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Permanent and Transient Fault Tolerance for
Reconfigurable Nano-Crossbar Arrays

Onur Tunali and Mustafa Altun

Abstract—This paper studies fault tolerance in switching
reconfigurable nano-crossbar arrays. Both permanent and tran-
sient faults are taken into account by independently assigning
stuck-open and stuck-closed fault probabilities into crosspoints.
In the presence of permanent faults, a fast and accurate heuristic
algorithm is proposed that uses the techniques of index sorting,
backtracking, and row matching. The algorithm’s effectiveness is
demonstrated on standard benchmark circuits in terms of run-
time, success rate, and accuracy. In the presence of transient
faults, tolerance analysis is performed by formally and recursively
determining tolerable fault positions. In this way, we are able to
specify fault tolerance performances of nano-crossbars without
relying on randomly generated faults that is relatively costly
regarding that the number of fault distributions in a crossbar
grows exponentially with the crossbar size.

Index Terms—Fault tolerance, nano-crossbars, permanent and
transient faults/defects, switching arrays.

I. INTRODUCTION

NANO-CROSSBAR arrays have emerged as a strong
candidate technology to replace CMOS in near

future [2], [3]. They are regular and dense structures, and fab-
ricated by exploiting self-assembly as opposed to purely using
lithography-based conventional and relatively costly CMOS
fabrication techniques [4], [5]. Currently, nano-crossbar arrays
are fabricated such that each crosspoint can be used as a con-
ventional electronic component such as a diode, an FET, or
a switch [6], [7]. This is a unique opportunity that allows us
to integrate well developed conventional circuit design tech-
niques into nano-crossbar arrays. However, as expected, the
integration comes with some challenges and fault/defect toler-
ance is one of the significant ones. Fault rates are much higher
for nano-crossbars compared to those of conventional CMOS
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Fig. 1. Nano-crossbar array with faulty/defective crosspoints.

TABLE I
PERMANENT VERSUS TRANSIENT FAULTS

circuits [8], [9]. Therefore developing efficient fault tolerance
techniques for nano-crossbars is a must and the main moti-
vation of this paper. In this paper, we examine reconfigurable
crossbar arrays by considering randomly occurred stuck-open
and stuck-closed crosspoint faults. This is illustrated in Fig. 1.
Our fault tolerance approach is based on an assumption that
a crossbar input can be used for multiple crossbar outputs
(broadcasting allowed) that fits Boolean logic applications. On
the other hand, especially for memory applications a cross-
bar input is strictly used for only one output that necessitates
different fault tolerance approaches [10], [11].

We propose distinct approaches for permanent and transient
faults regarding their exclusive natures as shown in Table I.
In the presence of permanent faults, tolerance is achieved
by mapping target Boolean functions on a defective cross-
bar using crossbar row and column permutations. This is
an NP-complete problem [12]. For the worst-case scenario,
implementing a target function with an N × M crossbar
requires N!M! permutations; computing time quickly grows to
intractable levels with the crossbar size. To tackle this problem,
several approaches have been proposed in the literature that
can be classified into two main categories: 1) defect-unaware
and 2) defect-aware approaches.
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Defect-unaware algorithms aim to find the largest possible
k × k defect-free subcrossbar from a defective N × N cross-
bar where k ≤ N [13]–[15]. Detailed yield analysis of these
algorithms shows a common shortcoming: the algorithms are
inefficient for high fault rates—obtained k values are much
smaller than N [15]. When N = 250 and the fault rate is 15%
that is a reasonable value for nano-arrays, the fastest algo-
rithms find k values as high as 30 [15]. It means that only 1%
of the crossbar can be used. In this regard, defect-aware algo-
rithms perform much more satisfactorily [16]–[18]. A valid
mapping is generally found using a 1.5 times larger row and
column sizes than the optimal sizes. Note that for a specific
target function, the larger the crossbar, the easier to find a valid
mapping due to an increase in solution space. Therefore it is
challenging, as well as desired for area considerations, to find
a mapping with optimal size crossbars. We satisfy this with
our heuristic defect-aware algorithm.

