Chapter 26
Computing with Emerging
Nanotechnologies

M. Altun

Abstract As current CMOS based technologies are approaching their anticipated
limits, emerging nanotechnologies start to replace their role in electronic circuits.
New computing models have been proposed. This chapter overviews both deter-
ministic and stochastic computing models targeting nano-crossbar switching arrays
and emerging low-density circuits. These models are demonstrated with imple-
mentations using Boolean and arithmetic logic. Performance parameters of the
models such as area, speed, and accuracy, are also evaluated in comparison with
those of conventional circuits.

26.1 Introduction

In 1965, Gordon Moore made an influential prediction about CMOS size shrinking,
formulated as the Moore Law stating that the number of transistors on a chip
doubles every 18-24 months [1]. His prediction has kept its validity for decades.
Nowadays this trend has reached a critical point and it is widely accepted that the
trend will end in the next decade. Even Gordon accepted that his prediction will
lose it validity in near future [2]. At this point, research is shifting to novel forms of
nanoarchitectures including nano-crossbar arrays and probabilistic/stochastic cir-
cuits and systems [3-5]. Such technologies have apparent advantages over con-
ventional CMOS technologies, such as high performance capacity and easy
manufacturability.

Nano-crossbar arrays are regular and dense structures that are generally fabri-
cated by self-assembly as opposed to lithography based conventional and relatively
costly CMOS fabrication techniques [6]. Conventional lithographic techniques face
severe challenges for emerging nanotechnologies due to their need for directed
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manipulation of molecules which is quite costly in nanoscale. Along with these
advantages in terms of circuit size and fabrication, nano-crossbar arrays have
drawbacks including reliability issues and CMOS integration problems, standing
against commercial production. While reliability of nano-crossbars have been sat-
isfactorily improved using reconfigurable architectures and new defect tolerance
techniques [5, 7, 8], discussed later in this chapter, CMOS integration is still a
major problem; CMOL is the strongest candidate for this problem [9]. Indeed, if all
parts of a computing system can be successfully realized with nano-crossbar arrays
then there will be no need for integration, but current state-of-the art has not reached
this point, hopefully in the next decade.

The concept of using stochastic computing models is not new; it dates back to a
seminal paper by John von Neumann in 1956 [10]. With the advent of a variety of
types of emerging nanoscale technologies, the model has found renewed interest
[3, 11]. Unlike conventional CMOS that is solely based on deterministic operations,
stochastic circuits use probabilities as inputs and outputs. This feature is invaluable
to cope with uncertainties seen in emerging nanotechnologies in the form of
variability, reliability, and noise problems [4]. Stochastic computing also offers
smaller circuit implementations for arithmetic functions using much fewer tran-
sistors compared to conventional CMOS circuits. This feature attracts low density
obligated technologies such as printed/flexible electronics [12]. Here, the main
drawback is high error rates seen in stochastic computing by nature. Methods, as
discussed later in this chapter, have been proposed to improve it.

In this chapter, we focus on computing models for nano-crossbar arrays and
stochastic circuits. These models are demonstrated with implementations using
Boolean and arithmetic logic. Performance parameters of the models such as area,
speed, and accuracy, are also evaluated in comparison with those of conventional
circuits. This chapter is organized as follows. In Sect. 26.2, we investigate
nano-crossbar array based computing models. We present Boolean function
implementation and defect tolerance techniques in Sects. 26.2.1 and 26.2.2,
respectively. We evaluate the techniques on standard benchmark circuits in
Sect. 26.2.3. In Sect. 26.3, we introduce stochastic computing models and their
application areas. We present techniques to reduce error rates and to achieve error
free stochastic computing in Sects. 26.3.1 and 26.3.2, respectively. In Sect. 26.4, we
present conclusions.

26.2 Computing with Nano-crossbar Arrays

Unlike conventional CMOS that can be patterned in complex ways with lithogra-
phy, self-assembled nanoscale systems generally consist of regular structures.
Logical functions and memory elements are achieved with arrays of crossbar-type
switches. In this study, we target this type of switching arrays where each cross-
point behaves as a switch, either two-terminal or four-terminal. This is illustrated in
Fig. 26.1. Depending on the used technology, a two-terminal switch based
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Fig. 26.1 A switching crossbar nanoarray modeled with two-terminal and four-terminal switches

(a) (b) (c) (d)
Nano Array Diode based FET based Four-Terminal

Fig. 26.2 a Nano-crossbar [14] based on b diode [14], ¢ FET [15], d four-terminal switch [23]
crosspoints

crosspoint can be modeled as a diode [13, 14] or a FET [15, 16]. This is illustrated
in Fig. 26.2. Note that both diode and FET based crosspoints conduct current in one
direction. However, four-terminal switches conduct current in multiple directions.

We implement Boolean functions by considering array sizes. Table 26.1 com-
pares different implementation methodologies for few XOR functions (Parity
functions) regarding array sizes. The columns “diode based” and “FET based”
represent two-terminal switch based implementation methodologies. These
methodologies have been proposed to implement simple logic functions [17, 18].
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Table 26.1 Array sizes for nanoarray computing models; XOR2 = x; @ X,
XOR3 = x; D x, D x3, and XOR4 = x; D x, D x3 D x4

Two-terminal switch based Four-terminal switch based nanoarray
nanoarray models models
Diode based FET based Four-terminal Four-terminal based
(Optimal) [13] (Optimal) [16] based [23] (Optimal) [36]

XOR2 2 x 5 array 4 x 4 array 2 x 2 array 2 x 2 array 4 switches
10 switches 16 switches 4 switches

XOR3 4 x 7 array 6 x § array 4 x 4 array 3 x 3 array 9 switches
28 switches 48 switches 16 switches

XOR4 | 8 x 9 array 8 x 16 array 8 x 8 array 3 x 5 array 15 switches
72 switches 128 switches 64 switches

In this study, we generalize them to be applicable for any given Boolean function
with offering optimal array size formulations. The last two columns represent
four-terminal switch based implementation methodologies that offer favorably
better results.

