I that the number of products and
degree of lattice functions increase dramatically as the number
of rows and columns increases, pointing out the lattices that
can be used to realize a rich variety of logic functions. For
the lattices with the same size, there exists a wide range of
functions with different number of products and degrees. As
an example, while f3×7 includes 49 products with a degree
of 9, f7×3 has 163 products with a degree of 13. This is also
true for the lattices with sizes very close to each other. For
example, while f6×5 has 621 products with a degree of 16,
f4×7 and f8×4 contain 203 and 1528 products with a degree
of 12 and 17, respectively.

C. Elmore Delay

The Elmore delay model represents a circuit of interest as a
resistance-capacitance (RC) tree network where the root of the
tree is a voltage source and the leaves are the capacitors at the
end of branches [18], as illustrated in Fig. 4. Note that the RC
tree network does not include any resistor loops and thus, there
is always a unique resistive path between each two nodes in the
network. The delay is estimated from the switched source to
one of the leaf nodes and computed as the sum over each node
capacitance multiplied by the resistance on the shared paths
from the source to the node and the leaf. Mathematically, the
Elmore delay of a node i in an RC tree network is given as
follows [19]:

τi =

N∑
j=1

Cj

∑
for all
k∈Pij

Rk

where N is the number of nodes and Pij = Pi

⋂
Pj indicates

the common parts of the path from the input to the node i, i.e.,
Pi and the path from the input to the node j, i.e., Pj , where
i, j = 1, 2, . . . , N . As an example, τ3 in the RC tree network

TABLE I
NUMBER OF PRODUCTS AND DEGREE OF AN m× n LATTICE FUNCTION.

m/n 2 3 4 5 6 7 8

2 2 3 4 5 6 7 8
2 2 2 2 2 2 2

3 4 9 16 25 36 49 64
4 5 6 7 8 9 10

4 6 17 36 67 118 203 344
5 6 7 10 11 12 13

5 10 37 94 205 436 957 2146
7 9 11 13 16 18 20

6 16 77 236 621 1668 4883 14880
8 10 12 16 19 22 24

7 26 163 602 1905 6562 26317 110838
10 13 16 19 23 26 29

8 42 343 1528 5835 25686 139231 797048
11 14 17 22 26 30 33

R1

Vin

R2
C2

R3 R5

R4

R6 C6
R7

1

2

3

4

5

6 7

C7

C4

C3 C5

C1

Fig. 4. An RC tree network with several branches.

of Fig. 4 is computed as C1R1 + C2(R1 + R2) + C3(R1 +
R2+R3)+C4(R1+R2)+C5(R1+R2+R3)+C6R1+C7R1.

Although the Elmore delay model has a limited accuracy
and is restricted to be applied only for a step response delay,
it is commonly used due to its simplicity [20].

D. Targeted Problems

The lattice mapping under a delay constraint (LM_DC)
problem is defined as: given a target function f , an m × n
lattice, and a delay constraint dc in terms of the number of
switches in the critical path, find an appropriate assignment to
the lattice variables realizing f and respecting dc or prove that
there exists no such assignment. The lattice synthesis under a
delay constraint (LS_DC) problem is defined as: given a target
function f and a delay constraint dc, find an m × n lattice
such that there exists an appropriate assignment to the lattice
variables realizing f without violating dc and m times n is
minimum. Note that the minimum value of dc is equal to δ,
i.e., the degree of the target function f .

E. Related Work

The exact method of [6] explores the search space of the LS
problem in a dichotomic search manner in between the lower
and upper bounds computed in [21]. The algorithm of [11]
applies the same search strategy as the exact method, but
also improves the upper bound of the search space in the LS
problem and uses a SAT encoding for the LM problem. The
methods of [7], [8], and [9] decompose a target function into
smaller sub-functions by exploiting the p-circuits, D-reducible,
and autosymmetric forms of the target function, respectively
and merge the realizations of these sub-functions into a lattice.
The method of [10] determines a number of promising lattice



4

T3

T1

T4

T2

R

R R

R

C

(b)

C

C

C

4C

T1

T4T3

T2

(a)

Fig. 5. (a) Model of the four-terminal switch including NMOS transistors;
(b) RC tree network of the four-terminal switch model.

Fig. 6. Current waveforms in each terminal.

candidates and uses a method of [6] to find if one of these
lattices leads to a solution. The divide and conquer method
of [12] can easily handle logic functions with a large number
of variables and products by partitioning such a logic function
into smaller sub-functions, finding their realizations using the
algorithm of [11], and merging these solutions into a single
lattice. Moreover, the algorithm of [13] uses three techniques
to decompose a complex logic function into sub-functions. To
the best of our knowledge, there exists no algorithm proposed
for the LM_DC and LS_DC problems.

III. FORMULATION OF DELAY IN SWITCHING LATTICES

In this section, we introduce the Elmore delay formulation
of a single path in a lattice formed based on the previously
proposed four-terminal switch model of [14], leading to the
estimation of the delay of a critical path which is the largest
resistive path. We also discuss the factors that have a signifi-
cant impact on the delay of a lattice.

In [14], it is shown that a four-terminal switch can be
modeled using four equivalent NMOS transistors as illus-
trated in Fig. 5(a) and can be implemented using the CMOS
technology. The model has actually six terminals and in this
figure, two terminals, which are the control input, that is
connected to the gate nodes of all transistors, and the body
(bulk) terminal, that is grounded, are not shown for the sake
of clarity. The model is symmetric and has six possible paths
between its four terminals named as T1, T2, T3, and T4.
The voltage levels of these terminals determine the current
paths. As an example, assume that a pulse signal is applied
to the control input when T1 is connected to the supply
voltage and the other three terminals are grounded. In this
case, there are three current paths and the current entering T1
is divided equally through other terminals since the model is
symmetric. The current of each terminal is simulated in the

NMOS

Switching  

Lattice

F

F

IN1

IN2

INr

OUT

CL

Fig. 7. Footed dynamic logic circuit including a switching lattice.

R

R

R

R

R

R

R

2C

2C

1

2

3

4

(c)

6C

6C

6C

2s

4C

4C

4C

1st 

Four-

Terminal

Switch

2nd 

Four-

Terminal

Switch

sth 

Four-

Terminal

Switch

C

C C

C

CC

2C

2C

F

(a)

C

R

R

R

R

R

R

R

CC

R R

CC

R R

C

R R

CC

R R

4C

4C

4C

2C

2C

(b)

2C+CL
OUT

2s+1

2C+CL
OUTOUT

2C+CL

Fig. 8. (a) Footed dynamic logic circuit with cascaded s four-terminal
switches; (b) corresponding RC tree network; (c) simplifed RC tree network
of Fig. 8(b) by short-circuiting the off-path resistances with respect to the
Elmore delay model.

LTspice environment and presented in Fig 6, indicating the
proper behavior of the four-terminal switch. In this figure, vg
denotes the control input of the four-terminal switch. In our
simulations, all transistors have a minimum length and width
of 60nm and 120nm according to the 65nm fabrication process,
respectively. On the other hand, the RC tree network of the
model is given in Fig. 5(b) where the nonlinear characteristics
of a transistor are approximated using average resistance and
capacitance over the switching range of the gate node for
the delay estimation [18]. We define the average resistance
value as R and the average capacitance value on drain or
source node as C despite the nonlinear voltage dependence
of the capacitors. At the interconnection of four transistors,
the equivalent capacitance is taken as 4C.