Defect-aware algorithms which use graph-based heuristics,
transform the mapping problem into a graph isomorphism
problem [16], [19], [20]. An initial input assignment is made
to prune the permutation space. However, in case of an unfa-
vorable assignment, the number of reconfigurations needed to
find a valid mapping increases drastically. Additionally, the
runtime quickly grows beyond practical limits, especially for
large-scale target functions. Other algorithms based on inte-
ger linear programming also suffer from runtime inefficiency
for large-scale functions [18], [21]. Apart from the mentioned
methods, a considerably fast memetic algorithm is proposed
to tackle this problem [22]. Here the drawback is that the
starting conditions affect the results significantly. As an exam-
ple, experimental results presented in [22] show as large as
a 25 times difference in runtimes for the same size target
functions. Our proposed algorithm works considerably faster
compared to the algorithms in the literature with nearly steady
runtime values for the same size target functions. To our
knowledge no other algorithm is able to find a valid mapping
for large benchmarks such as “table5” and “t481” with up to
15% fault rates. Additionally, the proposed algorithm shows
99% accuracy in accordance with the results of an exhaustive
search algorithm.

Our algorithm performs sorting to avoid disadvantageous
initial appointments and reduce unnecessary reconfigurations.
For this purpose, matrix and index representations of target
functions and defective crossbars are obtained. Sorted matrices
are matched using 1-D array matchings that makes the map-
ping problem to be solved with mere multiplication operations.
Backtracking is also performed to improve accuracy.

Although permanent fault tolerance of nano-crossbar arrays
have been thoroughly studied in the literature, transient faults
are not adequately emphasized. Redundancy-based approaches
are proposed to tolerate transient faults by exploiting tech-
niques including majority voting, hardening, and fault mask-
ing [17], [23]–[26]. For these studies, the main goal is to
find an efficient method of adding extra redundancies to
correct/detect single or multiple faults while optimizing the
area overhead. In this paper, we do not aim to correct
faults; instead we aim to determine tolerable fault positions in
advance without increasing area. We adopt a formal approach

Fig. 2. Matrix representations and crossbar implementations for a
(a) function f and (b) defective crossbar.

instead of randomly generating faults and checking whether
the faults ruin the crossbar functionality. We determine equiv-
alent logic functions of a target function that denotes the
positions of tolerable faulty switches. We show that iff faults
occur on these positions, the crossbar still implements the cor-
rect function. In other words, we show that it is possible to
tolerate transient faults without adding extra redundancies. In
this way, we are able to specify fault tolerance performance
without relying on a Monte Carlo simulation that is relatively
costly regarding that the number of fault distributions in a
crossbar grows exponentially with the crossbar size.

Our method can be used for the above mentioned studies
to manipulate redundancies using the obtained tolerable fault
positions. Additionally, the obtained equivalent Boolean func-
tions can be used generally for logic equivalence problems.

Organization of this paper is as follows. In Section II, we
present the proposed fault tolerance algorithm for permanent
faults. In Section III, we explain transient faults, their reliabil-
ity analysis, and eventually a performance calculation method.
In Section IV, we present experimental results and elaborate
on them. In Section V, we discuss our contributions and future
works.

A. Definitions

In this section, we explain key concepts used throughout
this paper for both permanent and transient faults.

Definition 1: Consider k independent Boolean variables,
x1, x2, . . . , xk. Boolean literals are Boolean variables and their
complements, i.e., x1, x̄1, x2, x̄2, . . . , xk, x̄k.

Definition 2: A product (P) is an AND of literals,
e.g., P = x1x̄3x4. A sum-of-products (SOPs) expression is an
OR of products.

Definition 3: A prime implicant (PI) of a Boolean func-
tion f is a product that implies f such that removing any literal
from the product results in a new product that does not imply f .
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Definition 4: An irredundant SOPs (ISOPs) expression is
an SOP expression, where each product is a PI and no
PI can be deleted without changing the Boolean function f
represented by the expression.

