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A B S T R A C T

In this work, we study implementation of Boolean functions with nano-crossbar arrays where each crosspoint
behaves as a four-terminal switch controlled by a Boolean literal. These types of arrays are commonly called as
switching lattices. We propose optimal and heuristic algorithms that minimize lattice sizes to implement a given
Boolean function. The algorithms are mainly constructed on a technique that finds Boolean functions of lattices
having independent inputs. This technique works recursively by using transition matrices representing columns
and rows of the lattice. It performs symbolic manipulation of Boolean literals as opposed to using truth tables
that allows us to successfully find Boolean functions having up to 81 variables corresponding to a 9×9-lattice.
With a Boolean function of a certain sized lattice, we check if a given function can be implemented with this
lattice size by defining the problem as a satisfiability problem. This process is repeated until a desired solution
is found. Additionally, we fix the previously proposed algorithm that is claimed to be optimal. The fixed version
guarantees optimal sizes. Finally, we perform synthesis trials on standard benchmark circuits to evaluate the
proposed algorithms by considering lattice sizes and runtimes in comparison with the recently proposed three
algorithms.

1. Introduction

Nano-crossbar arrays have emerged as area and power efficient
structures with an aim of achieving high performance computing
beyond the limits of current CMOS [1–3]. Computing is achieved with
crosspoints behaving as switches, either two-terminal or four-terminal.
This is illustrated in Fig. 1. Depending on the used technology, a two-
terminal switch behaves as a diode [4,5], a resistive/memristive switch
[6], or a field effect transistor (FET) [7]. Diode and resistive switches
correspond to the crosspoint structure in Fig. 1 a); here, the switch is
controlled by the voltage difference between the terminals. Fig. 1 b)
shows a FET based switch; here, the red line represents the control-
ling input. A four-terminal switch is given in Fig. 1 c). The controlling
input, not shown in the figure, has a separate physical formation from
the crossbar that is thoroughly explained for different technologies in
Ref. [8].

Comparing the array sizes to implement a given Boolean function,
we see that the four-terminal switch based arrays overwhelm the two-
terminal based ones [9]. In these comparisons resistive/memristive
arrays are not taken into account. However, it is not difficult to guess
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that their sizes are much worse than those of diode and FET based
arrays. The reason is that resistive arrays use a minterm/maxterm repre-
sentation of a given Boolean function such that each minterm/maxterm
is implemented by a crossbar line [6,10,11]. On the other hand, diode
and FET based arrays do not have such restriction, so the minimal sum
of product forms can be used with each product implemented by a
line [7,9,12]. As a result, four-terminal switch based arrays offer an
important size advantage. Indeed, this is not surprising since they use
two dimensional paths to implement products of a given function as
opposed to using one dimensional paths (crossbar lines). In this study,
we further investigate four-terminal switch based arrays to synthesize
Boolean functions. These types of arrays are commonly called as switch-
ing lattices; we use this naming throughout the paper.

A four-terminal switch is shown in Fig. 2 a). The four terminals
of the switch are all either mutually connected (ON) or disconnected
(OFF). A 3×2 switching lattice having 6 four-terminal switches is
shown in Fig. 2 b). Here, each switch is controlled by a Boolean lit-
eral. If the literal takes the value 1 (0) then the corresponding switch is
ON (OFF). The Boolean function for the lattice evaluates to 1 iff there is
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Fig. 1. Switching models of a nano-crossbar array: crosspoint as a) two-terminal
switch with terminals in the crossed lines, b) two-terminal switch with terminals
in the same line, and c) four-terminal switch.

Fig. 2. a) four-terminal switch, and b) switching lattice.

a closed path between the top and bottom plates of the lattice. The func-
tion is obtained by taking the sum of the products of the literals along
each path. These products are x1x2x3, x1x2x5x6, x4x5x2x3, and x4x5x6.
We conclude that this lattice of four-terminal switches implements the
Boolean function x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

The logic synthesis problem of switching lattices is first introduced
in Ref. [8]. In this work, a systematic technique is proposed to imple-
ment a given Boolean function with an m × n lattice where n and m
are the number of products of the function and its dual, respectively.
Although it is a general and a straightforward technique, the result-
ing lattices may become quite large, far from optimal lattice sizes. To
achieve smaller sizes, a Boolean decomposition based technique is pro-
posed [13]. However, it is only applicable for parity functions (XOR
functions). More comprehensive decomposition based studies are pro-
posed in Refs. [14] and [15] by exploiting P-circuits and dimension-
reducibility, respectively. The results are satisfactory with affordable
runtimes, but still no guarantee of being close to optimal results. Fur-
thermore, dimension-reducibility can not be applicable to all Boolean
functions; there are restrictions. Another decomposition based tech-
nique is proposed for a special class of “regular” Boolean functions,
called autosymmetric functions [16]. In this work, the idea of connect-
ing separate lattices, not necessarily using a single lattice, is also exam-
ined. Although, using separate lattices can significantly reduce the total
lattice area, it certainly kills the main motivation of using nano-crossbar
arrays that is “overcoming interconnection problems between separate
blocks/gates/transistors of conventional circuits”.

There are also studies aiming at optimal results. A simple, truth
table based brute-force algorithm is presented in Ref. [13]. However,
as expected it suffers from high runtimes that quickly grow beyond
practical limits with an increase in lattice size. Another optimal algo-

rithm is proposed in Ref. [17]. It is an anytime algorithm that reduces
the problem into a satisfiability problem with using dichotomic search.
Although its runtimes are much better than those of the above men-
tioned one, speed of the algorithm is still an issue especially for rela-
tively large benchmarks. Additionally, the algorithm is claimed to be
optimal, but it is not for some cases. We fix this algorithm to guarantee
optimal sizes.

Considering the mentioned shortcomings in the literature, we
develop optimal and heuristic algorithms, based on a new technique
that finds Boolean functions of lattices having independent inputs. For
example, a Boolean function of a 3×3 lattice has 9 variables each
of which is assigned to each of the 9 switches. This technique works
recursively by using transition matrices representing columns and rows
of the lattice. It performs symbolic manipulation of Boolean literals as
opposed to using truth tables that allows us to successfully find Boolean
functions having up to 81 variables corresponding to a 9×9 lattice.
After having a Boolean function of a certain sized lattice, we check if
a given target function can be implemented with this size by defining
the problem as a Boolean satisfiability (SAT) problem, and using a SAT
solver. This process is repeated until a desired solution is found.