To simulate a switching lattice, it is used as a pull-down
network of a footed dynamic logic circuit [14] shown in
Fig. 7. The inputs to the switching lattice are the control
inputs of four-terminal switches. The load capacitance CL is
connected to the output node that is precharged when the pull-
up transistor, which is pulsed by a clock φ, is on. Thus, the
output is evaluated when the pull-up transistor is off.



5

Fig. 9. Delay of m× 1 switching lattices.

Fig. 10. Delay of m × n switching lattices including a single path with a
minimum length.

The delay of a path including cascaded s four-terminal
switches between the top and bottom plates of a switching
lattice, can be estimated based on its RC tree network shown
in Fig. 8. Analyzing this network, the delay of a path including
s four-terminal switches is formulated as follows:

τOUT =

2s+1∑
i=1
i odd

i(R)(2C) +

2s∑
i=2
i even

i(R)(6C) + (2s+ 1)RCL

which can be simplified as

τOUT = (8s2 + 10s+ 2)RC + (2s+ 1)RCL.

Thus, the delay of a four-terminal switch can be estimated
as τOUT = 20RC + 3RCL when s is set to 1. Fig. 9 presents
the simulated and estimated delay of an m×1 lattice where m
ranges in between 1 and 100. Note that the estimated values
are computed when CL is 50fF and the average of effective
resistance R and the capacitance C values are respectively
found as 2.9kΩ and 0.1fF in our simulations. Observe that
the estimated delay values are close to the simulation results,
being always higher than the simulation results.

The formulation of delay in a switching lattice becomes
harder for the cases, where a lattice has a large number of rows
and columns, includes extra turned-on four-terminal switches,
which correspond to branches of the path, and has multiple
isolated and unisolated paths. In following, we explore these
factors, that have an impact on the delay of a switching lattice,
in our simulations.

Fig. 11. Delay of m × n switching lattices including a single path with a
maximum length.

16 17 18 19 20 21 22 23
Length of critical path

4.46
4.72

5.06
5.38
5.69
6.01

6.35
6.67

D
el

ay
 (

n
s)

number of path=1

16 17 18 19 20 21 22 23
Length of critical path

2.57
2.73

2.94
3.14
3.34
3.54

3.76
3.95

D
el

ay
 (

n
s)

number of path=2

16 17 18 19 20 21 22 23
Length of critical path

1.95
2.08

2.25
2.39

2.57

2.74

2.91
3.07

D
el

ay
 (

n
s)

number of path=3

16 17 18 19 20 21 22 23
Length of critical path

1.64
1.77
1.91
2.04

2.19

2.34
2.48

2.64

D
el

ay
 (

n
s)

number of path=4

Fig. 12. Effect of the number of paths and number of switches in path on
the delay of a 16× 16 switching lattice.

Fig. 10 presents the delay of an m × n switching lattice
in simulation, where 2 ≤ m,n ≤ 8, when there is a single
path which has m four-terminal switches. As mentioned in
Section II-B, m is the minimum number of four-terminal
switches in the critical path of an m × n lattice. In order to
explore the delay affected by the four-terminal switches other
than the ones in the path, in one scenario, all these switches are
turned off and in another scenario, all of them are turned on,
except the ones which can generate resistor loops. Observe
that as the number of rows increases, the delay of a lattice
increases. When all the four-terminal switches which are not
in the path are turned off for lattices with m rows, the number
of columns does not affect the delay. However, when there are
extra turned-on switches other than the ones in the single path,
ensuring that no resistor loop is generated, the delay of a lattice
increases as the number of columns increases since the number
of turned-on switches is increased in this case. Considering the
Elmore delay model introduced in Section II-C, turning on the
switches, that are not in the path, can create new branches on
the RC tree and/or increase the length of existing branches.
The capacitors depicted as leaves on branches of the RC tree
contribute to the overall delay.

Similarly, Fig. 11 presents the delay of an m×n switching
lattice in simulation, where 2 ≤ m,n ≤ 8, when there is a



6

Fig. 13. Path examples: (a) a single; (b) two isolated; (c) two nonisolated.

single path which has a maximum number of four-terminal
switches given as the degree of the lattice function in Table I.
Observe that a critical path with a maximum number of
switches dominates the delay of the lattice and the impact of
extra turned-on switches is very little. This is simply because
the number of extra turned-on switches is decreased when the
single path includes a maximum number of switches.

In order to find the impact of multiple paths on the delay of
a switching lattice, in a 16× 16 lattice, we generated p paths
which consist of s four-terminal switches, where p ranges
between 1 and 4 and s is in between 16 and 23, and we turned
off all the switches other than the ones in the paths. Note that
the generated paths are isolated from each other, meaning that
no four-terminal switch in a path is a neighbor of any four-
terminal switch in another path. Fig. 12 presents the delay
of 16× 16 lattices in simulation under this scenario. Observe
that a lattice with a single path as illustrated in Fig.13(a) has
the largest delay with respect to those of lattices including
multiple isolated paths as illustrated in Fig.13(b). This is
because multiple paths are considered as parallel resistances
whose equivalent resistance yields a smaller delay value when
compared to the delay of lattice including a single path. Note
that if multiple paths are unisolated as illustrated in Fig.13(c),
there will be both serial and parallel switches in the paths and
the delay will also be smaller than that of lattice including
a single path. Recall that no resistor loop is permitted in the
Elmore delay model and hence, the largest resistive path is
taken into account to estimate the worst-case delay.

Although there exist other factors as shown above, the
Elmore delay estimation of a lattice indicates that the number
of switches in the critical path has a significant impact on the
worst-case delay of a lattice. In the algorithms introduced in
the next two sections, this metric, which is not complicated to
achieve, is used as a delay constraint.

IV. SAT ENCODING OF THE LM_DC PROBLEM

In this section, we present the SAT formulation of the
LM_DC problem which is the fundamental problem to be
solved in the algorithms introduced in the next section.

Given the target function f , an m × n lattice, and a delay
constraint dc, in order to check if f can be realized using the
m×n lattice without violating dc, initially, the structural check
procedure is applied. In this procedure, for each product of the
target function with j literals, it is checked if there is a different
product in the lattice candidate function with k literals, where
j ≤ k ≤ dc. For our example in Fig. 2, f = abc+abc+acd,
assume that dc is equal to 3, which is the degree of f , and
suppose that the 4 × 2 lattice is considered. Observe from
Fig. 1(c) that all products of f4×2 have a number of literals
greater than dc, failing the structural check procedure. On the
other hand, when the 3 × 3 lattice is considered, there exists
a different product of f3×3 that covers each product of f .

If the structural check is passed, the LM_DC problem is
formulated as an SAT problem in two steps as given below.
Note that the SAT encoding of the LM_DC problem is based
on the one given for the LM problem in [11].

