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Logic Synthesis for Switching Lattices

Mustafa Altun and Marc D. Riedel

Abstract—This paper studies the implementation of Boolean functions by lattices of four-terminal switches. Each switch is controlled
by a Boolean literal. If the literal takes the value 1, the corresponding switch is connected to its four neighbors; else it is not connected.
A Boolean function is implemented in terms of connectivity across the lattice: it evaluates to 1 iff there exists a connected path between
two opposing edges of the lattice. The paper addresses the following synthesis problem: how should one assign literals to switches in a
lattice in order to implement a given target Boolean function? The goal is to minimize the lattice size, measured in terms of the number
of switches. An efficient algorithm for this task is presented—one that does not exhaustively enumerate paths but rather exploits the
concept of Boolean function duality. The algorithm produces lattices with a size that grows linearly with the number of products of the
target Boolean function in ISOP form. It runs in time that grows polynomially. Synthesis trials are performed on standard benchmark
circuits. The synthesis results are compared to a lower-bound calculation on the lattice size.

Index Terms—Boolean functions, switching circuits, lattices, nanowire crossbar arrays

1 INTRODUCTION

IN his seminal Master’s Thesis, Shannon made the
connection between Boolean algebra and switching
circuits [2]. He considered two-terminal switches corre-
sponding to electromagnetic relays. An example of a two-
terminal switch is shown in the top part of Fig. 1. The
switch is either ON (closed) or OFF (open). A Boolean
function can be implemented in terms of connectivity across
a network of switches, often arranged in a series/parallel
configuration. An example is shown in the bottom part of
Fig. 1. Each switch is controlled by a Boolean literal. If the
literal is 1 (0) then the corresponding switch is ON (OFF).
The Boolean function for the network evaluates to 1 if there
is a closed path between the left and right nodes. It can be
computed by taking the sum (OR) of the product (AND) of
literals along each path. These products are zxax3,
T5T1ToTe, TsLaToXs, and T5T4xe.

In this paper, we develop a method for synthesizing
Boolean functions with networks of four-terminal switches.
An example is shown in the top part of Fig. 2. The four
terminals of the switch are all either mutually connected
(ON) or disconnected (OFF). We consider networks of four-
terminal switches arranged in rectangular Iattices. An
example is shown in the bottom part of Fig. 2. Again, each
switch is controlled by a Boolean literal. If the literal takes
the value 1 (0) then corresponding switch is ON (OFF). The
Boolean function for the lattice evaluates to 1 iff there is a
closed path between the top and bottom edges of the lattice.
Again, the function is computed by taking the sum of the
products of the literals along each path. These products are
T1T2X3, T1X2X5T6, T4X5X2X3, and x4x5x6—the same as those
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in Fig. 1. We conclude that this lattice of four-terminal
switches implements the same Boolean function as the
network of two-terminal switches in Fig. 1.

Throughout the paper, we will use a “checkerboard”
representation for lattices where black and white sites
represent ON and OFF switches, respectively, as illustrated
in Fig. 3. We will discuss the Boolean functions implemen-
ted in terms of connectivity between the top and bottom
edges as well as connectivity between the left and right
edges. (We will refer to these edges as “plates.”)

This paper addresses the following synthesis problem:
how should we assign literals to switches in a lattice in
order to implement a given target Boolean function?
Suppose that we are asked to implement the function
fl@1, 22, 23, 24) = T12223 + 2124. We might consider the
lattice in Fig. 4a. The product of the literals in the first
column is z22x3; the product of the literals in the second
column is ;4. We might also consider the lattice in Fig. 4b.
The products for its columns are the same as those for
Fig. 4a. In fact, the two lattices implement two different
functions, only one of which is the intended target function.
To see why this is so, note that we must consider all
possible paths, including those shown by the red and blue
lines. In Fig. 4a, the product z;z, corresponding to the path
shown by the red line covers the product z;zs23 so the
function is f, = z122 + z124. In Fig. 4b, the products z; 2224
and zj29x324 corresponding to the paths shown by the red
and blue lines are redundant, covered by column paths, so
the function is f, = z1zox3 + x174.

In this example, the target function is implemented by a
3 x 2 lattice with four paths. If we were given a target
function with more products, a larger lattice would likely be
needed to implement it; accordingly, we would need to
enumerate more paths. Here, the problem is that number of
paths grows exponentially with the lattice size. Any
synthesis method that enumerates paths quickly becomes
intractable. We present an efficient algorithm for this
task—one that does not exhaustively enumerate paths but
rather exploits the concept of Boolean function duality [3],
[4]. Our synthesis algorithm produces lattices with a size
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Fig. 1. Two-terminal switching network implementing the Boolean
function z1 2013 + T1 27576 + T2T3T4Ts + T4TETG.

that grows linearly with the number of products of the
target Boolean function. It runs in time that grows
polynomially.

The paper is organized as follows. In Section 2, we
discuss potential technologies that fit our model of regular
lattices of four-terminal switches. In Section 3, we present
our general synthesis method that implements any target
function with a lattice of four-terminal switches. In Section 4,
we discuss the implementation of a specific function, the
parity function. In Section 5, we derive a lower bound on the
size of a lattice required to implement a Boolean function. In
Section 6, we evaluate our general synthesis method on
standard benchmark circuits. In Section 7, we discuss
extensions and future directions for this research.

1.1 Definitions
Definition 1. Consider k independent Boolean variables,
Z1,%2,...,2r. Boolean literals are Boolean variables and

their complements, i.e., x1,T1, T2, Ta, . . ., Tk, Tk

Definition 2. A product (P) is an AND of literals, e.g.,
P = z,%324. A set of a product (SP) is a set containing all
the product’s literals, e.g., if P = x1Z3x4 then SP = {x1, Z3,
x4}. A sum-of-products (SOP) expression is an OR of
products.

Definition 3. A prime implicant (PI) of a Boolean function f
is a product that implies f such that removing any literal from
the product results in a new product that does not imply f.

Definition 4. An irredundant sum-of-products (ISOP)
expression is an SOP expression, where each product is a PI

ON OFF
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switch l
[ TOP |
I I
— x, — x; —
Switching l l
— X — x5 —
network | |
— X3 — X, —
| |
[ BOTTOM |

Fig. 2. Four-terminal switching network implementing the Boolean
function z1 x93 + 21222576 + ToT3T4Ts + T4T5TG.
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Fig. 3. A 3 x 3 four-terminal switch network and its lattice form.

and no PI can be deleted without changing the Boolean function
f represented by the expression.