Outline of the paper is as follows. In Section 2, we introduce prelim-
inaries for switching lattices and their logic synthesis fundamentals. In
Section 3, we present our optimal and heuristic algorithms. In Section
4, we first show how to fix the previously proposed optimal algorithm
in Ref. [17], and then we give experimental results to evaluate the pro-
posed algorithms by considering lattice sizes and runtimes in compar-
ison with the recently proposed three algorithms. Section 5 concludes
this study with insights and future directions.

2. Preliminaries

We first explain key concepts used in this study, and then define the
logic synthesis problem with examples.

2.1. Definitions

Definition 1. Consider k independent Boolean variables, x1, x2,… , xk.
Boolean literals are Boolean variables and their complements, i.e.,
x1, x1, x2, x2,… , xk, xk.

Definition 2. A product (P) is an AND of literals, e.g., P = x1x3x4. A
sum-of-products (SOP) expression is an OR of products.

Definition 3. A sum (S) is an OR of literals, e.g., S = x1 + x3 + x4. A
product-of-sums (POS) expression is an AND of sums.

Definition 4. A prime implicant (PI) of a Boolean function f is a prod-
uct that implies f such that removing any literal from the product results in
a new product that does not imply f.

Definition 5. An irredundant sum-of-products (ISOP) expression is
an SOP expression, where each product is a PI and no PI can be deleted
without changing the Boolean function f represented by the expression.

Definition 6. Given a Boolean function f in SOP form, let the degree of
f, denoted by degreef, be the maximum number of literals in a product of f.

For example, if f = x1x2x3 + x1x4 then degreef = 3.

Definition 7. f and g are dual Boolean functions iff

f (x1, x2,… , xk) = g(x1, x2,… , xk).

Given an expression for a Boolean function in terms of AND, OR, NOT,
0, and 1, its dual can also be obtained by interchanging the AND and OR
operations as well as interchanging the constants 0 and 1.

For example, if f (x1, x2, x3) = x1x2 + x1x3 then fD(x1, x2, x3) =
(x1 + x2)(x1 + x3). A trivial example is that for f = 1, the dual fD is 0.
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Fig. 3. A lattice with eight-connected paths.

Fig. 4. A 3 × 2 lattice.

Definition 8. An eight-connected path in a lattice, consists of both
directly and diagonally adjacent sites.

An example is shown in Fig. 3. Here the paths x1x4x8 and x3x6x5x8
shown by red and blue lines are both eight-connected paths; however
only the blue one is four-connected. For simplicity, we generally use
“path” to refer a four-connected path.

Definition 9. Consider an R×C lattice. A lattice input lij is assigned to a
switch/site in the ith row and the jth column of the lattice where 1 ≤ i ≤ R
and 1 ≤ j ≤ C. A lattice input can be a Boolean literal, logic 0, or logic
1. The lattice function fR×C(l11, l12,‥, lRC) is defined as OR of all four-
connected top-to-bottom paths.

As an example, consider a lattice in Fig. 4. Here,
f3×2 = l11l21l31 + l11l21l22l32 + l12l22l21l31 + l12l22l32.

2.2. Synthesis problem

Given a target Boolean function fT, we aim to find a minimum size
lattice with assigned literals, logic 0’s, and logic 1’s to its lattice inputs
such that fR×C = fT (OR of all top-to-bottom paths equals fT).

Suppose that fT = XOR3 = x1x2x3 + x1x2 x3 + x1x2x3 + x1 x2 x3.
Fig. 5 shows different solutions to implement fT. The first lattice in
Fig. 5 a) corresponds to a general method proposed in Ref. [8]. Here, R
and C are found as the number of products in fD

T and fT, respectively,
so R = 4, C = 4, and the lattice size is 16. The second one in Fig. 5 b)
corresponds to a specific method, only applicable for parity functions
(XOR functions), again in Ref. [8]. Here, R and C are the number of
variables and products in fT, respectively, so R = 3, C = 4, and the
lattice size is 12. The third one in Fig. 5 c) corresponds to a general
method based on separating products with 0’s. Here, R is the degree
of fT and C is two times the number of products in fT minus one, so
R = 3, C = 7, and the lattice size is 21. Finally, Fig. 5 d) shows the
optimal solution with a lattice size of 9 that is found by applying the
proposed optimal algorithm in this study.

Fig. 5. Implementation of fT = XOR3 with a) 4×4 lattice (general method in
Ref. [8]), b) 4×3 lattice (method for parity functions in Ref. [8]), and c) 3×7
lattice (separation of products with 0’s), and d) 3×3 lattice (optimal solution).

3. Proposed algorithms

We propose optimal and heuristic algorithms that minimize lattice
sizes to implement a target Boolean function fT. The general structure
of the algorithms is presented in a flow chart in Fig. 6. It has four steps;
while Step 3 and Step 4 are the same for both of the algorithms, Step
1 and Step 2 have some differences. In Step 1 to determine the upper
bound, we use three different formulas for the heuristic algorithm. On
the other hand, we achieve a more strict upper bound for the optimal
algorithm by first running the heuristic algorithm. In Step 2, the opti-
mal algorithm needs to include all probable lattice sizes into the trial
list. However, only a few (or a limited number of) lattice sizes are con-
sidered for the heuristic algorithm.

In the following subsections, we elaborate on the steps followed by
evaluation of the proposed algorithms.

3.1. Step 1: upper and lower bounds

We directly use the lower bound (LB) values found in Ref. [8]. For
the upper bound (UB), we use different approaches for the heuristic
and the optimal algorithms. For the heuristic one, we consider three
general implementation techniques. The first one from Ref. [8] gives
lattice sizes as the number of products in fD

T , denoted by NfD
T

, times the
number of products in fT, denoted by NfT . As a result:

Lattice_Size1 = NfD
T
× NfT . (1)

The second one is based on separating products of fT with columns
of 0’s. Therefore,

Lattice_Size2 = degreefT × (2 × NfT − 1). (2)

Finally, the third one is achieved by separating products of fD
T by

rows of 1’s. Note that each product of fD
T is implemented with a row,

that corresponds to a sum for fT, and rows of 1’s makes product opera-
tions, so a product-of-sum implementation of fT is obtained. Here,

Lattice_Size3 = (2 × NfD
T
− 1) × degreefD

T
. (3)

We have the minimum of these three UB values:

UB = min(Lattice_Size1, Lattice_Size2, Lattice_Size3). (4)

As an example, for a given fT1 suppose that NT1 = 8, NfD
T1

= 5,
degreefT1

= 4, and degreefD
T1

= 6. Using (4), we find that UB = 40. Addi-
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Fig. 6. Flow chart of the proposed algorithms.

tionally, from Ref. [8] we find that LB = 15.
For the optimal algorithm, we use a more strict UB that is achieved

by running the heuristic algorithm. The found solution with a certain
lattice size becomes the UB.