In the first step, the set LV , which includes the lattice
function variables, and the set TL, which contains the target
function literals and constants 0 and 1, are generated. The
mapping variables lvi_tlj , where lvi ∈ LV , 1 ≤ i ≤ |LV |,
tlj ∈ TL, 1 ≤ j ≤ |TL|, and |A| stands for the cardinality of
set A, are generated. The mapping variable lvi_tlj indicates
that the lattice variable lvi is assigned to an element of
TL, tlj , when this mapping variable is set to high. For our
example, f = abc+ abc+ acd, suppose that the 3× 3 lattice
is considered when dc is 3. Thus, LV = {x1, x2, . . . , x9},
TL = {a, a, b, c, c, d, 0, 1}, and for example, setting the
mapping variable x7_c to 1 indicates the assignment of c
of TL to x7 of LV . To confirm that each lattice variable is
assigned to only one element in TL, the necessary clauses are
generated as follows:

|LV |∏
i=1

|TL|∑
j=1

lvi_tlj and

|LV |∏
i=1

|TL|−1∏
j=1

|TL|∏
k=j+1

lvi_tlj + lvi_tlk

where
∏

and
∑

denote AND and OR operators, respectively.
While the former clauses ensure that for each lattice variable,
at least one of the mapping variables should be high, the
latter ones guarantee that for each lattice variable, when one
mapping variable is high, the others should be low.

In the second step, to satisfy the functionality of f , for each
truth table entry, a combinational circuit, which corresponds
to the lattice function, is generated and the value of f at this
truth table entry is assigned to the circuit output. The circuit
inputs, which are the lattice function variables, are associated
with the truth table entry and are denoted as lvi_tte, where
1 ≤ i ≤ |LV | and tte is the truth table entry. The POS formula
of the combinational circuit is obtained as shown in Fig. 3
and is simplified based on the logic value at the output. For
our example, f = abc + abc + acd, considering the 3 × 3
lattice when dc is 3, Fig. 14 shows the circuits generated for
abcd = 0000 and abcd = 1000 where f evaluates to logic 0



7

x1_0000

x4_0000

x7_0000

x2_0000

x5_0000

x7_0000

x3_0000

x6_0000

x5_0000

x4_0000

x7_0000

0
0

0

0

x4_0000

x1_1000

x4_1000
x7_1000

x2_1000

x5_1000

x7_1000

x3_1000

x6_1000

x5_1000

x4_1000

x7_1000

1x4_1000

(a) (b)
Fig. 14. The circuits of f3×3 for f = abc+abc+acd: (a) when abcd = 0000
and f is low; (a) when abcd = 1000 and f is high.

and 1 values, respectively. In this figure, only three products
of f3×3 are shown for the sake of clarity.

In order to satisfy dc, for each truth table entry where f eval-
uates to logic value 1, we generate constraints to ensure that
all the products of a lattice function, that include a number of
literals greater than dc, evaluate to logic value 0. For our exam-
ple, considering the 3×3 lattice when dc is 3 and abcd = 1000,
the clauses, such as (x2_1000+x5_1000+x4_1000+x7_1000) and
(x3_1000 + x6_1000 + x5_1000 + x4_1000 + x7_1000), guarantee
that in a path of lattice, which includes a number of switches
greater than dc, at least one of its switches is off.

In order to link the mapping variables to the circuit inputs,
for each mapping variable, we generate clauses which ensure
that when it is set to high, the associated circuit input is
set to a value determined by each truth table entry. For
our example, when abcd = 0000, the constraints, such as
x1_a⇒ x1_0000 and x3_b⇒ x3_0000, where ⇒ denotes the
implication operator, ensure that the circuit input has the
corresponding value when a lattice variable is assigned to a
target literal. When a lattice variable is assigned to a constant
value 0 or 1, the related circuit input is set to that value.

Thus, we generate a SAT problem that formalizes the
LM_DC problem and is solved using a SAT solver. For the
SAT solver, we set a time limit as 1200 seconds, determined
empirically. Thus, if the SAT solver finds a solution in the
given time limit, the assignment to the lattice variables is
obtained by the mapping variables set to high. Otherwise, it is
accepted that the target function cannot be realized using the
given lattice.

The performance of algorithms developed for the LS_DC
problem described in the following section heavily depends on
solving the SAT problems generated for the LM_DC problems.
We note that as the number of variables and products in the
target and lattice function increases, the SAT problem size
may increase dramatically, going beyond the limitations of
the state-of-art SAT solvers.

In order to analyze the increase in the complexity of SAT
problems, we consider the logic function of an r-input XOR
gate, denoted as r-XOR. Note that r-XOR includes all possible
2r literals and consists of 2(r−1) products, each having r
literals. Fig. 15 presents the number of variables and clauses
(in the logarithmic scale) of the SAT problems generated for
r-XOR on three possible lattices with the smallest size when
dc is set to the degree of the target function, i.e., r.

(a) (b)

Fig. 15. Complexity of SAT problems on XOR functions: (a) number of
variables; (b) number of clauses.

Observe from Fig. 15 that the complexity of the SAT
problem increases dramatically as the number of inputs in
the XOR logic function, and consequently, the number of
products, increase. For example, the SAT problem, which is
generated to check if 6-XOR (7-XOR) can be realized using
the 5 × 9 lattice, includes 311,286 (618,960) variables and
5,235,810 (10,446,973) clauses. Moreover, the SAT problem
complexity increases as the lattice size increases because
the number of products and degree of the lattice function
increase as shown in Table I. For example, for 7-XOR on the
5× 7 (5× 8) lattice, the SAT problem has 128,816 (281,856)
variables and 1,751,515 (4,305,693) clauses. This analysis
clearly indicates that the performance of LS_DC algorithms,
which solve LM_DC problems formulated as SAT problems,
depends heavily on the number of literals and products of the
target function and lattice size.

V. ALGORITHMS PROPOSED FOR THE LS_DC PROBLEM

In this section, we introduce the algorithms developed
for the LS_DC problem, namely a binary search algorithm
PHAEDRA and a divide and conquer method TROADES. These
algorithms take the ISOP form of a logic function as a
target function f and the delay constraint dc and return the
realization of f using a switching lattice which respects dc.

A. PHAEDRA: A Binary Search Algorithm

PHAEDRA is based on JANUS [11] proposed for the LS
problem and its main steps are given as follows:

1) Compute the lower bound (lb) and upper bound (ub)
of the LS_DC problem, both in terms of the number of
switches.

2) If lb = ub, return found solution while computing ub.
3) Determine the middle point as mp = b(lb+ ub)/2c and

generate the set of lattice candidates C.
4) For each lattice candidate in C, formulate the related

LM_DC problem as a SAT problem as described in
Section IV and solve it using a SAT solver. If there
exists a solution, set ub to mp and go to Step 6.

5) If there are no solutions for all lattice candidates in C,
set lb to mp+ 1.

6) If lb < ub, go to Step 3. Otherwise, return the solution.
In the first step of PHAEDRA, the initial lower bound of the

LS_DC problem is computed as follows:
1) Set the initial lower bound lb to 1.



8

a a

b c

c d

a

b

c

a

cc

a

b d

c

b

a

0

0

0

0

0

0

0

0

0

(a) (b)

Fig. 16. Realizations of f = abc+abc+acd when dc is 3: (a) PS method [6];
(b) THYESTES.