Definition 5. f and g are dual Boolean functions iff

flxr,za, ..o xp) = §(T1, Ta, . . ., T).

Given an expression for a Boolean function in terms of AND,
OR, NOT, 0, and 1, its dual can also be obtained by
interchanging the AND and OR operations as well as inter-
changing the constants 0 and 1. For example, if f(x1,x2,z3) =
T122 + T3 then fD(.Z‘l,IQ,SL‘g) = (Il + Ig)(fl + 1‘3) A tri-
vial example is that for f = 1, the dual is f° = 0.

Definition 6. A parity function is a Boolean function that
evaluates to 1 iff the number of variables assigned to 1 is an odd
number. The parity function f of k variables can be computed
by the exclusive-OR (XOR) of the variables: f =z, ®
2@ D

2 APPLICABLE TECHNOLOGIES

The concept of regular two-dimensional arrays of four-
terminal switches is not new; it dates back to a seminal
paper by Akers in 1972 [5]. With the advent of a variety of
types of emerging nanoscale technologies, the model has
found renewed interest [6], [7]. Unlike conventional CMOS
that can be patterned in complex ways with lithography,
self-assembled nanoscale systems generally consist of
regular structures. Logical functions are achieved with
crossbar-type switches [8], [9]. Although conceptually
general, our model corresponds to exactly this type of
switch in a variety of emerging technologies.

A schematic for the realization of our model is shown in
Fig. 5. Each site of the lattice is a four-terminal switch,
controlled by an input voltage. When a high (logic 1) or low
(logic 0) voltage is applied, the switch is ON or OFF,
respectively. The output of the circuit depends upon the

| TOP | | TOP |
X1 X4 X1 X1
X2 X1 X2 X4
X3 X1 X3 X4
[ [BotTOM| | [ [sorTOM[ |
(a) (b)

Fig. 4. Two 3 x 2 lattices implementing different Boolean functions.
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Fig. 5. 3D realization of our circuit model with the inputs and the output.

top-to-bottom connectivity across the lattice. If the top and
bottom plates are connected, then the lattice allows signals
to flow; accordingly, the output is logic 1. Otherwise the
output is logic 0. The output can be sensed with a resistor
connected to the bottom plate while a high voltage applied
to the top plate. Below, we discuss two potential technol-
ogies that fit our model.

In their seminal work, Cui and Lieber investigated
crossbar structures for different types of nanowires including
n-type and p-type nanowires [10]. They achieved the different
types of junctions by crossing different types of nanowires.

By crossing an n-type nanowire and a p-type nanowire,
they achieved a diode-like junction. By crossing two n-types
or two p-types, they achieved a resistor-like junction (with a
very low resistance value). They showed that the con-
nectivity of nanowires can be controlled by an insulated
input voltage V-in. A high V-in makes the p-type nanowires
conductive and the n-type nanowires resistive; a low V-in
makes the p-type nanowires resistive and the n-type
nanowires conductive. So they showed that, based on a
controlling voltage, nanowires can behave either like short
circuits or like open circuits.

A four-terminal switch can be implemented with the
techniques of Cui and Lieber, as illustrated in Fig. 6. The
switch has crossed p-type nanowires. When a high V-in is
applied, the nanowires behave like short circuits. A resistor-
like junction is formed, with low resistance. Thus, all four
terminals are connected; the switch is ON. When a low V-in
is applied, the nanowires behave like open circuits: all four
terminals are disconnected; the switch is OFF. The resultis a
four-terminal switch that corresponds to our model.

Nanowire switches, of course, are assembled in large
arrays. Indeed, the impetus for nanowire-based technology
is the potential density, scalability and manufacturability
[11], [12], [13]. Consider a p-type nanowire array, where
each crosspoint is controlled by an input voltage. From the
discussion above, we know that each such crosspoint
behaves like a four-terminal switch. Accordingly, the
nanowire crossbar array can be modeled as a lattice of

— —
5 ;
 —

Insulator

Fig. 6. Nanowire four-terminal switch.
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Fig. 7. Nanowire crossbar array with random connections and its lattice
representation.

four-terminal switches as illustrated in Fig. 7. Here, the
black and white sites represent crosspoints that are ON and
OFF, respectively.

Nanowire crossbar arrays may offer substantial advan-
tages over conventional CMOS when used to implement
programmable architectures. Conventional implementa-
tions typically employ SRAMs for programming cross-
points. However, for nanoscale technologies, relative to the
size of the switches, SRAMs would be prohibitively costly.
A variety of techniques have been suggested for fabricating
programmable nanowire crosspoints based on bistable
switches that form memory cores [13], [14]. Also, molecular
switches and solid-electrolyte nanoswitches could be used
to form programmable crosspoints [15].

Other novel and emerging technologies fit our model of
four-terminal switches. For instance, researchers are in-
vestigating spin waves [16]. Unlike conventional circuitry
such as CMOS that transmits signals electrically, spin-wave
technology transmits signals as propagating disturbances
in the ordering of magnetic materials. Potentially, spin-
wave-based logic circuits could compute with significantly
less power than conventional CMOS circuitry.

Spin wave switches are four-terminal devices, as illu-
strated in Fig. 8. They have two states ON and OFF,
controlled by an input voltage V-in. In the ON state, the
switch transmits all spin waves; all four terminals are
connected. In the OFF state, the switch reflects any incoming
spin waves; all four terminals are disconnected. Spin-wave
switches, like nanowire switches, are also configured in
crossbar networks [17].

3 SYNTHESIS METHOD

In our synthesis method, a Boolean function is implemented
by a lattice according to the connectivity between the top
and bottom plates. In order to elucidate our method, we

Ferromagnetic film

Insulator

Fig. 8. Spin-wave switch.



ALTUN AND RIEDEL: LOGIC SYNTHESIS FOR SWITCHING LATTICES

LEFT

BOTTOM BOTTOM

() (b)

Fig. 9. Relationship between Boolean functionality and paths. (a) f, =1
and g, =0. (b) fr=1and g, = 1.

will also discuss connectivity between the left and right
plates. Call the Boolean functions corresponding to the top-
to-bottom and left-to-right plate connectivities f; and gr,
respectively. As shown in Fig. 9, each Boolean function
evaluates to 1 if there exists a path between corresponding
plates, and evaluates to 0 otherwise. Thus, f; can be
computed as the OR of all top-to-bottom paths, and g; as
the OR of all left-to-right paths. Since each path corresponds
to the AND of inputs, the paths taken together correspond
to the OR of these AND terms, so implement sum-of-
products expressions.