3.2. Step 2: trial list

We have constructed the trial list according to UB and LB, sorted
in ascending order. The reason of using an ascending order is that the
algorithm stops when there is a solution. However, for a descending
order the algorithm cannot stop when there is “no solution” for a certain
sized lattice since a smaller lattice might give a solution. For example,
a Boolean function can be implemented with a lattice size of 20, but
cannot be implemented with a lattice size of 21. However, we can state
that if both the number of rows and columns are smaller or equal to the
previously used sizes, then “no solution” in the previous trial is directly
applicable for the new one.

For the optimal algorithm, we consider all possible sizes between
UB and LB. One thing to mention is that in forming the list we consider
LB values not just for the lattice size, but also for the number of lattice
columns and rows as given in Ref. [8]. Thus, we eliminate many trivial
cases.

For the heuristic algorithm, we consider three UB values of

degreefT , NfD
T

, and 2NfD
T
− 1 as well as two averages ⌊ degreefT+NfDT

2 ⌋ and

⌊N
fDT

+2N
fDT

−1

2 ⌋ for the number of rows. Similarly, we consider three
UB values of degreefD

T
, NfT , and 2NfT − 1 as well as two averages

⌊ degreefDT
+NfT

2 ⌋ and ⌊NfT +2NfT −1
2 ⌋ for the number of columns. Fig. 7 illus-

trates these levels. As a result, there are total of 25 different lattice
sizes. Since 13 of them are larger than or equal to UB and 4 of them are
almost equal to UB, we only consider the remaining 8. Note that a size
close to UB is not worth to try while we already have an UB solution.

Fig. 7. Illustration of the trial list of lattice sizes for the heuristic algorithm with
UB candidates.

Fig. 8. Path with an up movement in a 4 × 5 lattice.

3.3. Step 3: lattice function

We aim to find lattice functions in ISOP form. For this purpose, we
need to determine paths implementing products that are not covered
by products of other paths. We call this type of paths irredundant paths.
Indeed, in general number of redundant paths in a lattice is much higher
than the number of irredundant ones. Therefore eliminating redundant
paths is crucial for the sake of computational time.

We propose two techniques. The first one considers paths that can-
not go up, so it might calculate wrong lattice functions. On the other
hand, the second one deals with all types of paths and guarantees a cor-
rect lattice function. It is fundamentally constructed on the first tech-
nique. Fig. 8 shows a path having an up movement, so it is neglected
by the first technique, but accounted by the second one. Although the
first one is not fully correct – we call it semi-correct, one can efficiently
use it since paths having up movements are not likely being used to
implement products of target functions. In terms of the computational
load, the first one is much better, especially for large lattices.

For both of our algorithms, we use the second correct one.

3.3.1. Semi-correct lattice function
We obtain the lattice function by considering paths having left,

right, and/or down movements. We only use Boolean operators (not
arithmetic) for all of the following expressions.

Consider an R × C lattice. We define a dummy Boolean function
fTOP−XY as a sum of products of the paths between the “TOP plate” and
the “upper part of the site lXY”.This is illustrated in Fig. 9 Therefore,

fX×C =
C∑

Y=1
lXYfTOP−XY . (5)

4
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Fig. 9. Illustration of fTOP−XY , fX×C, and fR×C.

Fig. 10. Matrix representation of (7).1.

Recursively, we can obtain

f(X+1)×C =
C∑

Y=1
l(X+1)YfTOP−(X+1)Y (6)

where fTOP−(X+1)Y can be expresses in terms of lXY and fTOP−XY such that

fTOP−(X+1)1 = lX1fTOP−X1 + lX1lX2fTOP−X2 +…

+ lX1lX2 … lXCfTOP−XC

fTOP−(X+1)2 = lX1lX2fTOP−X1 + lX2fTOP−X2 +…

+ lX2lX3 … lXCfTOP−XC

……………… .

fTOP−(X+1)C = lX1 … lXCfTOP−X1 + lX2 … lXCfTOP−X2+

…+ lXCfTOP−XC .

As a result,

fTOP−(X+1)Y =
C∑

i=1
fTOP−Xi

max(Y ,i)∏
j=min(Y ,i)

lXj (7)

where max(Y, i) and min(Y, i) are the largest and the smallest values
among Yand i, respectively.

Matrix representation of (7) is shown in Fig. 10.1 In this represen-
tation, if we name the column matrices having C number of fTOP−(X+1)Y
and fTOP−XY functions as FX+1 and FX, respectively, and the transition
matrix as T(X,X+1) which relates F(X+1) with FX then

FX+1 = T(X,X+1) · FX ,

FT
X+1 = FT

X · T(X,X+1), and extensively

FT
X+1 = FT

X−1 · T(X−1,X) · T(X,X+1)

(8)

where T(X,X+1) = TT
(X,X+1).

1 Matrix multiplication is denoted with “·”.

Fig. 11. An example of a redundant path that needs to be eliminated.

It means that we can recursively calculate FT
X+1 using FT

1 and

related transition matrices. Since FT
1 =

[
1 1 · · · 1

]
1×C

and FT
2 =[

l11 l12 · · · l1C

]
which represents the lattice inputs for the first

row, called as L1, FT
2 = L1. Similarly, we define a row matrix LR having

the lattice inputs for the last row. To conclude,

fR×C =
C∑

k=1
lRkfTOP−Rk,

fR×C = FT
R · LT

R,

fR×C = FT
R−1 · T(R−1,R) · LT

R,

fR×C = FT
R−2 · T(R−2,R−1) · T(R−1,R) · LT

R,

… .

fR×C = FT
1 · T(1,2) · T(2,3) · · ·T(R−1,R) · LT

R, and finally

fR×C = L1 · T(2,R) · LT
R.

(9)

In this calculation, it is not guaranteed that the final form of fR×C
is in ISOP form, so a further simplification might be needed. An exam-
ple of a redundant path is given in Fig. 11. This type of paths occur iff
there are opposite movements in adjacent rows. To completely elimi-
nate them, we add extra products consisting of negated inputs into the
elements of transition matrices. Thus, redundant paths have both an
input and its negated form, so they evaluate to 0. Excluding the ele-
ments in the matrix diagonal, we add l(X−1)(i−1) for the elements in the
lower triangle part, and l(X−1)(i+1) for the upper triangle part; i repre-
sents the row number. This is illustrated in Fig. 12. Final version of a
transition matrix is given in (10):

T(X,X+1)(k, l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

l(X−1)(k+1)

l∏
j=k

lXj l > k

lXk l = k

l(X−1)(k−1)

k∏
j=l

lXj l < k

(10)

where k and l represent row and column numbers of the matrix, respec-
tively.