Defect rates are much higher for nano-crossbars compared to conventional
CMOS circuits [19]. Therefore developing new defect tolerance techniques for
nano-crossbars is a must, especially for high defect rates up to 20 %. Tolerating
such high defect rates necessitates using reconfigurable crossbar architectures and
redundancy [5, 20]. A predetermined design with static crossbars is not capable for
defect tolerance because it is not possible to create alternative routes for defective
regions. On the contrary, reconfigurable designs can be manipulated for defect
tolerance. In this study, we assess and compare defect tolerance performances of the
three different reconfigurable nano-crossbar architectures/technologies, represented
in Fig. 26.2, that is conducted through finding a valid mapping in accordance with
the proposed algorithm and defect maps in case of randomly distributed defects. We
consider randomly occurred stuck-open and stuck-closed crosspoint defects causing
permanently open and closed defective crosspoint devices or switches, respectively.

This study is at the technology-independent level. The presented synthesis and
optimization methods are applicable to variety of nanoarray based emerging tech-
nologies including nanowire and nanotube crossbar arrays [13, 15-18], magnetic
switch-based structures [8], arrays of single-electron transistors [21], and memris-
tive arrays [22].

26.2.1 Implementing Boolean Logic Functions

We investigate three major implementation methodologies developed for switching
nanoarrays. We classify them as two-terminal or four-terminal switch based.
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26.2.1.1 Two-Terminal Switch Based Methodologies

These methodologies consider each crosspoint of an array as a two-terminal switch
that behaves like a diode or a FET. Since diodes and FETs conduct current through
their two terminals that are anode and cathode for diodes and source and drain for
FETs, they are fundamentally two-terminal switches.

Boolean functions are implemented by using conventional techniques from
diode-resistor logic and CMOS logic with an important constraint regarding
nanoarray structures. Boolean functions should be implemented in their
sum-of-products (SOP) forms; other forms such as factored or BDD (Binary
Decision Diagram) cannot be used since these forms require manipulation/wiring of
switches that is not applicable for self-assembled nanoarrays. Figure 26.3 shows
implementations of a Boolean function XOR2 with diode and with FET based
nanoarrays.

Array size formulations: Given a target Boolean function f, we derive formulas
of the array sizes required to implement f. This is shown in Table 26.2. For diode
based implementations, each product of f requires a row (horizontal line), and each
literal of f requires a column (vertical line) in an array. Additionally, one extra
column is needed to obtain the output. For FET based implementations, each
product of fand its dual, f”, requires a column, and each literal of f requires a row in

based nanoarrays
implementing

XOR2 = x; @® x, with 2 x 5
and 4 x 4 arrays, respectively
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an array. As an example shown in Fig. 26.3: f = XOR2 = x|X; + X1x, has 4 literals
and 2 products; f D= x1xy + X1 X; has 2 products. This results in array sizes of 2 X 5
and 4 x 4 for diode and FET based implementations, respectively. Note that both
formulas, for diode and FET, always result in optimal array sizes; no further
reduction is possible.

26.2.1.2 Four-Terminal Switch Based Methodology

This methodology considers each crosspoint of an array as a four-terminal switch.
An example is shown in Fig. 26.4. The four terminals of the switch are all either
mutually connected (ON) or disconnected (OFF). Boolean functions are imple-
mented with top-to-bottom paths in an array by taking the sum (OR) of the product
(AND) of literals along each path. This makes Boolean functions implemented in
their sum-of-products (SOP) forms. Figure 26.5a, b show the implementations of a
Boolean function XOR2 in an array and lattice representations, respectively.
Figure 26.5¢ shows a lattice of four-terminal switches implementing a Boolean
function xxx3 + X1X2X5X6 + XoX3X4X5 + X4XsXe. The function is computed by taking
the sum of the products of the literals along each path. These products are xx,x3,
X1XoX5Xg, XoX3X4Xs5, and X4XsXe.

Array size formulation: Given a target Boolean function f, the array size for-
mula was proposed by Altun and Riedel [23] that is shown in Table 26.3. In their
implementation, each product of f and its dual, f ©, require a column and a row,
respectively, in an array. As an example shown in Fig. 26.5a, f = XOR2 = x|x; +
X1x; and f D = x1x, + X7 X3 have both 2 products. This results in an array size of
2 x 2.

Examining the array size formulas in Tables 26.2 and 26.3, we see that while the
formulas in Table 26.2 always result in optimal sizes, the sizes derived from the
formula in Table 26.3, that is, for four-terminal switch based arrays, are not

Table 26.2 Array size formulas for diode and FET based implementations

Type Array size formulas (Optimal)

Diode (Number of products in f) x (“number of literals in f” + 1)
FET (Number of literals in f) x (“number of products in f” + “number of products in f

D”)

ON OFF

Four-terminal
switch

Fig. 26.4 A four-terminal switch with its two states
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Fig. 26.5 a Four-terminal switch based nanoarray and b its lattice representation implementing
XOR2 = x; © x, with a size of 2 x 2. ¢ Four-terminal switch based lattice implementing
X1X2X3 + X1XoX5X6 + XoX3X4X5 + X4X5Xe

Table 26.3 Array size
formula for four-terminal
switch based implementation

Type Array size formula (Non-optimal)

Four-terminal (Number of products in f)
X (number of products in f Dy

necessarily optimal. In the following part we present an algorithm that finds an
optimal size implementation of any given target Boolean function.