2) Determine all lattices with size lb. Apply the structural
check procedure described in Section IV to each lattice.
If the structural check procedure is passed, return lb.

3) If the structural check procedure is failed on all lattices
with the size lb, increase lb by 1 and go to Step 2.

For our example in Fig. 2, f = abc+ abc+ acd, suppose
that lb and dc are equal to 8 and 3, respectively. There are
4 lattices with the size of 8, i.e., the 1 × 8 lattice with
f1×8 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, the 2× 4
lattice with f2×4 = x1x5 + x2x6 + x3x7 + x4x8, the 4× 2
lattice with f4×2 as shown in Fig. 1(c), and the 8 × 1 lattice
with f8×1 = x1x2x3x4x5x6x7x8. Observe that while all
products of f1×8 and f2×4 have a number of literals less than
the degree of f , all products of f4×2 and f8×1 have a number
of literals greater than dc. For our example, the initial lower
bound is computed as 9 where the 3 × 3 lattice passes the
structural check.

In the first step of PHAEDRA, to find the initial upper
bound of the LS_DC problem, we apply two methods, namely
THYESTES given below and TROADES described in the follow-
ing subsection, and determine ub as the minimum number of
switches in the solutions of these techniques. THYESTES is
based on the product separation (PS) method of [6] which
places all s products of a target function on the columns of a
lattice, separating each of them by an isolation column full of
logic value 0s and filling the unspecified entries of the lattice
with logic value 1. The PS method finds a solution with a
δ×(2s−1) lattice, where δ is the degree of the target function.
Since its solutions have δ rows and the minimum value of dc is
δ, dc is never violated. For our example, f = abc+abc+acd,
when dc is 3, its solution is shown in Fig. 16(a).

The PS method can be improved by reducing the number
of isolation columns. In THYESTES, for each product pi, we
check if there exists another product pj , such that both of them
can be realized in a δ×2 lattice respecting dc. Such a solution
can be found by encoding the related LM_DC problem as a
SAT problem as described in Section IV. If there exists such a
solution, it is placed on a lattice. If there exists no product that
can be realized with pi, the product pi is placed on a column
of a lattice. If the product pi is not the last product in the
target function, an isolation column is inserted into the lattice.
Note that since the LM_DC problems to be solved include
lattices with only 2 columns, they can be solved easily. For
our example, f = abc+ abc+ acd, when dc is 3, the solution
of THYESTES is shown in Fig. 16(b).

In PHAEDRA, the lattice candidates are explored in between
the lower and upper bounds. In its third step, the set of lattice

candidates C is generated as follows:

C =

{
(m,n) | m× n ≤ mp

∀(m′, n′) /∈ F,m′ = m and n′ ≥ n

where F is the set that includes the row and column of lattices
on which it is proved that the given target function cannot be
realized without violating dc as described in Section IV.

Observe that as the difference between the initial upper and
lower bounds of the LS_DC problem increases, the number of
lattice candidates, and consequently, the number of LM_DC
problems, increase. Hence, it is important to find a good initial
upper bound using a little computational effort. The following
subsection presents TROADES used to find an initial upper
bound for the LS_DC problem.

B. TROADES: A Divide and Conquer Method

TROADES is based on MEDEA [12] proposed for the LS
problem and has four main steps described as follows:

1) Compute the initial lower bound of the LS_DC problem,
lb, and its initial upper bound using THYESTES, ub, as
described in Section V-A.

2) If the difference between the initial upper and lower
bounds, dulb, is greater than 31, partition the target func-
tion into smaller sub-functions until the dulb value of
all sub-functions is less than or equal to 31. Otherwise,
consider the target function as a sub-function.

3) Find the realization of each sub-function respecting dc
in a binary search manner as done in PHAEDRA.

4) If there exist multiple sub-functions, combine these
realizations into a single lattice and explore alternative
implementations of sub-functions.

After computing the lower and upper bounds of the search
space in the first step, if the dulb value for the target function
is greater than 31, in an iterative manner, products of the target
function are partitioned into two sub-functions. As a simple
example, consider the iterative partitioning of f as f = g+h,
g = f1 + f2, h = f3 + f4, where f = f1 + f2 + f3 + f4. Note
that while the functions f , g, and h have a dulb value greater
than 31, the functions f1, f2, f3, and f4 have a dulb value
less than or equal to 31. Note that the products of a function
are partitioned into two sub-functions such that the number of
products in a sub-function is equal to or is one less than that of
the other and the products in a sub-function share a maximum
number of variables. While determining the dulb value, two
criteria were considered. On one hand, it is desired to find the
solutions of sub-functions using a little computational effort
with PHAEDRA. On the other, the realizations of these sub-
functions are desired to yield a solution with a small lattice
size. Although these two criteria conflict with each other, it
was found that the dulb value 31 meets them adequately.

In the third step, the solutions of all k sub-functions are
found in a binary search manner using PHAEDRA where only
THYESTES is used to find the initial upper bound of the search
space. After the solution of each sub-function fi, denoted as
mi × ni, where 1 ≤ i ≤ k, is found, the maximum row of
these solutions, mr, is determined as maxki=1(mi). Then, for
each sub-function fi, where 1 ≤ i ≤ k, if mi 6= mr, we



9

(a) (c)

f1 

(4x4)

f2 

(3x4) f2 

(4x3)

f1 

(3x5)

f2 

(3x4)

(d)

0
0
0
0
0

1
1

1
1

1
1

1
1

f1 

(5x3)

0
0
0
0

0
0
0

(b)

f2 

(5x3)

0
0
0
0
0

f1 

(5x3)

Fig. 17. (a) Merging the realizations of sub-functions into a single lattice;
Realizations of sub-functions leading to different sizes respecting dc: (b) 5×7
lattice; (c) 4× 8 lattice; (d) 3× 10 lattice;

find its solution respecting dc on an mr × c lattice, where c
is initially set to d(mini)/mre and is increased by 1 until a
solution is found. By doing so, all sub-functions are realized
using switching lattices with the same number of rows and
thus, it is ensured that dc is not violated when these sub-
functions are merged into a single lattice.

If there exist multiple sub-functions, in the beginning of the
forth step, we keep the solution of each sub-function found
in the previous step as m′i × n′i, where 1 ≤ i ≤ k. Then, we
merge the solutions of sub-functions into a single lattice, called
best lattice bl with the best lattice size bls set to mr(k− 1 +∑k

i=1 ni). If mr > 3, we check if each sub-function fi, where
1 ≤ i ≤ k, can be realized using an (mr−1)×c lattice without
violating dc, where c is initially set to d(m′in′i)/(mr−1)e and
is increased by 1 until a solution is found. Whenever all the
solutions of sub-functions are found with a row of mr − 1,
they are merged into a single lattice sl with its size sls. If sls
is less than bls, then bl and bls are updated and this procedure
is iterated. Otherwise, it is terminated.