We present a few examples to elucidate our technique of obtaining
lattice functions in ISOP forms.

Example 1. Calculate f3×3; R=3 and C=3.

L1 =
[
l11 l12 l13

]

T(2,3) =
⎡⎢⎢⎢⎣

l21 l21l22 l21l22l23

l21l22 l22 l22l23

l21l22l22 l23l23 l23

⎤⎥⎥⎥⎦
5
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Fig. 12. Transition matrix formation to eliminate redundant paths.

L3 =
[
l31 l32 l33

]
f3×3 = L1 · T(2,3) · LT

3

f3×3 = l11l21l31 + l12l22l32 + l13l23l33 + l11l21l22l32 + l12l22l23l33

+ l13l23l22l32 + l12l22l21l31 + l11l21l22l23l33 + l13l23l22l21l31

Example 2. Calculate f4×2; R=4 and C=2.

L1 =
[
l11 l12

]
T(2,3) =

[
l21 l21l22

l21l22 l22

]

T(3,4) =
[

l31 l22l31l32

l21l31l32 l32

]

L4 =
[
l41 l42

]
f4×2 = L1 · T(2,3) · T(3,4) · LT

4

f4×2 = L1 · T(2,4) · LT
4

f4×2 = l11l21l31l41 + l11l21l31l32l42 + l11l21l22l32l42

+ l12l22l32l42 + l12l22l32l31l41 + l12l22l21l31l41

3.3.2. Correct lattice function
We obtain the lattice function by considering paths having left,

right, up, and/or down movements. Therefore, all types of paths are
considered including paths having up movements that are neglected in
calculation of semi-correct lattice functions. For this purpose, we update
transition matrix elements. Each element of a transition matrix T(X,X+1)
in (10) represents a path between two sites in the Xth row of the lattice
that makes left or right movements, but no up movements. To con-
sider up movements, we calculate a semi-correct function between the
sites by transposing the related sub-matrix – later, we call this function
flXk−lXl

. Note that left and right movements in the transposed matrix
correspond to down and up movements in the original matrix. The ele-
ments of the transition matrix become,

T(X,X+1)(k, l) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l(X−1)(k+1)flXk−lXl
l ≥ k + 4

l(X−1)(k+1)

l∏
j=k

lXj k + 4 > l > k

lXk l = k

l(X−1)(k−1)

k∏
j=l

lXj k − 4 < l < k

l(X−1)(k−1)flXk−lXl
l ≤ k − 4

(11)

Fig. 13. Lattice realizing a flXk−lXl
that represents the connection between lXk and

lXl.

where k and l represent row and column numbers of the matrix, respec-
tively. Here, a dummy Boolean function flXk−lXl

is used.
Note that the only difference between (10) and (11) is on the

calculation of T(X,X+1)(k, l) where l ≥ k + 4 and l ≤ k − 4. In (11),
instead of calculating a single path between lXk and lXl (

∏l
j=k lXj)

without an up movement as in (10), we are calculating all proba-
ble paths having all types of movements. Calculation of flXk−lXl

gives
these paths between lXk and lXl. This function is obtained by calcu-
lating a semi-correct lattice function in Fig. 13. Note that, it mainly
consists of the transpose of the related part of the original lattice
(Fig. 9). In (11), inequalities to represent the cases are obtained by
considering the fact that the smallest lattice having up movements
should have at least 4 rows and 5 columns as previously shown in
Fig. 8.

We present an example to elucidate our technique of obtaining cor-
rect lattice functions.

Example 3. Calculate the correct function f of the 4 × 5 lattice in Fig. 14
(Note that if we calculated a semi-correct function of the lattice, it would be
0).

L1 =
[
l11 0 0 0 0

]

T(2,3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

l21 0 0 0 0

0 0 0 0 0

0 0 l23 l23l24 l23l24l25

0 0 l23l24 l24 l24l25

0 0 l23l24l25 l24l25 l25

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T(3,4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

l31 l22l31l32 l22l31l32l33 0 l22fl31−l35

l21l31l32 l32 l23l32l33 0 0

l22l31l32l33 l22l32l32 l33 0 0

0 0 0 0 0

l24fl31−l35
0 0 0 l35

⎤⎥⎥⎥⎥⎥⎥⎥⎦
fl31−l35

= l31l32l33l23l24l25l35

LR =
[
0 0 0 0 l45

]
f = L1 · T(2,3) · T(3,4) · LT

4

f = L1 · T(2,4) · LT
4

f = l11l21l31l32l33l23l24l25l35l45

Pseudo code of the algorithm is given below.
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Algorithm Calculation of Correct or Semi-Correct Lattice Function fR × C.
1: Input: R: number of Rows, C: number of Columns, FlagCorrect: Flag indicates Correct or Semi-Correct Calculation
2: Output: fR × C function in ISOP form
3:
4: function Create_Trans_Mat(LM,X, FlagCorrect)
5: for k in 1 ∶ C do
6: for l in 1 ∶ C do
7: if FlagCorrect = = FALSE then
8: T(X,X + 1)(k, l) ← elements of LM according to (10)
9: end if
10: if FlagCorrect = = TRUE then
11: T(X,X + 1)(k, l) ← elements of LM according to (11) \(⊳\) calculate flXk−lXl

recursively.
12: end if
13: end for
14: end for
15: return T(X,X + 1)
16: end function
17:
18: create LM Matrix with elements of lij with size of R × C \(⊳\) 1 ≤ i ≤ R, 1 ≤ j ≤ C
19: L1 ←

[
l11 · · · l1(C−1) l1C

]
(first row of LM)

20: LR ←
[
lR1 · · · lR(C−1) lRC

]
(last row of LM)

21: T2R ← Unit matrix
22: for X in [2,R-1] do
23: T(X,X + 1) ← Create_Trans_Mat(LM,X, FlagCorrect)
24: T2R = Logic_Matrix_Multiplication(T2R,T(X,X + 1)) \(⊳\) Logic OR and AND operations used in matrix multiplications

instead of conventional algebraic additions and multiplications.
25: end for
26: temp ← Logic_Matrix_Multiplication(L1,T2R)
27: fR × C ← Logic_Matrix_Multiplication(temp, LT

R)
28: Store fR × C
29: return fR × C

3.4. Step 4: SAT equivalence

We use a SAT solver to check if a given target function can be imple-
mented with a certain lattice size. First, the problem needs to be turned
into a satisfiability problem using a conjunctive disjoint form (CNF) or
a POS form. Since we calculate lattice functions in SOP form, and the
target function is given in a PLA form that is also a SOP form, we can
easily combine them into one function fSAT in CNF. If fSAT is satisfiable,
it means that the target function fT can be implemented with an R × C
lattice. Core of this relation is that fT is TRUE iff fR×C is TRUE:

fT ⟺ fR×C (12)

that is also used in Ref. [17]. More explicitly,

a)fR×C ⇒ fT (fR×C
⋀

fT )

b)fR×C ⇒ fT (fR×C
⋀

fT ).
(13)

Fig. 14. A 4 × 5 lattice with a path having an up movement.