Finding whether a certain array with assigned literals to its switches implements
a target function is the main problem in finding optimal sizes. This problem requires
to check if each assignment of 0’s and 1’s to the switches, corresponding to a row
of the target function’s truth table, results in logic 1 (a top-to-bottom path of 1’s
exists). To check this we have to enumerate all top-to-bottom paths; the size of this
task grows exponentially with the array size. This is a general statement that holds
also for our algorithm described below.

Our algorithm finds optimal array sizes to implement given target Boolean
functions with arrays of four-terminal switches in four steps:

(1) Obtain irredundant sum-of-products (ISOP) expressions of a given-target
function fr and its dual f2. Determine the upper bound on the array size using
the formula in Table 26.3.

Upper Bound (UB) = (number of products in f7) x (number of products in 2.
The implementable lower bound (LB) values are taken from the lower bound
table proposed in [23].

(2) List the array shapes (RxC) (which are in between LB and UB) into the ‘List
of Implementable Nanoarray Shapes’ and sort them regarding of array sizes, in
ascending order. While ordering, first take the array shape which has lower
number of rows (e.g. if the kth shape is “3 x 4”, then the (k + 1)th shape can be
“4 x 3”.). Suppose that there are total of N different shapes in the list. For step
3, start withn=1 (1 <n <N).
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(3) Compute the value of the following statement for the nth shape.
The Statement: An array which has the shape in the nth line of the list is
implementable for f7.
If the statement is TRUE
Change UB to the RxC (save the design);
Go to the step 4;
If the statement is FALSE
Increase the number “n” by 1 (n = n+1);
Repeat step 3.
(4) Declare that UB is optimal size for given-target function f7 can be realized in.

Our algorithm is mainly based on finding a design in a certain sized array such
that the design implements f7. Our algorithm does not check every possible design.
If it did then it would be intractable even for small sized arrays. For example, if a
target function fr having 6 variables, 8 literals, is tested on a 3 x 4 array then there
are 12'° possible designs and 2° truth table rows. Note that for each of the 12
switches in the array there are 10 different options; it might be one of the 8 literals,
0, or 1. In this scenario, the algorithm would have to check 12'° x 2° truth table
rows. To overcome this problem, we discard a significant portion of designs to be
checked. For this purpose, we offer 3 major improvements:

I. We create a library of reduced number of R X 2 sized sub-designs. We use them
to achieve R x C sized designs. While creating sub-designs we exploit the
following simple lemmas. First lemma allows us to discard designs imple-
menting a product (s) that does not imply f7. The second lemma allows us to
discard designs with “0” assignments to the switches if f7- has a product having a
single literal.

Lemma 1 If a design has a path realizing a product p for which fr # fr + p, then
the design can not implement fr.

Proof Since p is not an implicant of f, then a design including p implements a
different function.

Lemma 2 If a function fr has a single variable product term p = x then the
algorithm does not need to assign “0” to the switches.

Proof All the “0” assignments can be replaced with x’s without a loss of generality.

II. If there is a product of f such that the number of literals of the product equals
to the number of switches in the longest top-to-bottom path in the array, then
we settle that particular product onto that particular path.

III. We discard designs having fewer number of total literals than the total number
literals of f7.

These improvements make our algorithm much faster. As an example, suppose
that XOR3 is given as a target function for which the improved algorithm runs
roughly 400 times faster. For 3 x 2 sized sub-designs, there are 80 = 262,144 designs.
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With applying the proposed improvements, this number is reduced to 12,114,
roughly 20 times smaller than the unimproved one. Since we use two sub-arrays for
XOR3, for the optimal array size of 3 x 4, the improved algorithm works 400 times
faster.

26.2.2 Defect Tolerance

In this section, defect tolerance performance of switching nano-crossbar arrays is
extensively studied. Three types of nanoarrays where each crosspoint behaves as a
diode, FET, and four-terminal switch, are considered. For each crosspoint, both
stuck-open and stuck-closed defect probabilities are independently taken into
consideration. A fast heuristic algorithm using indexing and mapping techniques is
presented [20]. The algorithm measures defect tolerance performances of the
crossbar arrays that are expected to implement a certain given function. The
algorithm’s effectiveness is demonstrated on standard benchmark circuits that
shows 99 % accuracy compared with an exhaustive search. The benchmark results,
presented in the next section, also show that not only the used technology, the
nanoarray type, but more significantly the specifics of given functions affect defect
tolerance performances.

Mapping a target logic function on a defective crossbar is an NP-complete
problem [24]. In the worst-case scenario, an N X M crossbar has N!M! permutations
that is intractable for a reasonable computing time. Different algorithms and
heuristics are presented to tackle this issue. Graph based models are proposed in
[25, 26] that use a fan-out embedding heuristic and a maximum flow algorithm,
respectively. In addition to graph based approaches, “Integer Linear Programming”
is used in [27] that employs a pruning centered approach with certain constraints. It
is shown in [27] that defect tolerance results might dramatically depend on the
chosen algorithm correlated to the algorithm’s accuracy. We test and compare our
algorithm with an exhaustive search to establish an accuracy of 99 %. However, it
should be noted that large crossbars are computationally intractable to be included
in exhaustive search so we only consider crossbars up to 7 x 7 size for comparison.
In addition, the approaches mentioned so far are using pre-determined crossbar
sizes to find a mapping for a chosen logic function. We use an optimal crossbar to
realize a logic function which means that both the function and the crossbar
matrices have the same size. We test logic functions in Irredundant
Sum-of-Products (ISOP) form that is consistent with using optimal crossbar sizes.
Also we include three different logic families for comparison which departs from
the mentioned studies in the literature.