As a simple example, suppose that a target function is
partitioned into two sub-functions, f1 and f2, and PHAEDRA
respectively finds a solution with 5 × 3 and 3 × 4 lattices
without violating dc. A single lattice combining these two
sub-functions is depicted in Fig. 17(a). Observe that this single
lattice may not respect dc, even though the realization of each
sub-function does not violate dc. This is simply because of
logic 1s added under the realization of f2. Hence, it is checked
if f2 can be realized by a lattice with a row of 5. Assume
that it can be realized using the 5 × 3 lattice respecting dc
as shown in Fig. 17(b). Thus, the single lattice includes 35
switches. However, if f1 and f2 can be realized using 4 × 4
and 4×3 lattices, respectively, the single lattice has 32 switches
as shown in Fig. 17(c). Finally, if f1 and f2 can be realized
using 3 × 5 and 3 × 4 lattices, the complexity of the single
lattice reduces to 30 as shown in Fig 17(d).

When the dulb value of the target function is less than or
equal to 31, no sub-function is generated and the realization
of the target function on a switching lattice is found in a
binary search manner as done in PHAEDRA. For our example
in Fig. 2, f = abc+abc+acd, when dc is 3, the initial lower
and upper bounds are computed as 9 and 12, respectively and
thus, the solution of TROADES is the same as the solution of
PHAEDRA given in Fig. 2(c).

VI. EXPERIMENTAL RESULTS

In this section, we present the results of PHAEDRA and
TROADES proposed for the LS_DC problem and the algo-
rithms of [6], [7], [10]–[12] introduced for the LS problem.
Note that the proposed algorithms developed in Perl use
espresso [22] to find the ISOP forms of target functions and

TABLE II
DETAILS OF LOGIC FUNCTIONS.
Instance in pi δ

5xp1_3 6 14 5
b12_06 9 9 6
dc1_02 4 4 3
ex5_23 8 12 4
ex5_27 8 11 4
misex1_02 7 5 5
misex1_06 6 5 4
mp2d_02 11 10 4
apex4_015 9 13 8
apex4_017 9 12 8
apex4_018 9 14 8
clip_00 9 21 6
clip_04 9 20 6
sao2_01 10 20 10
sao2_02 10 22 4
sao2_03 10 21 5

glucose4.1 [23] to solve a SAT problem. They can be found at
https://github.com/leventaksoy/Lattices. We used the updated
version of the exact method of [6] where an issue, that may
cause the method to miss some paths in a switching lattice,
was fixed [10]. The performance of algorithms [6], [10] was
increased when the time limit for the SAT solver was set to
1200 seconds as done in the algorithm of [11]. The time limit
for the SAT solver in the algorithm of [7] was 600 seconds as
mentioned in [7]. All the algorithms were run on an Intel Xeon
CPU at 2.40GHz with 28 cores and 128GB RAM with the time
limit of 6 hours. We note that the time-out parameter in the
SAT algorithm is based on the maximum run-time in seconds
because i) the run-time of an LS algorithm is an important
parameter while assessing the algorithms; ii) different lattices
lead to SAT problems with different number of variables and
clauses for the same target function, complicating the decision
on the constant value of another time-out parameter. However,
it is important to state that the given results of algorithms may
not be reproducible due to a different computing environment.

As an experiment set, we used 16 instances of [24]. Table II
presents the details of these functions where in, pi, and δ stand
for the number of inputs and prime implicants and degree of
the logic function, respectively. Note that while the product of
these three parameters is less than or equal to 486 for the first
half of instances, this product is greater than or equal to 864
for the second half of instances.

To demonstrate the complexity of SAT problems generated
for the LM_DC problem with different lattices when dc is
equal to δ and δ + 1, we used two logic functions, namely
5xp1_1 and mp2d_02 of Table II. Tables III and IV present the
details on the SAT problems where variables and clauses stand
for the number of variables and clauses, respectively. In these
tables, decision denotes the result of the SAT solver, where
sat, unsat, and undet indicate that it is respectively proved,
disproved, and undetermined that the target function can be
realized using the given lattice. Finally, CPU denotes the run-
time of the SAT solver.

Observe from Tables III and IV that as the lattice size
increases, the complexity of the SAT problem also increases,
going beyond the capabilities of a state-of-art SAT solver [23].
Note also that the complexity of the SAT problem increases,



10

TABLE III
SUMMARY OF DETAILS ON THE SAT PROBLEMS GENERATED FOR THE 5XP1_3 INSTANCE.

Lattice dc = δ dc = δ + 1
variables clauses decision CPU variables clauses decision CPU

4x8 14,272 175,848 undet 1200.0 14,272 173,544 undet 1200.0
4x9 22,072 296,479 undet 1200.0 22,072 293,791 undet 1200.0
4x10 34,480 504,294 sat 682.8 34,480 501,222 undet 1200.0
4x11 54,312 862,101 sat 1095.2 54,312 858,645 sat 805.3
5x6 17,060 220,365 unsat 6.7 17,060 218,445 undet 1200.0
5x7 34,250 500,610 unsat 24.0 34,250 498,306 sat 791.3
5x8 72,816 1,199,635 unsat 163.3 72,816 1,196,947 undet 1200.0
5x9 157,398 2,865,538 undet 1200.0 157,398 2,862,466 undet 1200.0

TABLE IV
SUMMARY OF DETAILS ON THE SAT PROBLEMS GENERATED FOR THE MP2D_02 INSTANCE.

Lattice dc = δ dc = δ + 1
variables clauses decision CPU variables clauses decision CPU

3x10 306,120 2,755,403 undet 1200.0 306,120 2,722,635 undet 1200.0
3x11 359,117 3,298,228 undet 1200.0 359,117 3,261,364 undet 1200.0
3x12 416,184 3,906,227 sat 494.9 416,184 3,865,267 sat 183.8
3x13 477,321 4,583,470 sat 423.1 477,321 4,538,414 sat 364.4
4x7 513,632 5,187,590 unsat 46.2 513,632 5,138,438 unsat 772.2
4x8 814,928 8,941,170 unsat 117.4 814,928 8,883,826 undet 1200.0
4x9 1,299,374 15,562,460 unsat 212.7 1,299,374 15,496,924 undet 1200.0
4x10 2,076,860 27,136,758 unsat 255.8 2,076,860 27,063,030 undet 1200.0

as the number of inputs of the target function, i.e., 6 for the
5xp1_3 function and 11 for the mp2d_02 function, increases.
While the SAT problems generated for different dc values have
the same number of variables, the ones generated for a higher
dc value have a smaller number of clauses. This is simply
because as dc increases, the number of critical paths, whose
length is greater than dc, decreases. Note also that the number
of SAT problems, which are generated under a small dc value
and solved in the given time limit, is greater than that of SAT
problems generated under a large dc value. The reason for that
a small dc value constrains the search space more than a large
dc value. For this reason, it is interesting to observe that the
SAT problems with a large number of variables and clauses
may not require a large computational effort, e.g., the ones
obtained on lattices 4× 11 and 5× 8 for the 5xp1_3 function
and the ones obtained on lattices 3 × 13 and 4 × 10 for the
mp2d_02 function when dc is equal to δ.

Tables V and VI show the results of algorithms developed
for the LS and LS_DC problems, respectively. In these tables,
sol, cp, and CPU denote the solution of algorithms, number
of switches in the critical path, and run-time of algorithms in
seconds, respectively. Note that the cp values given in italic are
inexact and could be found under a time limit of 300 seconds.
Also, in Table VI, sf stands for the number of generated sub-
functions in TROADES. The results of proposed algorithms
were obtained when dc was set to δ and δ + 1.