Example 1. Consider the lattice shown in Fig. 10. It consists
of six switches. Consider the three top-to-bottom paths
x124, Tox5, and xzze. Consider the four left-to-right paths
T1T2X3, T1X2X5X6, TaX5T2X3, and T4T5T6. While there are
other possible paths, such as the one shown by the
dashed line, all such paths are covered by the paths
listed above. For instance, the path z;z225 shown by the
dashed line is covered by the path z;z5; shown by the
solid line, and so is redundant. We conclude that the top-
to-bottom function is the OR of the three products above,
fr = 124 + 2225 + 2376, and the left-to-right function is
the OR of the four products above, g; = zjzozs +
T1X2T526 + ToaX3T4T5 + T4T5T6-

We address the following logic synthesis problem: given
a target Boolean function fr, how should we assign literals
to the sites in a lattice such that the top-to-bottom function
fr equals fr? More specifically, how can we assign literals
such that the OR of all the top-to-bottom paths equals f7? In
order to solve this problem, we exploit the concept of lattice
duality, and work with both the target Boolean function and
its dual.

Suppose that we are given a target Boolean function fr
and its dual f%?, both in ISOP form such that

fT:P1+P2+"'+RL and

ff=P +P+--+P,

m?

where each P, is a prime implicant of fr, i =1,...n, and
each P} is a prime implicant of f,j =1,... m.' We use a set
representation for the prime implicants

P,—SP, i=12,...,n

Pl— SP, j=12,...,m,

1. Here ' is used to distinguish symbols. It does not indicate negation.
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Fig. 10. A 2 x 3 lattice with assigned literals.

where each SP; is the set of literals in the corresponding
product P, and each SP/’ is the set of literals in the
corresponding product P;.

3.1 Algorithm
We first present the synthesis algorithm; then we illustrate
it with examples; then we explain why it works.

Above we argued that, in establishing the Boolean
function that a lattice implements, we must consider all
possible paths. Paradoxically, our method allows us to
consider only the column paths and the row paths, that is to
say, the paths formed by straight-line connections between
the top and bottom plates and between the left and right
plates, respectively. Our algorithm is formulated in terms of
the set representation of products and their intersections

1. Begin with fr and its dual f7, both in ISOP form.
Suppose that fr and f? have n and m products,
respectively.

2. Start with an m X n lattice. Assign each product of fr
to a column and each product of f¥ to a row.

3. Compute intersection sets for every site, as shown in
Fig. 11.

4. Arbitrarily select a literal from an intersection set
and assign it to the corresponding site.

- gL=fTD >
BOTTOM
A
SRNSE | SBENSE SP_,(\SF/| SB,NSF
[ [
SENSE | | SP.NSP,
| |
_____ |_____+____
| | | |
< |E | | | | &
= | | | | 2
W |- | [ | | 5
Ll ___d_____
| |
| |
SRNSE,, ! ! SE.NSE,,
| |
| o |
SPNSP, | SBNSP, SP_ NSP,|SP.NSP,
\ J
BOTTOM

Fig. 11. Proposed implementation technique.
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Fig. 12. Implementing fr = z129 + 123 + z2x3. (a) Lattice sites with
corresponding sets. (b) Lattice sites with corresponding literals.

The proposed implementation technique is illustrated
in Fig. 11. The technique implements fr with an m x n
lattice where n and m are the number of products of fr
and fP, respectively. Each of the n column paths
implements a product of fr and each of the m row paths
implements a product of f£. As we explain in the next
section, the resulting lattice implements fr and fX as the
top-to-bottom and left-to-right functions, respectively.
None of the paths other than the column and row paths
need be considered.

We present a few examples to elucidate our algorithm.

Example 2. Suppose that we are given the following target
function fr in ISOP form:

fr = z129 + 2173 + ToT3.

We compute its dual f? in ISOP form

f7 = (x1+ @) (21 + @3) (22 + w3),

D
fr = 129 + 2123 + T2273.
We have

SP] = {a:],xg}, SPQ = {xl,l'g}, SP3 = {wz,xg},
SP{ = {.1'1,1'2}, SPQI = {$1,$3}, SPé = {lz,l‘g}

Fig. 12 shows the implementation of the target
function. Gray sites represent sets having more than
one literal, which literal is selected for these sites is
arbitrary. For example, selecting 3, 3,23 instead of
x1,21,2 does not change f; and gr. In order to
implement the target function, we only use column
paths; these are shown by the solid lines. All other paths
are, in fact, redundant. Indeed there are a total of nine
top-to-bottom paths: three column paths and six other
paths; however, all other paths are covered by the
column paths. For example, the path z,z22x3 shown by
the dashed line is a redundant path covered by the
column paths. The lattice implements the top-to-bottom
and left-to-right functions f; = fr = x122 + x123 + Ta23
and g; = fP = z129 + 2173 + 2973, TEspectively.

Example 3. Suppose that we are given the following target
function fr in ISOP form:

fr = x93 + T124 + T125.

Fig. 13. Implementing fr = z1x923 + 2124 + 7125. (@) Lattice sites with
corresponding sets. (b) Lattice sites with corresponding literals.

We compute its dual f¥ in ISOP form

fP = (@) (@2 + oy + @5) (23 + 24 + 25).

D
fr = a1 + x2myxs + 3245,
We have

SPl = {1‘17.132,%‘3}, SPQ = {.231,$4}, SPg = {$1,$5},
SP{ = {:El}, SP2l = {1‘2,%4,.135}7 SPé = {x3,$4,$5}.

Fig. 13 shows the implementation of the target
function. In this example, all the intersection sets are
singletons, so the choice of which literal to assign is clear.
The lattice implements f; = fr = z1zoxs + 124 + 2125
and gL, = fTQ = X1 + ToX4T5 + T3X4X5.

We give another example, this one somewhat more
complicated.

Example 4. Suppose that fr and fZ are both given in ISOP
form as follows:

fr = x1Tox3 + 1134 + Tox3Ty + Toxyxs + T3x5 and

D _ _
fr = 21205 + 210374 + ToT3T4 + ToTyTs.

Fig. 14 shows the implementation of the target
function. Gray sites represent intersection sets having
more than one literal. For these sites, selection of the final
literal is arbitrary. The result is f; = fr = x1Z23 +
T1T4 + ToToZy + Toxys + 2305 and gp, = f%j = T1T2T5 +
T1X3T4 + $2$3i’4 + i’gi’4l’5.