We present a heuristic algorithm that creates and compares index representations
of a given function and a defective certain sized crossbar to be used to implement
the function. We show that if the index representations are not matched then the
defective crossbar cannot be used to implement the function; otherwise, it can be
used. We prove that this is a necessary and sufficient condition. Our algorithm
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eliminates considerable amount of crossbar mapping permutations that is the main
headache for the mentioned studies in the literature. Furthermore, our viewpoint is
comprehensive, that is, concerned both with the types of the crossbar technologies
and the characteristics of given functions. The presented indexing based algorithm
is direct used for diode and CMOS based logic of nano-crossbars. For four-terminal
switch based logic, the presented algorithm is partially used; a conventional
matrix-based matching is mainly performed. Also we include three different logic
families for comparison which departs from stated studies. It is important to
determine features of different families due to post-production selection according
to inherent defect types.

As follows, we first explain the algorithm used for diode and CMOS based logic
of nano-crossbars [20]. Then, we briefly explain the defect tolerance technique used
for four-terminal switch based logic. In the next section, we present experimental
results and elaborate on them.

26.2.2.1 The Algorithm for Diode and CMOS Based Logic

The outline of our four-step algorithm is shown below. We will then explain each
step in details. The algorithm will be demonstrated with an example in Fig. 26.6. It
should be noted that the example and the following explanations are for stuck-open
defects, nevertheless they can be applied easily for stuck-closed defects by con-
sidering defects as 1s (as opposed to 0s) to be matched with 1s (as opposed to 0s) in
the function matrix.

Input: Function matrix and crossbar (defective) matrix
Output: If there is a matching, “YES”; otherwise “NO”

Step 1: If the number of defective switches is greater than the corre-
sponding elements in the function matrix, then return “NO”.

Step 2: Sort matrices according to the row and column index, if the
crossbar matrix has at least one row or column index greater than a
row or column index of the function matrix, return “NO”.

Step 3: If the number of defects is equal to or smaller than the worst-case
limit W¢, return “YES”.

Step 4: Find the reduced matrix and find set of double indices. Start
subarray search. If a subarray is found with the equal set of double
indices as the reduced matrix with 20,000 trials, return “YES”;
otherwise return “NO”.
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The explanations of the algorithm steps for stuck-open defects:

Step 1:

Step 2:

If the number of defective switches is greater than the corresponding
elements in the function matrix, then return “NO”.

We consider stuck-open defects so algorithm checks Os in the crossbar
matrix to match Os in the function matrix. If Os in the crossbar matrix is
greater than Os in the function matrix, then it is not possible to find
mapping.

Sort matrices according to the row and column index, if the crossbar
matrix has at least one row or column index greater than a row or
column index of the function matrix, return “NO”.

We sort matrices according to the row and column indices. For example, in
Fig. 26.6 index sets of the sorted function and crossbar matrices for O are:

kr=1{2,2,2,1}Icr=1{2,2,2, 1}
IR,C = {27 17 07 O}IC,C = {27 17 07 O}
There is a perfect matching between sets. However, if a member of a

crossbar set would be greater than corresponding member in a function
set, there would be no matching. This would mean there are excessive

Fig. 26.6 Fourth step of the S=xxx, v x,t x g
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defective elements for matching. For the example in Fig. 26.6, this is not
an issue so we proceed to the step 3.

Step 3: If the number of defects is equal to or smaller than the worst-case limit
We, return “YES”.
The worst-case limit of a function matrix is the maximum number of
tolerable defects in any defect distribution related to the row and column
index. We find W¢ with using sets of row and column indices. First we
choose minimum members in sets of row and column indices, sepa-
rately. After that we choose the minimum between two members
obtained in the first step. W gives us minimum row and column index.
If crossbar matrix has defective elements less than or equal to Wc, then
defects can be matched with any row and column in a function matrix.
For illustration, let us now follow the process of finding the Wc of the
function matrix shown in Fig. 26.6.

rr=1{2,2,21}cr={2,2,2,1}
min{lg, g} = 1 and min{Ic, g} =1 so W =1

In Fig. 26.7, the crossbar matrix has three defective elements, so we cannot
conclude if there is a matching without performing the fourth step.

Step 4: Find the reduced matrix and find set of double indices. Start subarray
search. If a subarray is found with the equal set of double indices as the
reduced matrix with 20,000 trials, return “YES”; otherwise return
“NO”.

In a crossbar matrix, Xs corresponding to functional switches do not change the
double index of a matrix element. For this reason, we erase the columns and rows
consisting of only such elements (Xs) for compactness. The acquired matrix keeps
the same set of double indices. Figure 26.7 shows an example for this.

In the next step, we use a subarray search to find a matching between a reduced
matrix and a subarray. Then, the function and crossbar matrices are sorted
according to the sets of indices. We use this to increase the chance of finding
matrices with the same set of double indices. Since matching elements are collected
to the one side, the search progresses diagonally. It can be seen from Fig. 26.6 that
searching a subarray checks only the set of double indices of a chosen subarray, due
to the Double Index Theorem, presented below. As long as they have the same set
of double indices, permutation of matrices is not necessary. Once two matrices are
found with the same set, it means there is a mapping, so the algorithm returns
“YES”.

r 2 3 4 r 2 3 4 I 3 4
«f0 x 0 x] «[0 % 0 x :
TSR FERE T
0 x x 0l "lo % x 0

Fig. 26.7 Reduced matrix for subarray search
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Double Index Theorem There is a one-to-one matching between two matrices if
and only if their set of double indices are equivavelent.

Lemma 1 Row and column permutations do not alter the double index of a matrix
element.