We need both fR×C and fR×C in CNF, preferably in irredundant
CNF for the sake of computational time. Indeed, fR×C in ISOP form
is same as fR×C in irredundant CNF with negated inputs. Similarly, fR×C
in ISOP form is the same as fR×C in irredundant CNF with negated
inputs. Therefore, along with fR×C in ISOP form, we also need fR×C in
ISOP form that can be computed using logic minimization tools such as
Espresso [18].

Summary of how we use SAT equivalence in Step-4 of our algo-
rithm is given in Fig. 15. As an example, assume that check whether a
target function fT = x1x2 + x3 is implementable with a 2 × 2 lattice.
Here, fR×C = f2×2 = l11l21 + l12l22 and fR×C = f2×2 = l11 l12 + l11 l22 +
l21 l12 + l21 l22. Since fT has three variables, there are 23 = 8 truth
table cases; 5 of them make fT = 1(TRUE) and 3 of them make
fT = 0 (FALSE). Thus, to calculate fSAT in CNF form we use the relation
in (13a) for the five cases and the relation in (13b) for the remaining
three.

Our treatment does not fit the 3-SAT rule, since paths are directly
used as SAT problem clauses. Although it is possible to turn these
clauses into 3-termed clauses, this would extensively enlarge the num-
ber of clauses in the final form that causes dramatic runtime increases.
In Ref. [17], they build their SAT problem with constraints considering
the 3-SAT rule. However, at the end, the total number of variables and
clauses are much lower for our case compared to those used in Ref. [17].

3.5. Evaluation of algorithms

Suppose that a given function fT and its dual fD
T have a total of m

products in their SOP form. Also suppose that fT has n variables. Total
time needed for our algorithms can be represented as (time needed to
determine UB and LB in Step 1) + (number of trials of lattice sizes in
Step 2)× ((time needed to obtain fR×C in Step 3)+(time needed for the
SAT solver to check an equivalence in Step 4)).

7
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Fig. 15. Flow chart of Step-4 of the algorithm.

The third and the fourth terms, corresponding to Step 3 and Step
4 of the algorithms respectively, are the same for both the heuris-
tic and the optimal algorithms. For the third term, matrix multi-
plications are performed to calculate fR×C in ISOP form. For both
the number of transition matrices and the matrix dimensions are
upper bounded by m. There are m − 2 number of transition matrices
with dimensions of m × m. Therefore, the time complexity becomes
O(mm). If a truth table based technique was used then the total
number of truth table rows would be upper bounded by 2(m2) and
for each row to determine the output as logic 0 or 1, we would
need m2 operations. As a result the complexity would be O(m22(m

2))
(still not in ISOP form). This is much worse than what we have.
Another important aspect is that the cost of obtaining fR×C is mostly
independent of a given function. Therefore, we can share this cost
among target functions by initially creating a library of all probable
fR×C’s.

The fourth term corresponds to a SAT solver. Here, the total time
is linearly dependent on the number of truth table rows that is upper
bounded by 2n, the number of the clauses that is upper bounded by m2,
and the number of literals in a clause that is also upper bounded by m2.
As a result, the complexity is O(m42n).

For the heuristic algorithm, the first term corresponding to Step 1
has a complexity of O(1) since a fixed number of calculations is done.
The second term also has a O(1) complexity since the number of trials
is upper bounded by 8. As a result, the time complexity for the whole
algorithm becomes O(mm) if no library of fR×C’s is constructed, and
O(m42n) is the library is constructed.

For the optimal algorithm, the first term corresponding to Step 1
has the same complexity of the heuristic algorithm since we run the
heuristic algorithm to obtain the UB. The second term corresponding to
Step 2 has a O(m2) complexity since UB is upper bounded by m2. As a
result, the time complexity of the optimal algorithm is m2 times larger
than that of the heuristic algorithm.

Of course, all these analyses are based on the worst-case scenarios.
Therefore, real runtimes given in the next section might be different,
generally better, than what we expect.

4. Experimental results

Before presenting experimental results, we first show how we fix the
the optimal algorithm in Ref. [17].

Fig. 16. a) A redundant path needs to be eliminated, and b) a valid path needs
to be accounted.

4.1. Fixing the optimal algorithm

We fix the previously proposed algorithm in Ref. [17] that is claimed
to be optimal, but it is not for some cases. The fixed version guarantees
optimal sizes.

While constructing eight-connected paths between left and right
plate, they put a constraint to eliminate redundant paths such as the
one shown in Fig. 16 a). However, this causes elimination of irredun-
dant paths such as the one shown in Fig. 16 b). The reason of this
mis-elimination is their constraint definition:

• “A redundant path should have at most one element from the 2nd
and the (C − 1)th columns.”

A redundant path in Fig. 16 b) is a counter example for this con-
straint. We have corrected it as:

• “A redundant path should have a single element from the first and
the last (Cth) column such that this element has a single neighbor
element in the path. ”

Thus, irredundant paths having more than one element in the 2nd
and the (C − 1)th columns, such as the one in Fig. 16 b), are considered.

In the following part, benchmark simulation results show some cases
such that the fixed algorithm gives a correct result, but the previously
proposed algorithm does not.

4.2. Comparing optimization algorithms

We compare six different algorithms by considering runtime and lat-
tice sizes for different benchmarks2. We treat each output of a bench-
mark circuit as a separate target function. We limit the runtime with
10800 s (3 h). Among these six algorithms, three of them are previously
proposed algorithms in Refs. [14] [15], and [17]; one of the them is
the fixed version of the optimal algorithm in Ref. [17]; and the remain-
ing two are the proposed optimal and heuristic algorithms. Experiments
run on a 3.20 GHz Intel Core i7 CPU (only single core used) with 4 GB
memory. Used SAT solver is glucose_3.0 [19].

Results are given in Tables 1 and 2. In Table 2, we aim to com-
pare non-optimal algorithms with the guidance of the fixed optimal
algorithm by using relatively large benchmark functions. Examining the
numbers in Table 1, we see that the proposed optimal algorithm out-
performs the other optimal algorithms with the best runtime for most
of the cases. Also note that for three cases corresponding to the bench-
marks “b12_01”, “dc1_02” and “ex5_12”, the optimal algorithm in Ref.
[17] does not find the optimal solution, but both the fixed version of it
and the proposed algorithm find the solution.