Xi X2 X2

X X X3 Xy X3

X3 X4 X4 X5 X5
X1 X% Xs| X X1 X X X5
X X3 Xy X X X3 X4 X3
XXX X3 X, X X X3
)_62 )_64 X5 X X4 Xy X5 X5

Fig. 14. Implementing fr = x1Tox3 + ©1Z4 + T222T4 + Toxyws + xT3T5.
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Fig. 15. Examples to illustrate Theorem 1.

3.2 Proof of Correctness

We present a proof of correctness of the synthesis method.
Since our method does not enumerate paths, we must
answer the question: for the top-to-bottom lattice function,
how do we know that all paths other than the column paths
are redundant? The following theorem answers this
question. It pertains to the lattice functions and their duals.

Theorem 1. If we can find two dual functions f and fP that are
implemented as subsets of all top-to-bottom and left-to-right
paths, respectively, then f;, = f and g, = fP.

Before presenting the proof, we provide some examples to
elucidate the theorem.

Example 5. We analyze the two lattices shown in Fig. 15.

Lattice (a). The top-to-bottom paths shown by the red
lines implement f = z;2; + Zi23. The left-to-right paths
shown by the blue lines implement g = x; 23 + Z;2». Since
g= f?, we can apply Theorem 1: f; = f = x129 + Z123
and g; = fP = zy23 + Z172. Relying on the theorem, we
obtain the functions without examining all possible paths.
Let us check the result by using the formal definition of fi,
and g7, namely the OR of all corresponding paths. Since
there are nine total top-to-bottom paths, f; = z12:Z; +
T1XT1T2T2 + T1T1T2X3T1 + T3T2T1T1 + T3TaTa + T3TaZ3T1 +
X3T3T1 + T3T3T2T2 + T3L3L2L1X1, which is equal to
x122 + Z1z3. Thus, all the top-to-bottom paths but the
paths shown by the red lines are redundant. Since there
are nine total left-to-right paths, g; = zi2323+
T1X3T223 + T1X3T2X2X1 + L1T2X3T3 + T1T2X3 + L1T2X2T1 +

T122X22323 + T1X2X2X3 + T1X2X1, which is equal to
x123 + Z122. Thus, all the left-to-right paths but the paths
shown by the blue lines are redundant. So, Theorem 1
holds for this example.

Lattice (b). The top-to-bottom paths shown by the red
lines implement f = z1x923 + x124 + x125. The left-to-
right paths shown by the blue lines implement g = z; +
Tax4Ts + T3x4xs. Since g = f, we can apply Theorem 1:
fo=f=mzas+zzs+225 and gr=fP=2+
Toxaxs + T3x4z5. Again, we see that Theorem 1 holds
for this example.

Proof of Theorem 1. If f(xy,zo,...,25) =1 then f; =1.
From the definition of duality, if f(x1,29,...,21) =0
then g(%,%,,...,%) = f(z1,2,...,2;) = 1. This means

that there is a left-to-right path consisting of all Os;
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accordingly, fr, =0. Thus, we conclude that f; = f.
Following the same argument for g, we conclude that
g1 = fP. 0

Theorem 1 provides a constructive method for synthe-
sizing lattices with the requisite property, namely that the
top-to-bottom and left-to-right functions fr and fF are
duals, and each column path of the lattice implements a
product of fr and each row path implements a product
of fE.

We begin by lining up the products of fr as the column
headings and the products of fF as the row headings. We
compute intersection sets for every lattice site. We arbitra-
rily select a literal from each intersection set and assign it to
the corresponding site. The following lemma and theorem
explain why we can make such an arbitrary selection.

Suppose that functions f(z1, zs, ..., x;) and fP (21, 2s,. . .,
x,) are both given in ISOP form such that

f:P1+P2++pn and

fP=P+P+ P

m?

where each P, is a prime implicant of f,¢ = 1,...n, and each
P]/- is a prime implicant of f”, j=1,...m. Again, we use a
set representation for the prime implicants

P,—SP, i=1,2,...,n
Pl— SP, j=12,...,m,

where each SP, is the set of literals in the corresponding
product P, and each SP; is the set of literals in the
corresponding product P}. Suppose that SP; and SP; have
zi and z; elements, respectively. We first present a property
of dual Boolean functions from [3].

Lemma 1. Dual pairs f and fP must satisfy the condition

SPiﬂSPJ{;é(D forevery 1=1,2,....,n and
j=1,2,...,m.

Proof of Lemma 1. The proof is by contradiction. Suppose
that we focus on one product P, from f and assign all its
literals, namely those in the set SP, to 0. In this case,
fP = 0. However, if there is a product P of f” such that
SP;NSP, =0, then we can always make P} equal 1
because SP} does not contain any literals that have been
previously assigned to 0. If follows that f2 =1, a
contradiction. 0

Lemma 2. Consider a product P with a corresponding set
representation SP. Consider a Boolean function f = P, + P, +
-+ + P, with a corresponding set representation SP; for each of
its products P;, i = 1,2,...,n. If SP has nonempty intersec-
tions with every SP,,i = 1,2,...,n, then P is a product of fP.

Proof of Lemma 2. To prove that P is a product of f”, we
assign 1s to all the variables of P and see if this
always results in f” =1. Since SP has nonempty
intersections with every SFP;, i=1,2,...,n, each pro-
duct of f should have at least one assigned 1. From
the definition of duality, these assigned 1s always
result in fP=(1+--)(1+-)(1+-)=1 O
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Fig. 16. (a) Implementation of XOR;. (b) Implementation of XOR;,.
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Theorem 2. Assume that f and fP are both in ISOP form. For
any product P; of f, there exist m nonempty intersection sets, X % X % X %
(SBNSP),(SP,NSP),...,(SP,NSP,). Among these
m sets, there must be at least z; single-element disjoint sets. - - - -
. . . X X X X X X X
These single-element sets include all z; literals of P;.
We can make the same claim for products of fP: for an - .
for p URINEL Y XOR, XOR, XOR,

product P; of fP, there exist n nonempty intersection sets,
(SPNSP),(SPINSP,),...,(SP;NSF,). Among these
n sets, there must be at least 2 single-element disjoint sets
that each represents one of the 2} literals of P;.

Before proving the theorem, we elucidate it with
examples.

Example 6. Suppose that we are given a target function fr
and its dual fF, both in ISOP form such that

_ _ D o
fr=x1Z2 + Z1xoxs and  fp = x122 + 123 + T120.
Thus,

SP1 = {.Z‘l,jg}, Spg = {i’l,CIJQ,CUg},

SP{:{Z':[,(L'Q}, SPQII{Z'l,xg}, Spéz{fl,fz}.