Definition 5: A sum (S) is an OR of literals, e.g., S = x1+
x̄3 + x4. A product-of-sums (POSs) expression is an AND of
sums.

Definition 6: Function matrix (FM) is a representation of
a Boolean function in SOP form such that the function’s lit-
erals and products are appointed to the matrix columns and
rows, respectively. If a literal occurs in a product, it is denoted
with +1; otherwise −1 is assigned. Fig. 2(a) shows an example
of an FM.

Definition 7: Crossbar matrix (CM) is a representation of
a crossbar array such that functional switches of crossbars
are denoted with 0; defective stuck-closed and stuck-open
switches are denoted with +1 and −1, respectively. Fig. 2(b)
shows an example of a CM by considering stuck-closed and
stuck-open faults.

Definition 8: Logic inclusion ratio (IR) is defined as a ratio
of the number of +1s, corresponding to used switches, to the
total number of elements, +1s and −1s, in an FM. As an
example, consider the FM in Fig. 2(a). Here, the number of
+1s or the number of used switches is 6, so IR = 6/15.

II. PERMANENT FAULT TOLERANCE

We aim to find out a valid mapping, namely a correct
assignment of literals and products of a target function to
inputs and outputs of a given crossbar having permanent faults.
Positions of the faults are known, represented by a CM, prior
to mapping. We consider randomly distributed stuck-closed
and stuck-open faults at crosspoint switches; wire breakdowns
and bridging faults are not considered in this paper.

In case of having a defect-free crossbar, every assign-
ment produces a valid mapping. Fig. 3(a) shows two different
assignments resulting in valid mappings for a target function f .
However, finding a valid mapping for a defective crossbar
requires trials of different assignments. This is illustrated in
Fig. 3(b). While the assignment in the upper part produces an
incorrect mapping since x1 of P1 is positioned on a stuck-open
fault, the assignment in the lower part is correct resulting in a
valid mapping. The main purpose of our algorithm is to find
a correct assignment or a valid mapping; a formal problem
definition is given as follows.

Problem Definition: Consider different assignments of liter-
als (xs) to inputs and products (Ps) to outputs. An input array
I[xi, . . . , xj] and an output array O[Pi, . . . , Pj] are defined
such that ith elements of the arrays are the assigned literal
and product to the ith crossbar input and output, respectively.
The proposed algorithm yields input and output arrays that
establish a valid mapping or a correct assignment. As an exam-
ple, the correct assignment in the lower part of Fig. 3(a) has
I = [x1 x3 x2 x4] and O = [P2 P1 P3].

Our algorithm fundamentally uses index representations of
function and crossbar matrices as well as row/column per-
mutations and matchings. These concepts are explained as
follows.

Fig. 3. Logic function implementations for a (a) defect-free crossbars and
(b) defective crossbars with assignments.

Fig. 4. Row and column permutations of the FM to obtain a valid mapping
in case of having stuck-open faults.

A. Preliminaries

1) Row Index: The number of +1, 0, or −1 valued elements
in a matrix row. For example, the row represented by P1 in
Fig. 4 has a row index of 3 for a chosen value of +1.

2) Column Index: The number +1, 0, or −1 valued
elements in a matrix column. For example, the column repre-
sented by x1 in Fig. 4 has a column index of 1 for a chosen
value of −1.

3) Row Index Set: A set of all row indices of a matrix for
a chosen value of +1, 0, or −1. In Fig. 4, rows represented
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TABLE II
ELEMENT COMPATIBILITY OF FM AND CM

Fig. 5. Hadamard product of row matrices represented by P1 and O1.
The resulting matrix has no negative element; there is a valid matching.

by P1, P2, and P3 have row indices of 1, 2, and 2, respectively,
for a chosen value of −1. So its row index set is IR,F =
{1, 2, 2}, where R stands for row and F stands for function.