Considering the results for the non-optimal algorithms in Tables 1
and 2, we see the superiority of the proposed heuristic algorithm

2 Source codes of all algorithms are available at http://www.ecc.itu.edu.tr/
images/3/33/Algorithms_for_Switching_Lattices.zip.
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Table 1
Comparison of optimization algorithms.

Benchmark Name Optimal in Ref. [17]
(non-Optimal)

Proposed
(Optimal)

Fixed Version of [17]
(Optimal)

Proposed Heuristic
(non-Optimal)

P-Decomposition
(non-Optimal) [14]

D-Reducing
(non-Optimal) [15]

Elapsed
Time (s)

Size Elapsed
Time (s)

Size Elapsed
Time (s)

Size Elapsed
Time (s)

Size Elapsed
Time (s)

Size Elapsed
Time (s)

Size

alu1_00 0.003 2 × 3 0.002 2 × 3 0.008 2 × 3 0.004 2 × 3 0.081 2 × 3 N/A –
alu1_01 0.002 3 × 2 0.005 3 × 2 0.004 3 × 2 0.004 3 × 2 0.031 3 × 2 0.04 4 × 2
b12_00 0.838 4 × 3 0.139 4 × 3 0.747 4 × 3 0.04 4 × 3 0.407 4 × 3 0.28 5 × 3
b12_01∗ 6.066 4 × 4 1.102 5 × 3 3.218 5 × 3 0.05 4 × 4 0.963 4 × 4 0.71 6 × 3
b12_02 15.395 4 × 4 5.440 4 × 4 15.949 4 × 4 0.665 4 × 4 2.118 5 × 8 N/A –
b12_03 0.060 3 × 2 0.022 3 × 2 0.059 3 × 2 0.023 3 × 2 0.092 2 × 5 N/A –
b12_04 0.004 2 × 4 0.002 2 × 4 0.005 2 × 4 0.002 2 × 4 0.111 2 × 5 N/A –
b12_06 72.327 5 × 4 ∗∗ ∗∗ 79.957 5 × 4 14.303 5 × 4 9.035 6 × 8 15.21 8 × 3
b12_07 2.130 3 × 6 6.362 3 × 6 2.602 3 × 6 0.088 3 × 6 1.433 5 × 7 N/A –
b12_08 0.003 2 × 7 0.003 2 × 7 0.004 2 × 7 0.002 2 × 7 0.285 2 × 10 N/A –
c17_00 0.064 2 × 3 0.018 2 × 3 0.064 2 × 3 0.022 2 × 3 0.048 2 × 4 N/A –
c17_01 0.060 3 × 2 0.019 3 × 2 0.057 3 × 2 0.020 3 × 2 0.138 3 × 2 N/A –
clpl_00 0.569 3 × 4 0.402 3 × 4 0.555 3 × 4 0.042 3 × 4 0.104 4 × 5 N/A –
clpl_01 0.003 3 × 3 0.003 3 × 3 0.003 3 × 3 0.002 3 × 3 0.059 3 × 6 N/A –
clpl_02 0.003 2 × 2 0.002 2 × 2 0.003 2 × 2 0.002 2 × 2 0.065 2 × 3 N/A –
clpl_03 103.284 3 × 6 53.047 3 × 6 156.242 3 × 6 18.150 3 × 6 3.547 6 × 9 N/A –
clpl_04 15.388 3 × 5 3.362 3 × 5 13.730 3 × 5 0.158 3 × 5 0.672 5 × 8 N/A –
dc1_00 0.157 3 × 3 0.022 3 × 3 0.148 3 × 3 0.030 3 × 3 0.145 4 × 4 N/A –
dc1_01 0.004 3 × 2 0.003 3 × 2 0.003 3 × 2 0.002 3 × 2 0.050 3 × 3 0.03 4 × 2
dc1_02∗ 0.119 3 × 4 0.029 3 × 4 0.080 4 × 3 0.037 3 × 4 0.091 3 × 5 N/A –
dc1_03 0.203 4 × 3 0.070 4 × 3 0.187 4 × 3 0.070 4 × 3 0.070 4 × 5 N/A –
dc1_04 0.066 2 × 3 0.025 2 × 3 0.064 2 × 3 0.023 2 × 3 0.056 2 × 4 N/A –
ex5_03 0.003 7 × 1 0.002 7 × 1 0.003 7 × 1 0.004 7 × 1 0.199 7 × 1 N/A –
ex5_04 0.003 8 × 1 0.003 8 × 1 0.003 8 × 1 0.002 8 × 1 0.113 8 × 1 N/A –
ex5_05 0.003 6 × 1 0.003 6 × 1 0.003 6 × 1 0.002 6 × 1 0.058 6 × 1 N/A –
ex5_06 2.777 3 × 6 5.814 3 × 6 3.575 3 × 6 0.955 3 × 6 0.477 3 × 10 N/A –
ex5_07 167.767 4 × 6 ∗∗ ∗∗ 578.060 4 × 6 26.843 4 × 6 0.288 3 × 13 N/A –
ex5_08 11.254 3 × 7 325.598 3 × 7 50.687 3 × 7 0.004 3 × 7 1.389 3 × 9 N/A –
ex5_09 9.757 4 × 6 ∗∗ ∗∗ 261.837 4 × 6 6.642 4 × 6 5.424 3 × 11 N/A –
ex5_10 1.463 3 × 6 3.994 3 × 6 1.828 3 × 6 0.39 3 × 6 0.178 3 × 9 N/A –