Numbers of the double index are defined with the row and column indices in
which the element is found. Therefore even though permutations changes the
position of a row or a column, element is still in the same row and column with the
same row and column indices which defines the double index.

Lemma 2 Set of double indices is unique for a given matrix.

Proof The proof is by contradiction. Let’s assume such a matrix that has two
different set of double indices. Therefore sets should have different double indices
for one element or more. Double indices in a matrix are determined according to a
row and column index. Since matrix is not altered and has same number of elements
in rows and columns for a chosen value of 0 or 1, it is not possible to have different
row and column indices that comprises double indices. This contradicts with the
assumption of having different double index for an element or more.

Lemma 3 Ser of double indices for a matrix does not change with row and column
permutations.

Proof Rows and columns of a matrix is consisted of matrix elements which have
the same double index after permutations according to Lemma 1. Therefore set
stays the same since its members are not changed.

Proof of the Double Index Theorem Sufficiency If there is a one-to-one matching
between two matrices, then they are identical by definition. Therefore their set of
double indices is equivavelent according to Lemma 2.

Necessity Lemma 2 states that set of indices is unique for a certain matrix and
Lemma 3 states that set of double indices stays the same after row and column
permutation. Therefore, if two matrices have the same set of double indices, then
they are either identical or permutation of one another; in both case they can be
matched one-to-one.

Subarray search has a trial limit of 20,000. We choose this value because when
compared with exhaustive search, it gives 99 % accuracy. When we run the
algorithm by removing this limitation, we see that there is almost no change in the
values. This validates the heuristic algorithm presented above interpreted as a
negative result meaning that there is no mapping at all. In subarray search, the
double index theorem is only valid for matrices with the same number of elements
to be matched. In case of unequal number of elements, new defective elements
should be introduced to the reduced matrix to equalize the number of elements. If
there are N missing elements for matching, 2~ possibilities are to be considered.
Instead of doing this, functional switches denoted with x are marked with 0 and
defective switches with 1. Same is applied to the subarray in the function matrix.
Next, element by element multiplication of matrices is executed. Since functional
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switches can be matched with Os and 1s in the function matrix, the resulting matrix
can be compared with the reduced matrix. If they are equal, there is a matching.

In the CMOS based design two matrices are used to model a logic function. All
principles used for diode based design are valid, with the exception of input per-
mutations. In the diode based design both inputs (columns) and products (rows) can
be permutated with respect to the crossbar which are checked for a mapping. In the
CMOS based design, the first matrix is for the function itself and the second matrix
for its complement. Important distinction is that inputs are in the same order for
both matrices. For this reason while a mapping is searched for a crossbar, rows of
matrices can be permutated independently; however inputs must be in the same
order for both matrices.

26.2.2.2 Defect Tolerance for Four-Terminal Switch Based Logic

For four-terminal switch based design, we partially use the above presented algo-
rithm. We use matrix based defect maps similar to those used there. Our defect
tolerance technique mainly depends on permutation trials. Therefore, we mention it
only briefly.

Defect Map Due to its layout method, the four-terminal switch based design [17]
uses every switch on the crossbar. Therefore there is no unused switch like those in
diode and CMOS based designs. However, certain functions yield redundant paths
or extra connections between top and bottom plates. Figure 26.8 shows occurrence
of extra connections. If a defect existing in a crossbar appears only on one of the
connections, then it can be compensated with the other connection and the correct
result can still be achieved. A defect map of a function implemented with
four-terminal switch based design displays these type of connections.

(a) (b)

S=x;x; v x,vx, 0+,

] 1 1 I
A

Fig. 26.8 a Four-terminal implementation of f with two connections between top and bottom
plates; b in case of a stuck-open defect, first connection is broken down, however since there is a
second connection f evaluates correctly
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26.2.3 Simulation Results

In Table 26.4, we report synthesis results for standard benchmark circuits [28]. We
treat each output of a benchmark circuit as a separate target function. The number of
products for each target function fz and its dual f/ are obtained through
sum-of-products minimization using the program Espresso [29]. The array size
values for “Diode”, “CMOS”, and “4-terminal” are calculated by using the for-
mulas in Tables 26.2 and 26.3. The array size values for “Optimal 4-terminal” are
obtained using the presented optimization algorithm in Sect. 26.2.1: Implementing
Boolean logic functions.

Examining the numbers in Table 26.4, we always see the same sequence from
the worst to the best result as “CMOS”, “Diode”, “4-terminal”, and “Optimal
4-terminal”. This proves that models based on four-terminal switches overwhelm
those based on two-terminal switches regarding the array size. Further, the numbers
obtained by our optimal synthesis method compares very favorably to the numbers
obtained by previous methods.

In Table 26.5, we use standard benchmark circuits to measure defect tolerance
performances of different nano-crossbar technologies. We consider stuck-open and
stuck-closed defect probabilities/rates of 10 and 20 % for each crosspoint inde-
pendently. Simulations are conducted in Matlab. Crossbars with random defects are
produced with Matlab’s predetermined function generator. To obtain defect toler-
ance values, a sample size of around 600 is used. At this level the defect tolerance
fluctuation stabilizes. All experiments run on a 1.70-GHz Intel Core i5 CPU (only
single core used) with 4.00 GB memory. It takes 0.2 s for each sample in average to
check a valid mapping that satisfies an accuracy of 99 % compared with an
exhaustive search.