Observe from Tables V and VI that the algorithms proposed
for the LS problem obtain solutions with a large number of
switches in the critical path when compared to the degree of a
logic function. The average number of switches in the critical
path in the solutions of algorithms [7], [10], [6], [12] [11]
are 2.4×, 3×, 1.3×, 1.5×, and 2× larger than the one
in the solutions of PHAEDRA and TROADES when dc is
equal to δ, respectively. Moreover, the solutions of PHAEDRA
and TROADES include less number switches than those of
algorithms developed for the LS problem on average, except
MEDEA and JANUS. This is due to the fact that the algo-

rithms of [7], [10], and [6] cannot handle the hard instances
efficiently. Furthermore, as dc is increased, the number of
switches in the solutions of PHAEDRA and TROADES decreases
on average. Note that while the solutions of PHAEDRA are
close to those of JANUS on moderate instances, its solutions are
getting far away from those of JANUS on hard instances. One
reason for PHAEDRA obtaining worse solutions than JANUS on
hard instances is that a solution respecting dc requires a lattice
with a large size, increasing the SAT problem complexity
dramatically. Another reason is that the initial upper bound of
the search space in the LS_DC problem obtained by PHAEDRA
is larger than that of the search space in the LS problem found
by JANUS. On the other hand, TROADES can find solutions
on all those instances using the least computational effort on
average. Note that the solutions of PHAEDRA on hard instances
are exactly the same as the solutions of TROADES which were
actually found as an initial upper bound in PHAEDRA. In these
cases, PHAEDRA could not improve the initial upper bound
while exploring the search space in a binary search manner.

Table VII presents the impact of the dulb value on the
solution quality and performance of TROADES. For this ex-
periment, the dulb value was set to 11 and 51. Recall that the
results of TROADES in Table VI were found when dulb is 31.

Observe from Tables VI and VII that as the dulb value
increases, the number of switches in the solutions of TROADES
decreases, but increasing the run-time. This is mainly because
the number of generated sub-functions is decreasing, leading
to sub-functions with a large number of products. We note
that when dc is equal to δ, setting the dulb value to 51
reduces the number of switches on average 6.6% and 21.5%
compared to the solutions obtained when dulb value is 31
and 11, respectively. In this case, the run-time of TROADES is
increased by 8.7× and 10.3× when compared to those when
dulb value is 31 and 11, respectively.

To simulate the lattice realizations, we generated LTspice
netlists of the solutions of JANUS with a minimum number
of switches on average and of the solutions of PHAEDRA



11

TABLE V
SUMMARY OF RESULTS OF ALGORITHMS PROPOSED FOR THE LS PROBLEM.

Instance [7] [10] Exact [6] MEDEA [12] JANUS [11]
sol cp CPU sol cp CPU sol cp CPU sol cp CPU sol cp CPU

5xp1_3 4x11 7 11.1 15x4 26 1750.1 4x8 8 11698.6 5x8 9 55.8 4x9 15 19745.8
b12_06 5x10 9 22.6 5x4 9 24.4 5x4 9 144.7 5x4 10 23.8 5x4 10 23.8
dc1_02 3x5 5 0.1 3x4 5 0.2 4x3 6 0.2 4x3 5 0.2 4x3 5 0.3
ex5_23 4x11 9 13.2 4x8 12 1241.2 3x9 7 3810.3 3x12 8 29.9 3x9 9 3726.4
ex5_27 4x11 8 7.8 4x6 7 52.4 4x6 8 1436.1 3x9 6 1.7 3x8 7 1229.3
misex1_02 5x5 7 1.4 5x4 8 37.7 5x4 8 52.2 5x4 8 23.7 5x4 8 19.7
misex1_06 5x6 7 0.8 3x5 4 2.2 5x3 7 5.0 5x3 7 1.7 5x3 7 1.3
mp2d_02 4x13 11 0.4 4x9 14 46.1 4x7 12 4022.8 3x10 11 0.3 4x7 12 948.9
apex4_015 4x19 12 8520.1 31x6 31 21600.0 8x25 8 21600.0 5x11 9 16.7 5x10 12 21600.0
apex4_017 4x22 13 7419.7 8x23 8 21600.0 8x23 8 21600.0 5x15 9 14.2 7x7 11 21600.0
apex4_018 22x14 38 21600.0 43x5 43 21600.0 8x27 8 21600.0 6x13 10 859.4 7x8 11 21600.0
clip_00 5x14 11 341.5 6x41 6 21600.0 6x41 6 21600.0 5x16 11 26.5 5x11 13 21600.0
clip_04 5x10 12 146.7 6x39 6 21600.0 6x39 6 21600.0 4x13 7 14.9 4x11 11 21600.0
sao2_01 25x17 36 21600.0 10x39 10 21600.0 10x39 10 21600.0 8x18 12 1979.0 12x7 18 21600.0
sao2_02 5x15 12 266.8 23x7 42 21600.0 4x43 4 21600.0 4x18 7 11.3 4x13 12 21600.0
sao2_03 5x14 15 3495.2 21x8 38 21600.0 5x41 5 21600.0 5x18 10 200.0 6x13 19 21600.0
Avg. (1-8) 38.0 7.9 7.2 27.4 10.6 394.3 22.3 8.1 2646.2 25.0 8.0 17.1 22.8 9.1 3211.9
Avg. (9-16) 145.3 18.6 7923.8 223.0 23.0 21600.0 230.9 6.9 21600.0 79.4 9.3 417.4 58.5 13.4 21600.0
Avg. (1-16) 91.6 13.3 3965.5 125.2 16.8 10997.1 126.6 7.5 12123.1 52.9 8.7 203.7 40.6 11.3 12406.0

TABLE VI
SUMMARY OF RESULTS OF ALGORITHMS PROPOSED FOR THE LS_DC PROBLEM.

Instance TROADES - dc = δ TROADES - dc = δ + 1 PHAEDRA - dc = δ PHAEDRA - dc = δ + 1
sol cp sf CPU sol cp sf CPU sol cp CPU sol cp CPU