Let us apply Theorem 2 for SP, (z; = 3)
SP,N SP{ = {(L’Q}, SP, N SP; = {13}, SP, N SP; = {fl}
Since these three sets are all the single-element disjoint

sets of the literals of SP,, Theorem 2 is satisfied.

Example 7. Suppose that we are given a target function fr
and its dual fF, both in ISOP form such that

D
fr =212+ 2123 + 29wz and  fr = x129 + 123 + 22T3.
Thus,

SP = {x, 22}, SPy={x1,23}, SP;={x, 23},
SP| = {1,292}, SPy={x1,x3}, SPj={xe,x3}.

Let us apply Theorem 2 for SP| (2} = 2)
SP{ n SPl = {$1,$2}, SP{ n SP2 = {:L’l}, SP{ n SP; = {IEQ}

Since {z;} and {z,}, the single-element disjoint sets of
the literals of SP], are among these sets, Theorem 2 is
satisfied.

Proof of Theorem 2. The proof is by contradiction. Consider
a product P; of f such that SP, = {z1,zs,...,z,}. From
Lemma 1, we know that SP; has nonempty intersections
with every SP}, j = 1,2,...,m. For one of the elements of
SP;, say x1, assume that none of the intersection sets
(SPBNSP),(SPNSP),...,(SP,NSP,) is {z1}. This
means that if we extract z; from SP; then the new set

Fig. 17. Implementation of XOR;, XOR;, XORy, XOR,, XOR;3, and
XOR;;.

{z9,..., .} also has nonempty intersections with every
SP]’-, j=1,2,...,m. From Lemma 2, we know that the
product xaz; . . . z,, must be a product of f. This product
covers P,. However, in an ISOP expression, all products
including P; are irredundant, not covered by a product
of f. So, we have a contradiction. ad

From Lemma 1, we know that none of the lattice sites
will have an empty intersection set. Theorem 2 states that
the intersection sets of a product include single-element
sets for all of its literals. So, the corresponding column or
row has always all literals of the product regardless of
the final literal selections from multiple-element sets.
Thus, we obtain a lattice whose column paths and row
paths implement fr and fF, respectively.

4 PARITY FUNCTIONS

The algorithm proposed in Section 3 provides a general
method for implementing any type of Boolean function
with an m x n lattice, where n and m are the number of
products of the function and its dual, respectively. In this
section, we discuss a method for implementing a specific
function, the parity function, with a (log(m) 4+ 1) x n lattice.
Compared to the general method, we improve the lattice
size by a factor of m/(log(m) + 1) for this function.

As defined in Section 1.1, a k-variable parity function can
be represented as a k-variable XOR operation. We exploit
the following properties of XOR functions:

XORy = 2 XORp—1 + T XORp
XORy = 2 XORy1 + T XORy1.

These properties allow us to implement both XOR;, and
its complement XOR), recursively. The approach for the
k-variable parity function is illustrated in Fig. 16. The
approach for 1, 2, and 3 variable parity functions is shown
in Fig. 17. As in our general method, we implement each
product of the target function with a separate column path;
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X X x| X

X X, > x| X

X3 X; x| X
Ju Ji2 Jus=futfi

Fig. 18. An example illustrating Lemma 3.

in this construction, all paths other than column paths are
redundant. The following lemma explains why this config-
uration works. Fig. 18 illustrates the lemma.

Lemma 3. Consider two lattices with the same number of rows.
Suppose that the lattices implement the Boolean functions f,
and fro. Construct a new lattice with the two lattices side by side.
If the attached columns of the lattices have negated variables
facing each other for all rows except the first and the last, then the
new lattice implements the Boolean function frs = fr1 + fro.

Proof of Lemma 3. The new lattice has three types of paths:
paths having all sites from the first lattice that implement
fr1, paths having all sites from the second lattice that
implement f1,, and paths having sites from both the first
and the second lattices that implement f;;_5. The
Boolean function fr3 implemented by the third lattice
is OR of the all paths; fr3= fr1 + fr2 + fri—2. Since
negated variables in attached columns result in f;_5 =
0, we conclude that fr3 = fr1 + fro. O

We exploit Lemma 3 to compute the parity function as
follows (please refer back to Fig. 16). We attach the lattices
implementing fr; = 2, XORj_1 and fro = 7, XORj_; to
implement fr3 = XOR),. We attach the lattices implement-
ing fp1 =2 XOR, 1 and fro =T, XOR; 1 to implement
fr3 = XORy. One can easily see that attached columns
always have the proper configuration of negated variables to
ensure that fr; o = 0.

5 A LoweR BOUND ON THE LATTICE Size

In this section, we propose a lower bound on the size of any
lattice implementing a Boolean function. Although it is a
weak lower bound, it allows us to gauge the effectiveness of
our synthesis method. The bound is predicated on the
maximum length of any path across the lattice. The length
of such a path is bounded from below by the maximum
number of literals in terms of an ISOP expression for the
function.

5.1 Preliminaries

Definition 7. Let the degree of an SOP expression be the
maximum number of literals in terms of the expression.

A Boolean function might have several different ISOP
expressions and these might have different degrees.
Among all the different expressions, we need the one with
the smallest degree for our lower bound. (We need only
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Fig. 19. Minimum-sized lattices (a) f. = fr1 = z12223 + T124 + 21 5.
(0) fr = fr2 = 12273 + T1Toxy + ToT3T4-

consider ISOP expressions; every SOP expression is
covered by an ISOP expression of equal or lesser degree.)

Consider a target Boolean function fr and its dual f%),
both in ISOP form. We will use v and y to denote the
minimum degrees of fr and fZ, respectively. For example,
if v = 3 and y = 5, this means that every ISOP expression for
fr includes terms with three literals or more, and every
ISOP expression for fZ includes terms with five literals or
more. Our lower bound, described in the next section by
Theorem 4, consists of inequalities on v and y. We first
illustrate how it works with an example.

Example 8. Consider two target Boolean functions fr; =
T129x3 + T124 + T105 and fry = T1T003 + T1ToT4 + ToT3Ty,
and their duals f£ =z + zoz475 + 237425 and fE, =
2124 + 122 + Tox3. These expressions are all in ISOP form
with minimum degrees. Since each expressions consists of
three products, the synthesis method described in Section 3
implements each target function with a 3 x 3 lattice.