Table 26.5 shows the results of benchmark functions with respect to defect rates
and defect types as well as the crossbar technologies. Considering the technologies
and the related logic synthesis methodologies, the diode based logic always has a
better defect tolerance performance compared with the CMOS based one. The
reason behind this is directly connected to the number of matchings necessitated for
valid mapping. Since the CMOS based logic uses two different planes for function
realization, it needs to satisfy two matchings instead of one. Another important
conclusion is that the four-terminal switch based design yields better results for
stuck-closed defects than for stuck-open ones since the design generally requires to
assign the same literals to multiple switches on the same conduction path.
Characteristics of the functions also play an important role in the defect tolerance.
Since stuck-open defects are tolerated with zeros in the functions’ matrices, func-
tions with relatively higher number of products compared to their number of literals
have a better chance for tolerating these defects. On the contrary, functions with
relatively higher number of literals compared to their number of products have a
better chance for tolerating stuck-closed defects. For example, Ex33 in Table 26.1
has a 14 % defect tolerance for stuck-closed and 99 % for stuck-open type defects.
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Table 26.4 Array sizes of
three different nano-crossbar
based logic families

M. Altun
Benchmark |CMOS | Diode |4-terminal | Optimal
4-terminal
Alu 0 30 18 6 6
Alu 1 30 18 6 6
Alu 2 30 18 6 6
AluJ 30 18 6 6
B120 80 32 24 12
B12 1 120 70 35 16
B123 30 20 8 8
Bi12 4 42 28 8 3
B12 6 132 77 35 18
B127 110 66 24 18
B12 8 90 70 14 14
C170 36 18 9 6
Cl71 30 20 8 8
Clpl 0 64 32 16 12
Clpl 1 36 18 9 9
Clpl 2 16 8 4 4
Clpl 3 144 72 36 18
Clpl 4 100 50 25 15
Del 1 25 10 6 6
Del 2 72 36 16 12
Del 5 35 15 12 6
Del 6 36 18 9 6
Ex5 31 156 104 32 24
Ex5 33 110 77 21 21
Ex5 46 81 54 18 18
Ex5 49 72 54 12 12
Ex5 50 81 63 14 14
Ex5 61 64 48 12 12
Ex5 62 49 35 10 10
Misexl 1 48 16 8 8
Misexl 2 132 55 35 15
Misexl 3 156 60 40 24
MLsexl 4 121 44 28 16
Misexl 5 90 45 25 15
Misexl 6 143 66 42 18
Misexl 7 81 36 20 15
Mp2d 4 345 75 90 24
Newrag 108 72 32 18
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Table 26.5

651

Defect tolerance performances of three different nano-crossbar based logic families

Circuit Diode CMOS Four-terminal
name Stuck-closed | Stuck-open Stuck-closed | Stuck-open Stuck-closed | Stuck-open
10% (20% [10% |20% [10% |20% |10% |20% |10% |[20% |10 % |20 %

Alu 0 85 54 99 96 63 50 93 72 86 64 52 26
Alu 1 85 54 99 96 83 53 97 73 86 64 52 26
Alu 2 85 54 99 96 83 53 97 73 86 64 52 26
Alu 3 85 54 99 96 83 53 94 73 86 64 52 26
B12 0 98 80 98 74 46 5 95 59 28 7 28 7
Bl12 1 92 33 99 75 58 1 99 91 36 9 58 19
BI123 96 71 96 78 90 58 93 68 42 17 43 16
Bl12 4 84 40 99 96 79 25 93 74 42 17 43 16
B12 6 68 95 47 14 1 99 85 27 7 21 11
B12 7 44 2 99 95 34 1 82 75 42 11 22 3
B12 8 32 1 99 97 24 1 99 99 82 40 22 4
C17 0 95 78 99 94 92 70 98 87 53 26 53 26
CI7 1 96 77 96 78 91 64 92 69 43 16 43 16
CIplO 97 69 99 98 78 23 99 92 62 29 53 20
Clpl 1 98 84 99 95 98 83 98 82 39 14 48 20
Clpl 2 97 82 99 94 93 79 98 92 67 40 65 42
Clpl 3 87 53 99 81 49 1 50 21 18 3 41 10
Clpl 4 91 41 99 97 74 6 63 50 18 3 41 12
Del 1 99 97 95 75 84 52 93 73 52 25 52 25
Del 2 93 55 99 96 68 9 99 96 28 6 28 6
Del 5 99 95 97 85 96 84 84 53 65 38 53 26
Del 6 95 79 99 88 94 70 98 86 53 25 53 25
ExS5 31 56 5 99 95 30 1 83 64 35 7 22 2
Ex5 33 14 1 99 98 9 1 60 43 66 28 25 4
ExS5 46 45 5 99 99 38 1 84 65 17 1 28 6
Ex5 49 3 0 99 99 1 1 84 65 90 32 28 6
ExS 50 23 1 99 99 22 1 87 45 93 75 22 4
Ex5 61 29 2 99 99 25 1 98 78 90 32 43 16
Ex5 62 28 1 98 85 23 1 96 74 95 74 37 12
Misexl 1 99 96 92 66 65 17 52 9 44 16 43 16
Milsexl 2 78 18 99 92 30 1 98 87 29 6 36 10
Misexl 3 94 38 99 86 10 1 96 67 8 1 38 11
Misex| 4 93 44 99 94 8 1 99 89 27 5 38 10
Misexl 5 86 45 97 80 63 3 95 64 26 4 42 14
Misexl 6 89 28 99 86 26 1 93 73 12 2 29 5
Misexl 7 95 57 99 92 50 1 99 93 21 3 49 15
Newtag 59 4 99 98 52 1 96 52 62 22 30 7
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Significant difference between values occurs because of the mentioned literal
related properties. Using Ex33 is more favorable for a crossbar with higher prob-
ability of stuck-open type defects.