4) Column Index Set: A set of all column indices of a
matrix for a chosen value of +1, 0, or −1. In Fig. 4, columns
represented by x1, x2, x3, and x4 have column indices of 2, 2,
1, and 2, respectively, for a chosen value of +1. So its column
index set is IC,F = {2, 2, 1, 2}, where C stands for column and
F stands for function.

5) Row/Column Permutation: In order to find a valid map-
ping, defective switches of a CM which are denoted as +1s
(stuck-closed) and −1s (stuck-open) must be matched with
+1s (used) and −1s (unused), respectively, in an FM. Here, an
important property is that row and column permutations in the
FM do not alter the implemented function. This is an impor-
tant reconfigurability feature for fault tolerance as illustrated
in Fig. 4.

6) Row Matching With Hadamard Product: In order to
match two rows from function and crossbar matrices, we
use Hadamard product by performing element-by-element
multiplication that is similar to an inner product operation
used for vectors. If there is any negative valued element in
the resulting matrix then there is no matching; otherwise there
is a valid matching. Note that functional switches (denoted
with 0) in the CM can be always matched with either +1s or
−1s in the FM. However, +1s and −1s in the CM can only
be matched with +1s and −1s in the FM, respectively. This is
illustrated in Table II. Additionally, Fig. 5 shows an example
for a valid matching between the first rows of the matrices in
case of having stuck-closed and stuck-open faults.

Fig. 6. Outline of the proposed algorithm.

Fig. 7. According to stuck-closed faults (+1) (a) FM and (b) its sorted form.

B. Proposed Algorithm

The outline of our four-step algorithm is shown in Fig. 6.
Step 1 starts with obtaining index sets of function and crossbar
matrices. Using the sets, crossbar matrices are sorted according
to either stuck-closed (+1) or stuck-open (−1) faults such that
rows and columns with the most defective elements are aligned
to the top and the left sides, respectively. Function matrices are
sorted in the same manner as shown in Fig. 7. Using sorted
matrices significantly reduce the matching workload in the



TUNALI AND ALTUN: PERMANENT AND TRANSIENT FAULT TOLERANCE 751

Fig. 8. Example of backtracking for the row R14.

next step. Note that although we treat stuck-closed and stuck-
open faults separately throughout this paper, our algorithm
works properly in case having both fault types in crossbars.

Step 2 performs row by row matching between the sorted
matrices advancing from top to bottom. For the matched matri-
ces, the number of columns is always less than or equal to the
number of rows. In case, a function or a CM does not sat-
isfy this, it is transposed. The reason of this operation is to
decrease the number of trials in step 4.

If an FM row cannot be matched with any of the unmatched
CM rows then the algorithm proceeds to step 3. Fig. 8 illus-
trates an example; numbers in red assigned to the CM rows
represent the orders of the corresponding matched rows in
the FM. Every row of the FM until the 14th row R14 is matched
with a row in the CM. Since R14 cannot be matched with
any of the unmatched rows, backtracking starts by checking
the previously matched crossbar rows from top to bottom.
This results in a matching with the fourth row followed
by performing step 2 by excluding the matched rows. Note
that after backtracking R2 becomes unmatched and is to be
matched with the unmatched CM rows. This prevents a recur-
sive character that would cause a significant computational
load.

In case backtracking does not result in a valid matching, the
algorithm proceeds to step 4 with repeating step 2 (and step 3)
at most permutation limit (PL) times. Here, column permu-
tations are randomly applied. Note that step 4 is used as
a contingency plan to maintain certain performance metrics
including accuracy and success rate (Psucc). Accordingly, the
value of PL is determined. In this paper, we aim to maintain
minimum of 95% success rate. For this purpose, we randomly
generate function and crossbar matrices for different crossbar
sizes with a fault rate of 15% that is an accepted upper limit for
nano-crossbars [27] and an IR of 40% that is a typical average
value for benchmark functions. The results using optimal size

Fig. 9. Minimum PL needed to achieve 95% success rate versus size N×M
for (a) optimal size crossbars and (b) 1.5 larger size crossbars.

crossbars and 1.5 larger sizes than the optimal ones are given
in Fig. 9(a) and (b), respectively. Both graphs clearly show a
steep increase after PL exceeds 2000. It means that selecting
PL considerably larger than 2000 does slightly improve the
success rate of the algorithm while it would increase the run-
time significantly. We select PL = 3000 in this paper. Indeed,
our algorithm proceeds to step 4 only for very small por-
tion of benchmark simulations that are thoroughly explained
in Section IV.