Examining the expressions, we see that the degrees of
frm and fry are v; =3 and vy = 3, respectively, and the
degrees of f£ and fE, are y; = 3 and y» = 2, respectively.
Our lower bounds based on these values are 3 x 3 for fr;
and 3 x 2 for frs. Thus, the lower bound for fr; suggests
that our synthesis method might not be producing
optimal results. Indeed, Fig. 19 shows minimum-sized
lattices for fr; and fro. Here, the 3 x 2 lattice for fr, was
obtained through exhaustive search.

Since we implement Boolean functions in terms of top-to-
bottom connectivity across the lattice, it is apparent that we
cannot implement a target function fr with top-to-bottom
paths consisting of fewer than v literals, where v is the
minimum degree of an ISOP expression for fr. The
following theorem explains the role of y, the minimum
degree of f£. It is based on eight-connected paths.”?

Definition 8. An eight-connected path consists of both
directly and diagonally adjacent sites.

An example is shown in Fig. 20. Here, the paths z x4
and z3zsrsr3 shown by red and blue lines are both eight-
connected paths; however, only the blue one is four
connected.

2. Note that because our synthesis methodology is based on lattices of
four-terminal switches, the target function fy is always implemented by
four-connected paths. We discuss eight-connected paths only because it is
helpful to do so in order to prove our lower bound.



1596
TOP
X1 X2 X3
5 =
ml oxal | oxs | x| |8
= =
X7 Xg X9
BOTTOM

Fig. 20. A lattice with eight-connected paths.

Recall that f; and g; are defined as the OR of all four-
connected top-to-bottom and left-to-right paths, respec-
tively. (A lattice implements a given target function fr if
fr = fr.) We define f;_s and g;_s to be the OR of all eight-
connected top-to-bottom and left-to-right paths, respec-
tively.

Theorem 3. The functions fr and g;_g are duals. The functions
fr_g and g, duals.

Before proving the theorem, we elucidate it with an
example.

Example 9. Consider the lattice shown in Fig. 21. Here, f;,
is the OR of three top-to-bottom four-connected paths
124, Toxs, and xz3xe; gr, is the OR of four left-to-right
four-connected paths xix0x3, Ti12205%6, Taws22w3, and
x425%6; fr—s is the OR of seven eight-connected top-to-
bottom paths 124, x125, 224, Tox5, 226, T325, and xs3xe;
and g;_g is the OR of eight eight-connected left-to-right
paths T1Tax3, X1T2T6, T1X5T3, T1X5T6, T4X2X3, T4T2Xg,
4523, and zixszs. We can easily verify that fr = gLDf8
and f; s = g?. Accordingly, Theorem 3 holds true for
this example.

Proof of Theorem 3. We consider two cases, namely f;, =1
and f; =0.

Case 1: If fi(z1,29,...,2;) = 1, there must be a four-
connected path of 1s between the top and bottom plates.
If we complement all the inputs (1 — 0,0 — 1), these
four-connected 1s become Os and vertically separate the
lattice into two parts. Therefore, no eight-connected path
of 1s exists between the left and right plates; accordingly,
gL,g(fl,fg, cen ,i’k) =0.Asa result, gLfg(.f'l,.i'z, ‘e ,i'k) =
fL(xlwr?a s ,l’k) =1

Case 2: If f1(z1,29,...,2;) = 0, there must be an eight-
connected path of Os between the left and right plates. If
we complement all the inputs, these eight-connected 0s
become 1s; accordingly, g;_s(Z1,Z2,...,Zr) =1. As a
result g;_s(Z1,Za, ..., Zk) = fr(x1,T2,...,2) =0 O

TOP
X X X
E 1 2 3 g
- 5
X4 X5 X6
BOTTOM

Fig. 21. A 2 x 3 lattice with assigned literals.
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Fig. 22. Conceptual proof of Theorem 3.

BOTTOM

grs=1

Fig. 22 illustrates the two cases. Taken together, the
two cases prove that f; and g;_s are duals. With inverse
reasoning, we can prove that f;_s and g, are duals.

Theorem 3 tells us that the products of fFP are
implemented with eight-connected left-to-right paths.
Now consider y, the degree of f£. We know that we cannot
implement f£ with eight-connected right-to-left paths
having fewer than y literals. Consider v, the degree of fr.
We know that we cannot implement f; with four-connected
top-to-bottom paths having fewer than v literals.

Returning to the functions in Example 8, we can now
prove that lower bounds on the lattice sizes are nine
(3 x 3) for fr;, and six (3 x 2) for fry. Since v; =3 and
yp = 3 for fry, a 3 x 3 lattice is a minimume-size lattice that
has four-connected top-to-bottom and eight-connected left-
to-right paths of at least three literals, respectively. Since
vy =3 and yo = 2 for fro, a 3 x 2 lattice is a minimum-size
lattice that has four-connected top-to-bottom and eight-
connected left-to-right paths of at least three and two
literals, respectively.

Based on these preliminaries, we now formulate the
lower bound.

5.2 Lower Bound

Consider a target Boolean function fr and its dual f¥, both
in ISOP form. Recall that v and y are defined as the
minimum degrees of fr and fZ, respectively. Our lower
bound is based on the observation that a minimum-size
lattice must have a four-connected top-to-bottom path with
at least v literals and an eight-connected left-to-right path
with at least y literals. Since the functions are in ISOP form,
all products of fr and f%’ are irredundant, i.e., not covered
by other products. Therefore, we need only to consider
irredundant paths:
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BOTTOM
(a) (b)

Fig. 23. Lattices with (a) an irredundant path and (b) a redundant path.

BOTTOM

Definition 9. A four-connected (eight-connected) path between
plates is irredundant if it is not covered by another four-
connected (eight-connected) path between the corresponding
plates.

We bound the length of irredundant paths. For example,
the length of an eight-connected left-to-right path in a
3 x 3 lattice is at most three. Accordingly, no Boolean
function with y greater than three can be implemented by a
3 x 3 lattice. Fig. 23 shows eight-connected left-to-right
paths in a 3 x 3 lattice. The path in Fig. 23a consists of
three sites. The path in Fig. 23b consists of four sites;
however it is a redundant path—it is covered by the path
in Fig. 23a.

The following simple lemmas pertain to irredundant
paths of a lattice.

Lemma 4. An irredundant top-to-bottom path of a lattice
contains exactly one site from the topmost row and exactly one
site from the bottommost row. An irredundant left-to-right
path of a lattice contains exactly one site from the leftmost
column and exactly one site from the rightmost column.

