Student ID:

Date: 7/4/2022

EHB322E Digital Electronic Circuits MIDTERM I

Duration: 120 Minutes
Grading: 1) 35%, 2) 35%, 3) 30%
Exam is in closed-notes and closed-books format; calculators are allowed
For your answers please use the space provided in the exam sheet

> GOOD LUCK!

1) Consider a buffer shown below. Use the following equations for your calculations.

Saturation region current-voltage equation: $I_{D}=\frac{1}{2} k_{p, n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{T 0 p, n}\right)^{2}$
Linear region current-voltage equation: $I_{D}=\frac{1}{2} k_{p, n}^{\prime} \frac{W}{L}\left[2\left(V_{G S}-V_{T 0 p, n}\right) V_{D S}-V_{D S}^{2}\right]$
Transistor parameters: $k_{p}{ }^{\prime}=\mu_{p} c_{o x}=54 \mathrm{uA} / \mathrm{V}^{2}, k_{n}{ }^{\prime}=\mu_{n} c_{o x}=96 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{TP}}=-1 \mathrm{~V}$, $\mathrm{W}_{\mathrm{N}-1}=\mathrm{W}_{\mathrm{N}-2}=12 \mathrm{u}, \mathrm{L}_{\mathrm{P}}=\mathrm{L}_{\mathrm{N}}=1 \mathrm{u}$.

a) Find the minimum value of $\boldsymbol{R}_{\mathbf{1}}$ if $\boldsymbol{V}_{\text {in }}=\mathbf{5 V}$ results in $\boldsymbol{V}_{\text {out }}=\mathbf{5 V}$.
b) Find the value of $\mathbf{W}_{\text {P-1 }}$ if $\boldsymbol{V}_{\text {in }}=\mathbf{0} \mathrm{V}$ results in $\boldsymbol{V}_{\text {out }}=\mathbf{0 . 5} \mathrm{V}$.
c) Find the buffer's static power consumption values when $\boldsymbol{V}_{i n}=\mathbf{0 V}$ and $\boldsymbol{V}_{i n}=\mathbf{5 V}$.
d) Using the values found in a) and b), find the value of $\boldsymbol{V}_{\text {out }}$ if $\boldsymbol{V}_{\text {in }}=\mathbf{2 . 5} \mathbf{V}$.
2) Consider a circuit with three CMOS inverters and three outputs shown below. External capacitors with values of $2 f F, 4 f F$, and $6 f F$ are connected to output-1, output-2, and output3 , respectively. A signal switching from high to low is applied to the input.
Transistor parameters: $c_{o x}=1 f F / \mathrm{um}^{2}, \tau_{n}=\tau_{p}=1 \mathrm{ps}, \mathrm{W}_{\mathrm{N} 1}=2 \mathrm{u}, \mathrm{W}_{\mathrm{P} 1}=4 \mathrm{u}, \mathrm{W}_{\mathrm{N} 2}=2 \mathrm{u}, \mathrm{W}_{\mathrm{P} 2}=6 \mathrm{u}$, $\mathrm{W}_{\mathrm{N} 3}=1 \mathrm{u}, \mathrm{W}_{\mathrm{P} 3}=4 \mathrm{u}$, and $\mathrm{L}_{\mathrm{N} 1}=\mathrm{L}_{\mathrm{P} 1}=\mathrm{L}_{\mathrm{N} 2}=\mathrm{L}_{\mathrm{P} 2}=\mathrm{L}_{\mathrm{N} 3}=\mathrm{L}_{\mathrm{P} 3}=1 \mathrm{u}$.

Digital circuit with three CMOS inverters
Propagation delays of an inverter are formulized as follows. C_{L} represents the total (internal and external) load capacitor of an inverter.

$$
\begin{array}{ll}
t_{P H L}=\left(C_{L} / C_{N}\right) \tau_{n} & C_{N}=c_{o x} \mathrm{~W}_{N} \mathrm{~L}_{\mathrm{N}} \\
t_{P L H}=\left(C_{L} / C_{P}\right) \tau_{p} & C_{P}=c_{o x} \mathrm{~W}_{\mathrm{P} L_{P}}
\end{array}
$$

Suppose that $C_{G S-N}=C_{N}, C_{G S-P}=C_{P}$, and each inverter has an internal input capacitor of $\left(C_{G S-N}+C_{G S-P}\right)$.
a) Neglect the inverters' internal output capacitors and find total propagation delay values at output-1, output-2, and output-3.
b) Suppose that each inverter has an output internal capacitor $C_{I-o u t}=c_{o x}\left(\mathrm{~W}_{\mathrm{N}}+\mathrm{W}_{\mathrm{P}}\right)(0.5 \mathrm{um})$. Find total propagation delay values at output-1, output-2, and output-3.
3) Consider $f=x_{1} x_{2} x_{3} \overline{x_{4}}+x_{1} x_{2} \overline{x_{3}} x_{4}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}} x_{4}$.
a) Implement f with a CMOS circuit using minimum number of transistors. Draw the circuit. How many PMOS and NMOS transistors do you use?
b) Suppose that both NMOS and PMOS transistors have equivalent resistance values of $1 \mathrm{k} \Omega$; a total output load capacitor is $2 f F$ (Neglect all other internal capacitors). Find the worst case (largest) $\boldsymbol{t}_{\boldsymbol{P H L}}$ and $\boldsymbol{t}_{\boldsymbol{P L H}}$ values.