Since permutations are performed column wise, we expect
much stronger relation of PL with the number of columns M
compared to the number of rows N. The relation between PL
and M can be relatively examined with the following probabil-
ity analysis. Consider function and CM rows to be matched.
In case of having stuck-closed faults with a fault probability
of pf , probability of having a valid matching between these
rows can be found as

Prm(M, a, b) =
(M−a

f1−a

)

(M
b

)

where a = pf · M and b = IR · M represent expected values
for the number of 1s in crossbar and function rows, respec-
tively. Additionally, probability of having a valid matching
after performing a pairwise permutation (initially no matching)
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can be found as

Prp(M, a, b) = a · [b− a+ 1] · ( M−a
b−a+1

)

(M
2

) ·
[(M

b

)− (M−a
b−a

)] .

By considering constant IR and pf values, we can comment
that: 1) increasing M makes Prp decrease; 2) decreasing Prp

reduces the effectiveness of performing a permutation; 3) PL
is negatively correlated with Prp; and 4) if Prp decreases to rel-
atively small levels then increasing PL would not significantly
contribute in finding a valid matching that is also verified by
the results in Fig. 9.

A pseudo code of the proposed heuristic algorithm is
depicted in Algorithm 1. The algorithm yields input and output
arrays that establish a valid mapping or a correct assignment
of a target function into a defective crossbar.

C. Performance Evaluation

Our algorithm uses a constant permutation for 1-D (column)
and advancing through the other one (row) that reduces the
number of operations for finding a valid mapping [20], [23].
Instead of using conventional 2-D matchings of matrices, our
algorithm performs considerably faster 1-D matrix row match-
ings. Our motivation is that the main problem of mapping
target functions has many different solutions. Therefore prob-
able information lost in 1-D check can be easily compensated;
backtracking and repeating is also for this purpose. Here, an
important factor is the relation between logic IR and fault
rate. For a constant IR around 40%, a typical average value
for standard benchmark functions, an increase in the fault
rate especially beyond 25% significantly reduces the num-
ber of mapping solutions that worsens the performance of our
algorithm. For fault rates below 25%, our algorithm works
satisfactorily in terms of both runtime and accuracy with sur-
passing related algorithms in the literature. Our algorithm’s
performance is also justified with a complexity analysis as
follows and detailed experimental results in Section IV.

Consider an FM/CM with a size of N ×M where N ≥ M.
The number of initial operations for every row checking is
M for multiplication plus M for comparison, so in total of 2M.
Additionally, each function row is matched with N crossbar
rows, so 2M ·N operations are needed. In case of backtracking,
another N rows need to be checked that results in 2M · [N+N]
operations. For all of the function rows, there are N · [2M ·
[N + N]] operations. Considering PL trials in the last step of
the algorithm, the number of operations become (PL+1) · [2 ·
M ·[N+N]]. If we select a constant number for PL = 3000 that
is independent of M, our algorithm works in O(M · N2) time.
Of course, for the worst-case scenario where M! permutations
are performed, the complexity becomes factorial.