Proof of Lemma 4. All sites in the first row of a lattice are
connected through the top plate. Therefore, we do not
need a path to connect any two sites in this row; such a
path is redundant. Similarly for the last row. Similarly
for the first and last columns. 0

Lemma 5. An irredundant four-connected path of a lattice
contains at most three of four sites in any 2 x 2 sublattice. An
irredundant eight-connected path of a lattice contains at most
two of four sites in any 2 x 2 sublattice.

Proof of Lemma 5. In order to connect any two sites of a
2 x 2 sublattice with a four-connected path, we need at
most three sites of the sublattice. Similarly, in order to
connect any two sites of a 2 x 2 sublattice with an eight-
connected path, we need at most two sites of the
sublattice. O

Fig. 24 shows examples illustrating Lemma 5. The lattice
in Fig. 24a has a four-connected top-to-bottom path. This
path contains four of the four sites in the 2 x 2 sublattice
encircled in red. Lemma 5 tells us that the path in Fig. 24a is
redundant. Indeed, it is covered by the path achieved by
removing the site marked by x. The lattice in Fig. 24b has
an eight-connected left-to-right path. This path contains
three of four sites in the 2 x 2 sublattice encircled in red.
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Fig. 24. Examples to illustrate Lemma 5.

Lemma 5 tells us that the path in Fig. 24b is redundant.
Indeed, it is covered by the path achieved by removing the
site marked by x.

From Lemmas 4 and 5, we have the following theorem
consisting of two inequalities. The first inequality states that
the degree of fr is equal to or less than the maximum
number of sites in any four-connected top-to-bottom path.
The second inequality states that the degree of fF is less
than or equal to the maximum number of sites in any eight-
connected left-to-right path.

Theorem 4. If a target Boolean function fr is implemented by an
R x C lattice then the following inequalities mu st be satisfied:

ifR<20r(C<1
ifR>2and C > 1,
ifR<3orC<2
if R>3and C > 2,

R,
< .
- { 3157 g] 4 2L,

&
ys= ) R(—1)C
{2(51 652+ B

where v and y are the minimum degrees of fr and its dual
fR, respectively, both in ISOP form.

Proof of Theorem 4. If R and C are both even then all
irredundant top-to-bottom and left-to-right paths contain
at most 3(R—2)C'+2 and R(C — 2) + 2 sites, respec-
tively; this follows directly from Lemmas 4 and 5. If R or
C are odd then we first round these up to the nearest
even number. The resulting lattice contains at least one
extra site (if either R or C but not both are odd) or two
extra sites (if both R and C are odd). Accordingly, we
compute the maximum number of sites in top-to-bottom
and left-to-right paths and subtract 1 or 2. This
calculation is reflected in the inequalities. 0

The theorem proves our lower bound. Table 1 shows
the calculation of the bound for different values of v and y
up to 10.

6 EXPERIMENTAL RESULTS

In Table 2, we report synthesis results for a few standard
benchmark circuits [18]. We treat each output of a bench-
mark circuit as a separate target function.

The values for n and m represent the number of products
for each target function fr and its dual fZ, respectively. We
obtained these through sum-of-products minimization
using the program Espresso [19]. The lattice size, represent-
ing the number of switches, is computed as a product of n
and m.



1598

TABLE 1
Lower Bounds on the Lattice Size for Different Values of v and y

y

[uy
N
|68}

4| 5| 6] 7| 8| 910

4| 5| 6] 7| 8| 9110
8110 |12 |14 | 16 | 18 | 20
12 [ 12 | 15 | 20 | 20 | 20 | 24
12 | 12 | 15|20 | 20 | 20 | 24
12 [ 12 |15 | 20 | 20 | 20 | 24
12 [ 12 | 15 | 20 | 20 | 20 | 24
10 |12 |12 | 12 | 15 | 20 | 20 | 20 | 24
12 |15 15|15 | 15|20 | 20 | 20 | 24
14 | 15|15 |15 |15 (20 |20 | 20 | 24
14 | 15 | 15| 15 | 15|20 | 20 | 20 | 24

O | O || [N
O[O [0 |[O || W

O |0 || |U || W[IN|—
O |0 || |U || W[~

—_
[e]
—_
[e]

For the lower bound calculation, we obtained values of v
and y, the minimum degrees of fr and f?, as follows: first
we generated prime implicant tables for the target functions
and their duals using Espresso with the “-Dprimes”
option; then we deleted prime implicants one by one,
beginning with those that had the most literals, until we
obtained an expression of minimum degree. Given values of
vand y, we computed the lower bound from the inequalities
in Theorem 4.

Table 2 lists the runtimes for the lattice size and the
lower bound calculations. The runtimes for the lattice size
consist of the time for obtaining the functions’ duals and
for SOP minimization of both the functions and their
duals. The runtimes for the lower bound consist of the
time for generating the prime implicant tables and for
obtaining the minimum degrees from the tables. We
performed trials on an AMD Athlon 64 X2 6000+ Processor
(at 3 GHz) with 3.6 GB of RAM running Linux.

Examining the numbers in Table 2, we see that, often,
the synthesized lattice size matches the lower bound. In these
cases, our results are optimal. However, for most of the
Boolean functions, especially those with larger values of n
and m, the lower bound is much smaller than the synthesized
lattice size. This is not surprising since the lower bound is
weak, formulated based on path lengths.

In the final column of Table 2, we list the number of
transistors required in a CMOS implementation of the
functions. We obtained the transistor counts through
synthesis trials with the Berkeley tool ABC [20]. We applied
the standard synthesis script “resyn2” in ABC and then
mapped to a generic library consisting of NAND?2 gates and
inverters. We assume that each NAND2 gate requires four
transistors and each inverter requires two transistors.

The number of switches needed by our method
compares very favorably to the number of transistors
required in a CMOS implementation. Of course, a rigorous
comparison would depend on the specifics of the types of
technology used. Each four-terminal switch might equate to
more than one transistor. Then again, in some nanoscale
technologies, it might equate to much less: the density of
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crosspoints in nanowire arrays is generally much higher
than the density achievable with CMOS transistors.

7 DiscussIiOoN

The two-terminal switch model is fundamental and
ubiquitous in electrical engineering [21]. Either implicitly
or explicitly, nearly all logic synthesis methods target
circuits built from independently controllable two-terminal
switches (i.e., transistors). And yet, with the advent of novel
nanoscale technologies, synthesis methods targeting lattices
of multiterminal switches are apropos. Our treatment is at a
technology-independent level; nevertheless, we comment
that our synthesis results are applicable to technologies
such as nanowire crossbar arrays with independently
controllable crosspoints [13].