ex5_11 0.003 2 × 8 ∗∗ ∗∗ 0.004 2 × 8 0.002 2 × 8 0.997 2 × 10 N/A –
ex5_12∗ 6.026 3 × 6 1.450 3 × 5 8.097 3 × 5 0.208 3 × 5 2.969 5 × 9 N/A –
ex5_13 41.045 4 × 6 ∗∗ ∗∗ 231.295 4 × 6 11.494 3 × 8 0.720 3 × 13 N/A –
ex5_14 3.751 2 × 8 211.941 2 × 8 4.091 2 × 8 0.368 2 × 8 0.231 3 × 11 N/A –
ex5_15 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 59.780 4 × 7 1.658 4 × 13 N/A –
ex5_16 0.002 2 × 5 0.003 2 × 5 0.003 2 × 5 0.004 2 × 5 0.108 2 × 7 N/A –
ex5_17 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 8483.315 4 × 7 121.374 4 × 10 N/A –
ex5_18 0.003 2 × 7 0.002 2 × 7 0.024 2 × 7 0.005 2 × 7 0.214 2 × 9 N/A –
ex5_19 3.962 3 × 6 8.337 3 × 6 4.109 3 × 6 0.286 3 × 6 1.238 5 × 7 N/A –
ex5_20 0.003 2 × 6 0.002 2 × 6 0.003 2 × 6 0.003 2 × 6 0.332 3 × 8 N/A –
ex5_21 287.766 3 × 7 185.592 3 × 7 12.478 3 × 7 0.956 3 × 7 1.368 4 × 9 N/A –
ex5_22 3.002 3 × 6 9.851 3 × 6 4.303 3 × 6 0.146 3 × 6 0.031 3 × 8 N/A –
ex5_23 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 10598.277 4 × 8 0.116 4 × 11 N/A –
ex5_24 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 698.092 5 × 6 0.163 5 × 14 N/A –
ex5_25 14.172 3 × 7 513.478 3 × 7 56.508 3 × 7 0.386 3 × 7 0.740 3 × 8 N/A –
ex5_26 108.275 3 × 7 ∗∗ ∗∗ 167.706 3 × 7 15.257 3 × 7 1.368 4 × 11 N/A –
ex5_27∗ 1779.261 3 × 8 ∗∗ ∗∗ 1348.150 4 × 6 21.092 4 × 6 1.130 4 × 10 N/A –
ex5_28∗ 25.564 4 × 6 ∗∗ ∗∗ 51.239 6 × 4 1.374 3 × 8 1.232 3 × 13 N/A –
misex1_00 0.087 4 × 2 0.038 4 × 2 0.083 4 × 2 0.024 4 × 2 0.040 4 × 3 0.08 2 × 4
misex1_01 1.872 3 × 5 0.516 3 × 5 1.981 3 × 5 0.242 3 × 5 0.401 5 × 5 N/A –
misex1_02 15.966 5 × 4 425.897 5 × 4 26.032 5 × 4 14.289 5 × 4 0.702 5 × 5 N/A –
misex1_03 1.574 4 × 3 0.235 4 × 3 1.413 4 × 3 0.361 4 × 3 0.130 4 × 6 0.53 6 × 4
misex1_04 0.266 3 × 4 0.085 3 × 4 0.227 3 × 4 0.231 3 × 5 0.0762 4 × 7 N/A –
misex1_05 3.211 4 × 4 6.360 4 × 4 3.870 4 × 4 0.966 4 × 4 0.345 4 × 6 N/A –
misex1_06 1.854 5 × 3 2.354 3 × 5 1.689 5 × 3 0.799 5 × 3 0.124 4 × 7 N/A –
misex1_07 0.667 4 × 3 0.167 4 × 3 0.601 4 × 3 0.208 4 × 3 0.062 5 × 5 N/A –
mp2d_00 0.003 1 × 11 0.002 1 × 11 0.004 1 × 11 0.003 1 × 11 1.250 2 × 13 N/A –
mp2d_01 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 68.428 5 × 7 0.514 4 × 11 N/A –
mp2d_02 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 22.846 4 × 9 0.395 4 × 13 N/A –
mp2d_03∗ 1241.821 4 × 6 ∗∗ ∗∗ 2603.411 6 × 4 191.469 5 × 5 0.545 7 × 6 N/A –
mp2d_04 1816.681 7 × 3 ∗∗ ∗∗ 3512.153 7 × 3 23.751 7 × 3 24.020 7 × 3 3.68 6 × 5
mp2d_05 0.003 5 × 1 0.002 5 × 1 0.003 5 × 1 0.003 5 × 1 0.539 5 × 1 N/A –
mp2d_06 0.397 4 × 3 0.161 6 × 2 0.395 4 × 3 0.103 6 × 2 220.463 5 × 4 0.14 5 × 5
mp2d_07 0.003 8 × 1 0.002 8 × 1 0.009 8 × 1 0.003 8 × 1 0.034 8 × 1 N/A –
mp2d_08 0.003 1 × 5 0.002 1 × 5 0.003 1 × 5 0.003 1 × 5 0.034 2 × 7 N/A –
newapla2_00 0.003 6 × 1 0.002 6 × 1 0.003 6 × 1 0.003 6 × 1 0.023 6 × 1 N/A –
newbyte_00 0.003 5 × 1 0.002 5 × 1 0.004 5 × 1 0.003 5 × 1 0.064 5 × 1 N/A –
newtag_00 6.103 3 × 6 10.921 3 × 6 7.719 3 × 6 0.262 3 × 6 0.842 3 × 8 N/A –