III. TRANSIENT FAULT TOLERANCE

Regarding the probabilistic and the continuous feature of
transient faults in time domain, their tolerance cannot be
achieved by applying the same technique used for perma-
nent faults that is based on fault identification followed by
reconfiguration. Transient fault tolerance is purely based on

Algorithm 1 Heuristic Algorithm
1: Input: Function Matrix (FM), Crossbar Matrix (CM), and

Permutation Limit PL
2: Output: I[i] and O[i] arrays
3:
4: function INDEX_SORT(M)
5: IR,M ← Row Index Set according to the selected fault type
6: IC,M ← Column Index Set according to the selected fault

type
7: Sort IR,M descending
8: Sort IC,M descending
9: row_permutation ← IR,M

10: column_permutation ← IC,M
11: M← M[row_permutation, column_permutation]
12: return M
13: end function
14:
15: INDEX_SORT(FM)
16: I[i] ← column_permutation of FM
17: INDEX_SORT(CM)
18: for t=1 to PL do
19: O[i] = []
20: if t > 1 then
21: change column_permutation
22: I[i] ← column_permutation
23: end if
24: for k=1 to N do
25: F_k ← kth row of FM
26: for j=1 to N and O[j] = [] do
27: C_j ← jth row of CM
28: if F_k .* C_j ≥ 0 then
29: O[k] = j
30: break
31: end if
32: end for
33: if no matching then � Backtracking process
34: for j in O[i] do
35: C_j ← jth row of CM
36: if F_k .* C_j ≥ 0 then
37: O[k] = j
38: break
39: end if
40: end for
41: end if
42: if matching found then � O[i] changed
43: F_m ← previously matched row of FM
44: for j=1 to N and O[j] = [] do
45: C_j ← jth row of CM
46: if F_m .* C_j ≥ 0 then
47: O[m] = j � Rematching process
48: break
49: end if
50: end for
51: end if
52: if no matching found for F_m then
53: break � column_permutation changes
54: end if
55: end for
56: end for

redundancy. For nano-crossbar arrays, redundancy is corre-
lated with the logic IR as well as the used SOP representations
of target functions.

Similar to permanent faults, we consider stuck-open and
stuck-closed transient faults that are treated separately. We
suppose that target functions are implemented in ISOPs forms
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Fig. 10. Implementations in the presence of (a) no faults, (b) stuck-open
faults, and (c) stuck-closed faults.

to minimize the number of used switches for cost optimiza-
tion in fabrication. We analyze fault tolerance performance
of nano-crossbar arrays by considering the specifics of target
functions. Fig. 10 shows an example. A given target function f
in ISOP form is implemented with a fault-free crossbar shown
in Fig. 10(a). When a stuck-open fault occurs on a used switch
(denoted with +1s) as shown in Fig. 10(b), the corresponding
literal is erased from the target function and the correspond-
ing matrix element becomes −1. In this example, since the
new function f ′ is not equal to the original function f , the
fault cannot be tolerated. When a stuck-closed fault occurs on
an unused switch (denoted with −1s) as shown in Fig. 10(c),
the corresponding literal is added to the target function and
the corresponding matrix element becomes +1. Here, the new
function f ′′ is equal to f , so the fault is tolerated.

A. Stuck-Open Faults

Stuck-open faults are tolerated iff they occur on unused
switches. Faults on used switches change the implemented
functions. Since we use ISOP forms of target functions con-
sisting of PIs, by definition removing any literal from a PI
results in a new function. Fault tolerance performance FTso of
an N ×M crossbar can be directly calculated by using

FTso = (1− pso)
N·M·IR

where pso is an independent stuck-open fault probability of
each switch and IR is the logic IR. Note that our analysis
for stuck-open faults is applicable for both single-output and
multioutput functions.

Fig. 11. Tolerable and intolerable (with red crosses) fault positions.