26.3 Stochastic Computing

Stochastic computing (SC), represents values in time domain by random bit streams
[29] and was first presented in a paper written by John von Neumann in 1956 [10].
These values are interpreted as probabilities. Therefore, the available range is [0,1]
interval. For instance, if a 16 bit length stream contains 12 1s, it represents p = 0.75
independently from the position of Is in the stream. For example, both
(0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1) and (0,1,0,1,1,1,1,1,1,0,1,1,1,1,1,0) represent the
same probability p = 0.75. The same probability values can be obtained with
different bit stream lengths. Complicated stream operations can be performed with
simple circuits in SC. Multiplication and scaled addition are basic arithmetic
operations of SC.

Stochastic multiplication can be realized with one AND gate independently of
the input bit stream length. In contrary to that, conventional (digital) CMOS
multipliers need about 1000 gates for 16 bit multipliers and this number is expo-
nentially increasing with the number of bits. Due to the interval [0,1], addition
cannot be performed in SC. Instead, scaled addition that guarantees to remain in the
interval is described. MUX is used for scaled addition. Figure 26.9 shows stochastic
multiplication and scaled addition operations.

Error rates

Different combination of streams represent same values and this yields error rates in
SC. These error rates are extremely high for short bit streams. To reduce error rates,
longer bit streams should be used. Figure 26.10 illustrates this; in order have error
rates below 1 %, streams having more than 1000 bits are needed. These extremely
long streams extend the operation time. Hence, classical SC can not be effectively
used in mathematical operations.

(a) (b) MUX

0101 - 0110
AND  }— 0100 0011
0110 — 1001

0101

Fig. 26.9 Stochastic implementation of arithmetic operations: a Multiplication. b Scaled addition
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Fig. 26.10 Error rates versus number of bits in the stream for AND gate while p; = 1/2 and
p2=1/2
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Fig. 26.11 Stochastic multiplication with and without an error

We calculate this error as

Z — Zexpected (26 1)

Zexpected

where z is the probability value of the output. And expected value varies for
different logic gates.

In order to get “1” at the output of an AND gate, both of the inputs have to be
“1”. Assume that the probability of being “1” is p; for the 1st input and p, for the
2nd input. Hence expected value of multiplication/AND gate is z = p; p,. Following
the same logic, expected value at the output of a MUX is z = p; ps + p2 (1 — py).

Let two input probability values be p; and p, respectively depending on the
number of 1s in streams. The expected value at the output is p; x p,. However, the
same probability obtained with different permutations of input may not always yield
the expected results. At this point error rates should be considered. This is illus-
trated in Fig. 26.11. The expected value can be obtained from the AND gate
symbolized with a. However, output value with an error rate is obtained from the
AND gate symbolized with b in Fig. 26.11.

Effect of dependency in stochastic computing

In conventional SC, bit streams which have Bernoulli distribution are independent
from each other. If input streams become dependent, which is not desire, expected
result for classical SC will change. If the inverse of the first input is applied as the
second input to an AND gate, “0” will be obtained at the output. It is expected that
z =p (1 — p), but due to dependency this expectation fails. Moreover, if the same
inputs are applied, the output will be same as the input. It acts like a buffer. It is
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LD
Fig. 26.12 Effect of dependency in SC

expected that z = p p, but due to dependency this expectation fails. These examples
are shown in Fig. 26.12.

Application areas

SC needs less area than conventional hardware implementations [4]. On the con-
trary, error rates are worse. Hence, the commercial application fields are limited
(image processing, LDPC codes) [30]. Recently, printed/flexible electronics
becomes a major candidate for stochastic computing. Printed electronics strictly
requires low density circuits that is a perfect fit with stochastic computing if error
rates can be reduced to proper values [31]. This is our motivation. In this study, we
offer a method based on improving the generation of bit streams. In Sect. 26.3.1, a
detailed information about our method and the conventional one is given.
Comparative analysis made between two methods demonstrate our methods suc-
cess. We also propose a method to achieve error free stochastic computing in
Sect. 26.3.2

26.3.1 Reducing Error Rates

We analyze and make comparison between two SC methods, namely random bit
assigning and shuffling methods.

26.3.1.1 Random Bit Assigning Method

In order to generate bit streams in SC, conventional random bit generators are used
[30]. We name this technique as random bit assigning method (RBAM) [32]. Let
desired input probability value for RBAM be p; and let random number generator
generate values between [0—1] with binomial distribution. If the generated value is
smaller than pl, “1” is added to the stream. If the generated value is bigger than p,
“0” is added to the stream. Because this is a stochastic procedure, there exists
difference between the desired and the obtained input values. There are three 1s and
five Os in the generated 8 bit stream in Table 26.6. For this reason, generated input bit
stream is physically p. = 0.375. Consequently, the result at the output will be faulty.
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Table 26.6 8 bit lf.:ngth Generated number from generator Bit stream
stream generated with RBAM 0.89967 0
for p; = 0.5 :

0.45847 1

0.81537 0

0.20818 1

0.71289 0

0.43615 1

0.64214 0

26.3.1.2 Random Bit Shuffling Method

Let the input desired value for random bit shuffling method (RBSM) be p;. In this
method, depending on the desired probability value and the length of the bit stream,
a bit stream containing necessary and sufficient amounts of 1 is generated.
Fisher-Yates shuffling algorithm [33], adapted to computers by Durstenfeld [34], is
applied. In this way, it is guaranteed that the desired and the generated input values
are probabilistically identical. With this approach output error rates will be
decreased. We use basic logic gates to compare these two methods. The results are
obtained by fixing the two inputs, changing the inputs between [0, 1] interval and
using different bit lengths.