+ Bold values represent the best results; “∗” indicates the non-optimal solutions of Algorithm in Ref. [17] that are different than the fixed version; “∗∗”
indicates time-out; “N/A” is used for non-D-reducible functions.
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Table 2
Comparison of optimization algorithms.

Benchmark Name Fixed Version
of [17] (Optimal)

Proposed Heuristic
(non-Optimal)

P-Decomposition
(non-Optimal) [14]

D-Reducing
(non-Optimal) [15]

Elapsed
Time (s)

Size Elapsed
Time (s)

Size Elapsed
Time (s)

Size Elapsed
Time (s)

Size

5xp1_00 21.867 5 × 4 2.305 5 × 5 3.599 5 × 8 N/A –
5xp1_01 ∗∗ ∗∗ 1405.815 5 × 5 1.697 5 × 10 N/A –
5xp1_03 ∗∗ ∗∗ 1062.801 4 × 15 10.716 4 × 11 N/A –
5xp1_04 15.812 4 × 3 0.020 4 × 3 0.609 5 × 10 N/A –
5xp1_05 0.285 3 × 4 0.209 3 × 4 0.065 4 × 6 N/A –
5xp1_06 0.003 3 × 3 0.002 3 × 3 0.031 3 × 3 N/A –
5xp1_07 0.002 2 × 2 0.002 2 × 2 0.015 2 × 2 0.03 2 × 2
5xp1_08 0.002 1 × 1 0.002 1 × 1 0.017 1 × 1 N/A –
5xp1_09 1.179 4 × 3 0.039 4 × 3 0.237 4 × 4 0.06 5 × 3
bw_00 1.147 5 × 3 0.341 5 × 3 0.069 4 × 6 N/A –
bw_01 0.002 3 × 3 0.003 3 × 3 0.04 3 × 4 0.05 5 × 2
bw_02 0.33 4 × 3 0.046 4 × 3 0.062 3 × 5 0.06 5 × 3
bw_03 0.248 3 × 4 0.020 3 × 4 0.084 3 × 6 N/A –
bw_04 0.412 4 × 3 0.049 4 × 3 0.212 5 × 5 N/A –
bw_05 0.513 5 × 3 0.04 5 × 3 0.069 3 × 7 N/A –
bw_06 0.657 4 × 3 0.165 4 × 3 0.283 5 × 6 N/A –
bw_07 0.134 4 × 3 0.071 4 × 3 0.11 4 × 5 0.06 5 × 4
bw_08 0.766 3 × 4 0.319 5 × 4 0.121 3 × 6 N/A –
bw_09 0.002 3 × 3 0.007 3 × 3 0.056 3 × 4 N/A –
bw_10 0.036 4 × 2 0.003 4 × 2 0.143 5 × 2 0.07 2 × 4
bw_11 0.358 4 × 3 0.04 4 × 3 0.058 3 × 5 0.15 5 × 3
bw_12 0.002 3 × 3 0.005 3 × 3 0.051 3 × 4 N/A –
bw_13 0.42 4 × 3 0.087 4 × 3 0.068 4 × 5 N/A –
bw_14 0.357 5 × 2 0.064 5 × 2 0.066 3 × 4 0.16 5 × 5
bw_15 0.236 4 × 3 0.059 4 × 4 0.279 4 × 4 0.13 5 × 4
bw_16 0.002 3 × 3 0.002 3 × 3 0.056 3 × 4 N/A –
bw_17 1.463 3 × 5 0.215 4 × 4 0.38 4 × 7 0.16 6 × 3
bw_18 0.368 3 × 4 0.066 4 × 4 0.078 4 × 5 0.17 6 × 3
bw_19 1.005 3 × 5 0.112 3 × 5 0.104 3 × 6 N/A –
bw_20 0.223 3 × 4 0.015 3 × 4 0.231 4 × 5 N/A –
bw_21 0.002 5 × 1 0.003 5 × 1 0.028 5 × 1 N/A –
bw_22 1.392 3 × 5 0.072 4 × 4 0.364 4 × 6 N/A –
bw_23 1.099 5 × 3 0.163 4 × 4 0.504 5 × 6 N/A –
bw_24 0.261 2 × 5 0.094 2 × 5 0.112 2 × 6 N/A –
bw_25 1.258 3 × 5 0.082 4 × 4 0.172 4 × 7 N/A –
bw_26 0.898 3 × 5 0.135 5 × 4 0.078 3 × 6 N/A –
bw_27 0.002 5 × 1 0.003 5 × 1 0.071 5 × 1 N/A –
inc_00 8.420 4 × 4 1.557 5 × 4 0.451 5 × 7 N/A –
inc_01 17.425 5 × 4 12.512 5 × 5 0.506 5 × 7 N/A –
inc_02 ∗∗ ∗∗ 6020.116 4 × 11 5.227 5 × 10 N/A –
inc_04 7.395 4 × 4 0.833 5 × 4 0.033 6 × 8 N/A –
inc_05 0.567 5 × 2 0.107 5 × 2 0.03 4 × 3 0.04 5 × 3
inc_06 1.277 4 × 3 0.003 4 × 3 0.02 4 × 3 N/A –
inc_07 0.994 4 × 3 0.072 5 × 3 0.18 5 × 4 0.16 5 × 3
inc_08 0.003 3 × 2 0.003 3 × 2 0.021 3 × 2 0.03 4 × 2
misex3c_00 1.145 3 × 5 0.073 3 × 5 ∗∗ ∗∗ N/A –
misex3c_01 3.908 3 × 5 0.072 4 × 5 ∗∗ ∗∗ N/A –
misex3c_02 0.065 4 × 3 0.024 4 × 3 36.467 5 × 10 N/A –
misex3c_03 165.451 4 × 5 16.155 3 × 8 259.354 4 × 7 N/A –
misex3c_04 262.09 3 × 7 9.294 4 × 6 164.132 5 × 5 N/A –
misex3c_06 ∗∗ ∗∗ 1563.699 5 × 6 3.996 4 × 5 N/A –
rd73_02 ∗∗ ∗∗ 81.927 35 × 4 4.195 5 × 16 N/A –
t481 ∗∗ ∗∗ 91.894 9 × 8 ∗∗ ∗∗ N/A –
vg2_00 ∗∗ ∗∗ 68.74 9 × 4 ∗∗ ∗∗ N/A –
vg2_02 ∗∗ ∗∗ 3.509 9 × 4 ∗∗ ∗∗ N/A –
vg2_05 22.738 4 × 4 1.857 4 × 5 0.5 4 × 5 N/A –
vg2_07 16.067 4 × 4 1.679 4 × 5 15.782 4 × 4 N/A –

+ Bold values represent the best results; “∗∗” indicates time-out; “N/A” is used for non-D-reducible functions.

offering small sizes and high speed. For 65 benchmarks out of 70, it
results in optimal sizes. For example, consider “clpl_03”. Algorithm
“Proposed (Optimal)” finds the optimal solution in 53 s; “Fixed Ver-
sion of [17] (Optimal)” finds in 156 s; and “Proposed Heuristic (non-
Optimal)” finds just in 0.2 s. For couple of relatively large functions,
“Proposed (Optimal)” could not find the solution inside the time limit
yet other optimal algorithms do. The reason is that the proposed opti-
mal algorithm does not fit to the 3-SAT rule but “Fixed Version of [17]

(Optimal)” fits.
For relatively small number of cases, decomposition based algo-

rithms in Refs. [14] and [15] give the best runtime values, but their
solutions are generally much larger than the optimal ones. When we
compare our non-optimal heuristic algorithm with them, we observe
that our algorithm offers an average of 23.07% and 20.51% lattice
size improvements over the algorithms in Refs. [14] and [15], respec-
tively. The compared algorithms even yield larger sizes than the upper
bound used for the proposed optimal algorithm, for the benchmark
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“mp2d_08”. Additionally, applicability of the dimension-reducing based
algorithm is quite limited.

5. Conclusion

In this study, we propose logic synthesis algorithms for switching
lattices. We offer both optimal and heuristic algorithms to implement a
given Boolean function with optimized lattice sizes. Our algorithms are
fundamentally constructed on a technique that finds Boolean functions
of lattices having independent inputs. This technique can also be used
to find a Boolean function of a given lattice with assigned inputs. For
our algorithms, we translate the problem of checking whether a given
Boolean function can be implemented with a certain sized lattice, to the
SAT problem. Our algorithms give considerably better results in terms
of lattice size and runtime compared to previously proposed algorithms.

As a future work, we aim to construct multi-output lattices to imple-
ment multi-output Boolean functions. So far, the literature only con-
siders single output lattices. Another direction is the investigation of
reconfigurability in switching lattices.
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