B. Stuck-Closed Faults

We show that along with all stuck-closed faults occurring on
used switches, faults on unused switches can also be tolerated.
This is illustrated in Fig. 11 with a brief summary of our
tolerance analysis method. We determine all possible positions
of tolerable faults on unused switches in the crossbar. These
positions, represented by added +1s in red in Fig. 11, are
determined recursively. First, tolerable fault positions in single
rows are determined. For the example in Fig. 11, among five
rows representing five products of the target function, three
of them have the positions. Therefore there are three matrices
showing tolerable fault positions. Analyzing the first matrix at
the upper-left corner, we conclude that a stuck-closed fault in
the first row at the right end of the crossbar can be tolerated;
f ′ = x1x2x3 + x1 x2x5 + x2x3 + x3x4 + x4x5 = f . The same is
valid for the second and the third matrices as well. Next, we
determine tolerable fault positions simultaneously occurring
in all of the three rows. For the example in Fig. 11, there
is no solution for this case, so we proceed to next steps by
decreasing the number of rows that the faults are seen until
there is a solution. Among

(3
2

) = 3 probable row pairs with
tolerable fault positions, 2 of them have solutions.
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In order to find all possible positions of tolerable faults, we
exploit logic equivalences of Boolean expressions. Consider
a given target function f = P1 + · · · + Pm in ISOP form.
Stuck-closed faults on unused switches add literals to the cor-
responding products that results in a new function named ft.
Our main purpose is finding all fts such that ft = f . Two
examples of fts corresponding to the top two matrices in
Fig. 11 are ft1 = x1x2x3 + x1 x2x5 + x2x3 + x3x4 + x4x5 and
ft2 = x1x2 + x1 x2x5 + x1x2x3 + x3x4 + x4x5. Added products
of literals, shown in red, are named as Ptis where i repre-
sents the corresponding product number. As an example, ft1
has Pt1 = x3; ft2 has Pt3 = x1. A general form of ft can be
represented as

ft{i,...,k} = P1 + · · · + PiPti + · · · + PkPtk + · · · + Pm

where the subscript of f , {i, . . . , k} set shows which products
have added literals.

Our method for finding all ft{i,...,k} = f s has two steps. In
the first step, we determine tolerable fault positions affecting
single products. We obtain all ft{i}s and corresponding Pti s, 1 ≤
i ≤ m for which a necessary and sufficient condition is given
in Theorem 1. In the second step, we first construct an ft such
that it has all Pti s obtained in the first step. If the ft is equal to
the target function f then we are done with finding all tolerable
fault positions; no further steps are necessary as justified by
Theorem 2. If the functions are not equal to each other then we
advance through decrementing the number of products affected
by faults. We repeat this until the equivalence(s) are satisfied.

As a core property used in the theorems, we first present
the following lemma.

Lemma 1: Consider f1 = P1+· · ·+Pi+· · ·+Pm, 1 ≤ i ≤ m,
in SOP form and f2 = S1 · · · Sk in POS form. Additionally, f3
in SOP form is obtained by removing a sum Sj, 1 ≤ j ≤ k,
from f2. If P1 + · · · + Pi · f2 + · · · + Pm = f1 then P1 + · · · +
Pi · f3 + · · · + Pm = f1.

Proof: It is apparent that P1 + · · · + Pi · f3 + · · · + Pm =
P1 + · · · + Pi · f3 · (Sj + Sj)+ · · · + Pm = f1 + P1 + · · · + Pi ·
f3 · Sj + · · · + Pm = f1.

Theorem 1: Consider a function gi = f − Pi in ISOP form
(Pi is excluded from f ). Iff Pti consists of negated forms of
single-literal products in gi(Pi = 1) in ISOP form, f = ft{i} .

Proof: It is trivial that f = Pigi + gi = Pigi(Pi = 1) + gi.
Here, gi(Pi = 1) is a POS expression with sums having either
single literal or multi literals. Single-literal sums are negated
forms of single-literal products in gi(Pi = 1). To eliminate
multiliteral sums from Pigi(Pi = 1), we can directly apply
Lemma 1 with guaranteeing f = ft{i} . To prove sufficiency,
we also show that each literal from Pti should correspond to a
negated form of a single-literal product in gi(Pi = 1). Consider
a literal li from Pti . From Lemma 1, we know that f = Pili+gi.
Since f (Pi = 1) = 1, li + gi(Pi = 1) = 1. This necessitates
having a product li in gi(Pi = 1) in ISOP form.