In this paper, we presented a synthesis method targeting
regular lattices of four-terminal switches. Significantly, our
method assigns literals to lattice sites without enumerating
paths. It produces lattice sizes that are linear in the number
of products of the target Boolean function. The time
complexity of our synthesis algorithm is polynomial in
the number of products. Comparing our results to a lower
bound, we conclude that the synthesis results are not
optimal. However, this is hardly surprising: at their core,
most logic synthesis problems are computationally intract-
able; the solutions that are available are based on heuristics.
Furthermore, good lower bounds on circuit size are
notoriously difficult to establish. In fact, such proofs are
related to fundamental questions in computer science, such
as the separation of the P and NP complexity classes. (To
prove that P # NP, it would suffice to find a class of
problems in NP that cannot be computed by a polynomi-
ally sized circuit [22].)

The results on benchmarks illustrate that our method is
effective for Boolean functions of practical interest. We
should note, however, we would not expect it to be
effective on some specific types of Boolean functions. In
particular, our method will not be effective for Boolean
functions that have duals with large number of products.
The lattices for such functions will be inordinately large.
For example, consider the function f = xjzox3 + zaxs26 +
T7T8T9 + T10T11212 + T13L14215 + T16L17L18- It has Ol’lly Six
products, but its dual has 36 =729 products. With our
method, a lattice with 729 rows and six columns would be
required.

The cost of implementing such functions could be
mitigated by decomposing and implementing Boolean
functions with separate lattices (or physically separated
regions in a single lattice). This paper did not consider the
topic of sharing logic among multiple output functions.
Techniques for functional decomposition are well estab-
lished [19], [23]. In future work, we will explore techniques
for exploiting such decompositions and logic sharing in
lattice-based implementations. Implementing multiple out-
put functions will require some kind of physical partition-
ing of the lattice.

Another future direction is to extend the results in this
paper to lattices of eight-terminal switches, and then to
2k-terminal switches, for arbitrary k. Another direction is to
study methods for synthesizing robust computation in
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TABLE 2
Proposed Lattice Sizes, Lower Bounds on the Lattice Sizes, and CMOS Transistor Counts for Standard Benchmark Circuits

Circuit n| m Lattice size | Runtime (s) || v y | Lower bound | Runtime (s) CMOS circuit size
(number of switches) (number of transistors)

alul 3 2 6 21 3 6 18
alul 21 3 6 < 0.01 3| 2 6 0.02 26
alul 1 3 3 3 1 3 16
clpl 4] 4 16 41 4 12 42
clpl 3 3 9 3| 3 9 26
clpl 2 2 4 < 0.01 2 2 4 0.01 10
clpl 6] 6 36 6] 6 15 74
clpl 5 5 25 5| 5 12 64
newtag 8] 4 32 < 0.01 3] 6 15 < 0.01 60
dcl 4] 4 16 3] 3 9 38
dcl 2 3 6 3 2 6 24
dcl 4] 4 16 < 0.01 3| 4 12 < 0.01 40
dcl 41 5 20 41 3 9 42
dcl 3 3 9 2] 3 6 26
misex] 2 5 10 4 2 6 64
misex1 5 7 35 4 4 12 84
misex1 5 8 40 5 4 12 64
misex1 41 7 28 < 0.01 5| 3 9 0.01 58
misex1 5 5 25 4 4 12 76
misex1 6 7 42 4 4 12 64
misex1 5 7 35 4 3 9 36
ex5 1 3 3 3 1 3 16
ex5 1 5 5 5 1 5 24
ex5 1 4 4 4 1 4 18
ex5 1 7 7 701 7 36
ex5 1 8 8 8 1 8 40
ex5 1 6 6 6 1 6 34
ex5 8| 4 32 3| 6 15 46
ex5 || 10 | 4 40 3| 8 20 52
ex5 7 3 21 3 7 20 44
ex5 71 3 21 31 6 15 48
ex5 8 2 16 2| 8 16 42
ex5 9] 4 36 3| 8 20 56
exb 8 2 16 0.26 2 7 14 3.17 42
ex5 12 6 72 4 7 20 70
ex5 || 14 | 8 112 4 7 20 388
ex5 7| 2 14 2 7 14 38
ex5 6] 3 18 31 6 15 40
ex5 6 2 12 2 6 12 36
ex5 || 10 | 7 70 3 7 20 76
ex5 6 6 36 3 6 15 64
exb 12 | 10 120 4 8 20 318
ex5 || 14 | 8 112 5 7 20 350
ex5 8 5 40 3 7 20 86
ex5 || 10 | 8 80 3 7 20 116
ex5 || 12 | 7 84 4 7 20 356
ex5 9 3 27 3] 8 20 60
ex5 5 2 10 2| 5 10 44
b12 4] 6 24 4] 3 9 50
b12 71 5 35 4] 4 12 54
b12 71 6 42 5| 4 12 70
b12 4 2 8 2 2 4 16
b12 4 2 8 0.01 2 4 8 0.41 28
b12 5 1 5 1 5 5 30
b12 9 6 54 6| 4 12 332
b12 6 4 24 4 6 15 60
b12 7 2 14 2 7 14 62
newbyte 1 5 5 < 0.01 5 1 5 < 0.01 26
newapla2 1 6 6 < 0.01 6 1 6 < 0.01 32
c17 3 3 9 < 0.01 21 3 6 < 0.01 16
c17 41 2 8 2| 2 4 18
mp2d [[ 11 1 11 1] 11 11 46
mp2d 8 6 48 5| 8 20 82
mp2d 10 5 50 4] 10 24 102
mp2d 6] 10 60 0.01 91 3 15 0.61 318
mp2d 1 5 5 5 1 5 26
mp2d 3 6 18 5| 2 8 46
mp2d 1 8 8 8 1 8 36
mp2d 5 1 5 1 5 5 28

Each row lists the numbers for a separate output function of the benchmark circuit.
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lattices with random connectivity. We have been exploring
methods based on the principle of percolation [24].

A significant tangent for this work is its mathematical
contribution: lattice-based implementations present a novel
view of the properties of Boolean functions. We are curious

to study the applicability of these properties to the famous
problem of testing whether two monotone Boolean func-
tions in ISOP form are dual. This is one of the few problems
in circuit complexity whose precise tractability status is
unknown [25].
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