RBSM-RBAM Comparison for p; = 1/2, p, = 1/2 Bit Streams

As shown in Table 26.7, shuffling method gives better results for AND and OR
gates. The longer bit length reduces the error rates as expected and the difference of
error rates between two methods also is reduced. The expectation is that error rates
of two methods overlap at infinity. Two methods give similar results for XOR gate
between 4 and 128 bits, however for longer bit streams shuffling method gives
better results.

RBSM-RBAM Comparison While 64-Bit Inputs p; and p, Changing

The graphics in Fig. 26.13 are symmetrical with respect to the diagonal line. Two
inputs for the ideal operating range of AND gate should be 0.5 and/or greater.
Average error rates for RBAM and RBSM are 30.11 and 19.31 %, respectively. The
results are better for RBSM.

The graphics in Fig. 26.14 are symmetrical with respect to the diagonal line. The
error rates of an OR gate are better than those for an AND gate. Two inputs for the
ideal operating range of an OR gate should be 0.3 and/or greater. Average error
rates for RBAM and RBSM are 6.07 and 2.24 %, respectively. The results are better
for RBSM.
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Table ;6.7 . Obtaine.d error Number of RBAM RBSM

rates with dlfferent bit lengths ;¢ AND | OR XOR | AND |OR XOR

and three logic gates (%)
4 64.3 |20.82 |37.55 |32.55 [11.2 |33.65
8 46.58 |15.38 |27.1 |26.44 | 8.77 |25.76
12 39.92 | 1298 [22.52 |21.22 | 7.24 |21.85
16 3338 |11.05 {194 |19.04 | 6.42 |19.09
20 30.28 |10.22 |17.68 |17.58 | 5.85 [17.24
24 27.75 19.38 |1635 1601 | 5.2 |15.66
32 24.28 [8.2 14.02 |13.82 | 4.67 |13.18
64 17.1 |5.68 9.65 | 832 | 3.05 |10.24
100 13.62 | 4.58 7.88 | 793 | 2.58 | 7.82
128 12.12 | 4.05 7.08 | 621 | 223 | 7.1
256 852 |28 498 | 398 | 1.6 3.57
512 622 |2 355 | 26 1.34 | 2.03
1024 442 |14 245 | 195 | 035 | 1.56

(a) R‘h.,w PIT ASEICH A GATE ERROR BEOLL IS (b} RANDOM BIT SHUFFLE AND GATE ERROR RESULTS

Fig. 26.13 p;-p,-error graph for a RBAM and b RBSM AND gate

The graphics in Fig. 26.15 are symmetrical with respect to both diagonal lines.
The error rates of an XOR gate are better than those for an AND gate but worse
than those for an OR gate. Two inputs for the ideal operating range of XOR gate
should be 0.3 and/or greater. However, the two inputs should not take place on the
diagonal line at the same time. Average error rates for RBAM and RBSM are 10.94
and 6.58 %, respectively. The results are better for RBSM.
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(a} RANDOM BIT ASSIGN OR GATE ERAOR RESULTS (b) RANDOM BIT SHUFFLE OR GATE ERROR RESULTS

L 02 04 o8 s 1
Bt

Fig. 26.14 p,-p,-error graph for a RBAM and b RBSM OR gate

(2)  ranDOMBIT ASSIGN EXOR GATE ERROR RESULTS (D)  RaNDOMBIT SHUFFLE EXOR GATE ERROR RESULTS

L LH LT} (13 (1] 1
!

Fig. 26.15 p,-p,-error graph for a RBAM and b RBSM XOR gate

26.3.2 Error Free Stochastic Computing

Conventional wisdom in stochastic computing is that input bit streams should be
independent; we previously discussed potential accuracy problems related to
dependencies. In this work, however, we use dependent inputs to improve accuracy;
we achieve error free outputs.

26.3.2.1 Realizing Error Free Multiplication with 0.5

We suggest an error free block for multiplication by 0.5 shown in Fig. 26.16. With
this block, the input stream is multiplied by 0.5 and zero error at the output stream
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is achieved. However if the length of the input stream is n, the length of the output
stream will be 2n because of the merging operation. The merge block can be
realized with a delay switch. Thus, the stream obtained from the second AND gate
waits the stream from the first AND gate to be finished.

26.3.2.2 Generating Any Probability Value Without an Error

We adapt the block in Fig. 26.16 to switch circuits [35] in order to obtain any
probability value. It is illustrated in Fig. 26.17. Inputs are always 0.5 (0.12 = 1/2).
In order to shift the binary value one digit to the right and add “0” to the most
significant bit, the circuit block based on AND gate is used (0.012 = 1/4). In order

0.5 o -
P s L} 05xp,

i__g"

Fig. 26.16 Error free multiplication for 0.5 p;

p=q=0.1-=1/2

._.l_'j,\:.‘?,2 ;f.;_l_';,g_hl
:n: —_— Y NOTY _'II—- o ]o—d ? NOTH EI—.
L_--D_._I MERGE I_.D_‘—l MERGE

/,/" AND1 P B
/- : \
=1/ =3/ N
Vi 00L=14  \ /0= \
|I L X
\ T e . 2] \
\ [ e— ?mn \'Ai._.__D M) Ym. TTH——1 |
i -Jr-un( = "l . L Junu — e "l
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Fig. 26.17 Probability generation tree
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to shift the binary value one digit to right and add “1” to the most significant bit, the
circuit block based on OR gate is used (0.112 = 3/4). By cascading the blocks, any
desired probability value can be accurately obtained without an error.

26.4 Conclusions

This chapter overviews both deterministic and stochastic computing models tar-
geting nano-crossbar switching arrays and emerging low-density circuits. These
models are demonstrated with implementations using Boolean and arithmetic logic.
Performance parameters of the models such as area, reliability, and accuracy, are
also evaluated.
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