5xp1_3 4x13 5 3 12.4 4x12 6 3 7.0 4x10 5 7027.1 5x7 6 10799.6
b12_06 5x7 6 2 9.1 5x7 7 2 16.1 5x6 6 2153.1 4x6 7 1686.9
dc1_02 3x4 3 1 0.3 3x4 4 1 0.3 3x4 3 0.4 3x4 4 0.4
ex5_23 3x13 4 2 3.4 3x12 5 2 11.6 3x9 4 491.3 3x9 5 2896.0
ex5_27 3x12 4 2 15.8 3x11 5 2 11.9 3x8 4 1343.9 3x8 5 1463.0
misex1_02 4x5 5 1 8.1 4x5 6 1 23.4 4x5 5 8.4 4x5 6 23.4
misex1_06 3x5 4 1 0.7 3x5 4 1 2.0 3x5 4 0.8 3x5 4 2.1
mp2d_02 3x13 4 2 3.4 3x12 5 1 4975.8 3x12 4 2922.6 3x12 5 4991.1
apex4_015 5x15 8 4 13.1 5x15 9 4 10.9 5x15 8 21600.0 5x15 9 21600.0
apex4_017 4x21 8 4 108.0 4x21 8 4 30.0 4x21 8 21600.0 4x21 8 21600.0
apex4_018 4x21 8 4 32.4 4x21 9 4 25.9 4x21 8 21600.0 4x21 9 21600.0
clip_00 4x21 6 5 27.7 4x21 7 5 36.0 4x21 6 12814.3 4x21 7 21600.0
clip_04 4x18 6 5 18.1 4x15 7 4 12.2 4x18 6 15268.2 4x15 7 21600.0
sao2_01 7x27 10 8 384.9 7x27 11 8 229.7 7x27 10 21600.0 7x27 11 21600.0
sao2_02 3x34 4 5 21.4 4x19 5 4 34.9 3x34 4 21600.0 4x19 5 21600.0
sao2_03 4x28 5 5 69.6 4x23 6 4 1674.8 4x28 5 21600.0 4x23 6 21600.0
Avg. (1-8) 31.0 4.4 1.8 6.6 29.4 5.3 1.6 631.0 25.5 4.4 1743.4 24.1 5.3 2732.8
Avg. (9-16) 100.3 6.9 5.0 84.4 93.0 7.8 4.6 256.8 100.3 6.9 19710.3 93.0 7.8 21600.0
Avg. (1-16) 65.6 5.6 3.4 45.5 61.2 6.5 3.1 443.9 62.9 5.6 10726.9 58.6 6.5 12166.4

under the footed dynamic logic circuit using the four-terminal
switch model described in Section III. In these netlists, the load
capacitance was set to 50fF . We used 10000 random inputs to
simulate the behavior of the lattice realizations when the clock
frequency was 10MHz. Table VIII presents the delay in ns
and average power dissipation in µW of these realizations.

Observe from Table VIII that the realization of logic
functions on switching lattices with a minimum number of
switches in the critical path can reduce the delay of the design
significantly. In this case, the solutions of PHAEDRA lead to a
22% reduction on the delay of a lattice realization on average
where the maximum gain is obtained as 59% on the 5xp1_3
function. However, as observed in clip_04, a solution with a
minimum length of critical path does not always lead to the
smallest delay due to the other factors described in Section III.
In this case, the number of turned-on extra switches in the
solution of PHAEDRA is larger than that in the solution of
JANUS. Moreover, when dc is increased, the delay of lattice
realizations is increased on average, although there are cases
where the delay of a lattice realization with a large number

of switches in the critical path is smaller than that of lattice
realization including a small number of switches in the critical
path, such as misex1_02, misex1_06, and apex4_018. On
the other hand, the solutions of PHAEDRA lead to lattice
realizations with power dissipation slightly larger than those
of designs obtained by JANUS on average because of a large
number of switches in the solutions of PHAEDRA.

VII. CONCLUSIONS

This article introduced the delay formulation of a path in
a switching lattice and addressed the problem of realizing a
logic function using a switching lattice with the fewest number
of four-terminal switches under a delay constraint defined in
terms of the number of switches in the critical path. The
problem of checking if the logic function can be realized using
the given lattice without violating the delay constraint was
formulated as a SAT problem. In this article, a dichotomic
search algorithm PHAEDRA and a divide and conquer method
TROADES were introduced. Experimental results indicated that
PHAEDRA can reduce the number of switches in a critical path



12

TABLE VII
SUMMARY OF RESULTS OF TROADES WITH DIFFERENT dulb VALUES.

Instance dulb = 11 - dc = δ dulb = 11 - dc = δ + 1 dulb = 51 - dc = δ dulb = 51 - dc = δ + 1
sol cp sf CPU sol cp sf CPU sol cp sf CPU sol cp sf CPU

5xp1_3 4x17 5 5 2.6 4x17 6 5 2.6 4x12 5 2 33.1 4x10 6 2 25.3
b12_06 5x12 6 4 11.5 5x12 7 4 2.8 5x7 6 2 10.7 5x7 7 2 17.6
dc1_02 3x4 3 1 0.3 3x4 4 1 0.3 3x4 3 1 0.3 3x4 4 1 0.3
ex5_23 3x16 4 4 1.5 3x16 5 4 1.5 3x9 4 1 495.9 3x9 5 1 1668.9
ex5_27 3x14 4 3 1.9 3x14 5 3 1.6 3x8 4 1 1275.8 3x8 5 1 1493.5
misex1_02 4x6 5 2 1.1 4x6 5 2 1.0 4x5 5 1 8.1 4x5 6 1 25.2
misex1_06 4x6 4 2 0.8 4x6 5 2 0.8 3x5 4 1 0.7 3x5 4 1 2.0
mp2d_02 3x13 4 3 2.8 3x12 5 3 1.3 3x12 4 1 3340.8 3x12 5 1 3013.7
apex4_015 5x17 8 5 11.7 5x17 9 5 8.8 5x13 8 3 229.6 5x13 9 3 224.1
apex4_017 4x21 8 4 107.3 4x21 8 4 30.2 4x21 8 4 108.9 6x11 9 3 52.0
apex4_018 5x22 8 6 13.1 5x22 9 6 12.2 4x21 8 4 32.0 4x21 9 4 28.2
clip_00 4x27 6 8 21.5 4x27 7 8 7.6 4x21 6 5 27.7 4x18 7 4 41.6
clip_04 4x25 6 8 15.9 4x25 6 8 6.1 4x15 6 3 28.9 4x13 7 3 39.6
sao2_01 7x27 10 8 384.8 7x27 11 8 231.7 7x27 10 8 386.4 7x27 11 8 254.3
sao2_02 3x40 4 8 15.5 4x25 5 8 4.7 3x31 4 4 22.4 4x15 5 2 5964.3
sao2_03 4x34 5 8 23.4 4x32 6 8 10.7 4x26 5 4 334.1 4x23 6 4 1539.7
Avg. (1-8) 39.6 4.4 3.0 2.8 39.3 5.3 3.0 1.5 27.1 4.4 1.3 645.7 26.1 5.3 1.3 780.8
Avg. (9-16) 116.5 6.9 6.9 74.2 113.0 7.6 6.9 39.0 95.4 6.9 4.4 146.3 85.0 7.9 3.9 1018.0
Avg. (1-16) 78.1 5.6 4.9 38.5 76.1 6.4 4.9 20.2 61.3 5.6 2.8 396.0 55.6 6.6 2.6 899.4

TABLE VIII
SUMMARY OF SIMULATION RESULTS OF LATTICE REALIZATIONS.

Instance JANUS [11] PHAEDRA PHAEDRA
dc = δ dc = δ + 1

delay power delay power delay power
5xp1_3 4.16 0.78 1.70 0.81 1.97 0.77
b12_06 2.37 0.69 1.96 0.75 2.14 0.70
dc1_02 1.56 0.64 1.05 0.64 1.24 0.64
ex5_23 1.49 0.74 1.37 0.77 1.38 0.78
ex5_27 1.38 0.76 1.37 0.75 1.37 0.74
misex1_02 1.85 0.68 1.62 0.66 1.57 0.69
misex1_06 2.05 0.65 1.30 0.65 1.27 0.65
mp2d_02 2.37 0.79 1.46 0.84 1.62 0.85
apex4_015 2.59 0.87 2.56 0.98 2.84 0.98
apex4_017 3.38 0.82 2.79 0.96 2.79 0.96
apex4_018 3.49 0.87 2.79 0.96 2.70 0.97
clip_00 2.75 0.85 2.34 0.94 2.39 0.94
clip_04 2.00 0.85 2.10 0.90 2.30 0.88
sao2_01 5.35 0.88 4.10 1.32 4.30 1.37
sao2_02 1.79 0.97 1.70 1.11 1.80 1.03
sao2_03 3.00 1.13 2.10 1.19 2.20 1.11
Avg. (1-8) 2.15 0.72 1.48 0.73 1.57 0.73
Avg. (9-16) 3.04 0.91 2.56 1.05 2.67 1.03
Avg. (1-16) 2.60 0.81 2.02 0.89 2.12 0.88

significantly, increasing the number of switches slightly on
small size instances and TROADES can easily handle large size
logic functions using less computational effort than PHAEDRA.
It was also shown that the realization of a logic function on
a lattice with a small number of switches in the critical path
can lead to a significant reduction in the delay of the design.

ACKNOWLEDGMENT

This work is supported by the TUBITAK-Career project
#113E760 and TUBITAK-2501 project #218E068.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, pp. 114–117, 1965.

[2] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M.
Lieber, “Logic gates and computation from assembled nanowire building
blocks,” Science, vol. 294, no. 5545, pp. 1313–1317, 2001.

[3] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A: Materials Science & Processing, vol. 80, no. 6, pp. 1165–
1172, 2005.

[4] G. Snider, P. Kuekes, T. Hogg, and R. S. Williams, “Nanoelectronic
architectures,” Applied Physics A, vol. 80, no. 6, pp. 1183–1195, 2005.

[5] H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C.
Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for
nanoprocessors,” Nature, vol. 470, no. 7333, pp. 240–244, 2011.

[6] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing optimal
switching lattices,” ACM Transactions on Design Automation of Elec-
tronic Systems, vol. 20, no. 1, pp. 6:1–6:14, 2014.

[7] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and
T. Villa, “Logic synthesis for switching lattices by decomposition with
p-circuits,” in Euromicro Conference on Digital System Design, 2016,
pp. 423–430.

[8] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Synthesis
of switching lattices of dimensional-reducible boolean functions,” in
International Conference on Very Large Scale Integration, 2016, pp.
1–6.

[9] ——, “Composition of switching lattices and autosymmetric boolean
function synthesis,” in Euromicro Conference on Digital System Design,
2017, pp. 137–144.

[10] M. C. Morgul and M. Altun, “Optimal and heuristic algorithms to
synthesize lattices of four-terminal switches,” Integration, vol. 64, pp.
60–70, 2019.

[11] L. Aksoy and M. Altun, “A satisfiability-based approximate algorithm
for logic synthesis using switching lattices,” in Design, Automation and
Test in Europe Conference, 2019, pp. 1637–1642.

[12] ——, “Novel methods for efficient realization of logic functions using
switching lattices,” IEEE Transactions on Computers, vol. 69, no. 3, pp.
427–440, 2020.

[13] ——, “A novel method for the realization of complex logic functions
using switching lattices,” in International Symposium on Circuits and
Systems, 2020, accepted for publication.

[14] I. Cevik, L. Aksoy, and M. Altun, “Cmos implementation of switching
lattices,” in Design, Automation and Test in Europe Conference, 2020,
accepted for publication.

[15] A. S. Cook, “The complexity of theorem-proving procedures,” in ACM
Symposium on Theory of Computing, 1971, pp. 151–158.

[16] G. Tseitin, “On the complexity of derivation in propositional calculus,”
in Studies in Constructive Mathematics and Mathematical Logic, Part II,
Seminars in Mathematics, A. Slisenko, Ed. Nauka, Leningrad. Otdel,
1968, pp. 234–259.

[17] T. Larrabee, “Test pattern generation using boolean satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4–15, 1992.

[18] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. Addison-Wesley Publishing Company, 2010.

[19] S. Kang, Cmos Digital Integrated Circuits: Analysis and Design, 4th ed.
McGraw-Hill Education, 2014.

[20] R. Gupta, B. Tutuianu, and L. T. Pileggi, “The elmore delay as a
bound for rc trees with generalized input signals,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 16,
no. 1, pp. 95–104, 1997.



13

[21] M. Altun and M. Riedel, “Logic synthesis for switching lattices,” IEEE
Transactions on Computers, vol. 61, no. 11, pp. 1588–1600, 2012.

[22] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Springer, 1984.

[23] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solver,” in International Joint Conference on Artifical Intelligence,
2009, pp. 399–404.

[24] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0,” MCNC, Tech. Rep., Jan. 1991.

Levent Aksoy received his M.S. and Ph.D. degrees in electronics and com-
munication engineering and electronics engineering from Istanbul Technical
University (ITU), Istanbul, Turkey, in 2003 and 2009, respectively. He worked
as a post-doctoral researcher in Algorithms for Optimization and Simulation
(ALGOS) group of the Instituto de Engenharia de Sistemas e Computadores
(INESC-ID), Lisbon. Then, he joined Dialog Semiconductor as a digital design
engineer and worked mainly on the design and verification of asynchronous
logic circuits. Currently, he is a research fellow in the Emerging Circuits and
Computation (ECC) Group in ITU. His research interests include CAD for
VLSI circuits with emphasis on solving EDA problems using SAT models
and optimization techniques.

Nihat Akkan received his B.Sc. degree in electrical and electronics engineer-
ing from Hacettepe University, in 2011 and his M.Sc. degree in electronics
engineering from Yıldız Technical University (YTU), in 2015. He is currently
pursuing his Ph.D. degree in the Electrical and Electronics Faculty, YTU.
He is also a Research Assistant with the Electrical and Electronics Faculty,
YTU. His main research areas are compact modeling of organic and inorganic
semiconductor devices, solid-state electronics, and circuit and system designs.

Herman Sedef received his B.Sc., M.Sc., and Ph.D. degrees in electronics and
communication engineering from Yıldız Technical University (YTU), Istanbul,
Turkey, in 1984, 1987, and 1994, respectively. He was a research assistant,
from 1986 to 1994. He was an assistant professor and associate professor with
the Department of Circuit and Systems, YTU, from 1994 to 2000 and 2000 to
2007, respectively. From 2007, he has been working as a professor in YTU.
His research interests are active filter synthesis, filter design, and realization
of transfer functions.

Mustafa Altun received his BSc and MSc degrees in electronics engineering
at Istanbul Technical University in 2004 and 2007, respectively. He received
his PhD degree in electrical engineering with a PhD minor in mathematics
at the University of Minnesota in 2012. Since 2013, he has served as an
assistant professor at Istanbul Technical University and run the Emerging
Circuits and Computation (ECC) Group. Dr. Altun has been served as a
principal investigator/researcher of various research projects including EU
H2020 RISE, National Science Foundation of USA (NSF) and TUBITAK
projects. He is an author of more than 50 peer reviewed papers and a book
chapter, and the recipient of the TUBITAK Success, TUBITAK Career, and
Werner von Siemens Excellence awards.