Theorem 2: If ft{i,...,k} = f , then for ∀x ⊂ {i, . . . , k}, ftx = f .
Proof: The proof is a direct corollary of Lemma 1 from

which we know that we can remove any literal (s) from Pti s
without disturbing the equivalence with f .

Theorem 1 allows us to separately construct Pti s showing
tolerable fault positions for each Pi. Additionally, removing a

literal from Pti s does not ruin the functionality as justified by
Lemma 1 that are considered in our fault tolerance analysis.

Theorem 2 significantly reduces the computing load of find-
ing tolerable fault positions. For example, if we find for a
target function f that ft3,4,8,9 = f , then all tolerable fault com-
binations affecting products of P3, P4, P8, and P9 are known.
For example, ft3,8,9 = f or ft4,9 = f .

We present an example to elucidate our method.
Example 1: Consider a target function in ISOP form

f = x1x2x3 + x2x4x5 + x3x4 + x3x5. Literal set (LS) of f is
LS = {x1, x2, x3, x4, x5, x2, x5}.

Step 1: We find faults affecting single products by exploiting
Theorem 1. We only consider literals being member of LS

g1(P1 = 1) = x4x5

Pt1 = x5

g2(P2 = 1) = x3

Pt2 : not a member of LS

g3(P3 = 1) = x1x2x5

Pt3 = x2, Pt3 = x5, Pt3 = x2x5

g4(P4 = 1) = x4(x1 + x2)

Pt4 : not a member of LS.

Step 2: We first check whether f equals to ft{1,3} having
Pt1 , Pt3 . We start with Pt3 having the largest number of literals

Pt1 = x5

Pt3 = x2x5

f = x1x2x3 + x2x4x5 + x3x4 + x3x5

ft{1,3} = x1x2x3x5 + x2x4x5 + x2x3x4x5 + x3x5.

Since f = ft{1,3} , Theorem 2 ensures that Pt3 = x2 and Pt3 = x5
also makes f = ft{1,3} . Additionally, f = ft{1,3} = ft{1} = ft{3} .
Note that our fault tolerance calculations consider all possible
literal combinations of Pts. As a result, all tolerable stuck-
closed fault positions are found.

Fault tolerance performance FTsc of an N×M crossbar can
be calculated by using

FTsc =
max{AL}∑

i=0

Ci(1− psc)
Z−ALipALi

sc

where psc is an independent stuck-closed fault probability of
each switch; Ci is the number of cases tolerating i faults; and
ALi is the number of added literals to the function f represent-
ing the number of faulty switches; and Z = N·M·(1−IR). Note
that Z−ALi represents the number of unused switches in cross-
bars. Note that C0 represents a fault-free condition and always
C0 = 1. For Example 1, N = 4, M = 7, and IR = 10/28
that results in Z = 18. Additionally C1 = 3, C2 = 3, and
C3 = 1, and suppose that psc = 2%. As a result, FTsc is
calculated as 74%.

C. Fault Tolerance for Multioutput Functions

Although we develop our method for stuck-closed faults
using single-output functions, we can directly apply it to
multioutput functions. We only need a modification for the
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Fig. 12. Crossbar implementation in case of multioutputs showing common
products found in f1 and f2.

first step of our method, obtaining all Pti s. First, we need to
obtain all Pti s for each output function separately. If a product
is used by multiple outputs then only common Ptis for this
product are used. If a product is used by a single output then
we use all of the corresponding Ptis. After having Ptis in the
first step, we follow the same procedure as we do in the sec-
ond step of our method developed for single-output functions.
To elucidate our method for multioutput functions, we present
an example.

Example 2: Considering target functions in ISOP form f1 =
x1x2+ x1x3+ x2x4+ x3x5 and f2 = x1x2+ x1x3+ x2 x4+ x4x5.
Implementation is shown in Fig. 12. LS of f1 and f2 is LS =
{x1, x2, x3, x4, x5, x2, x3, x4}.

Step 1: We find faults affecting single products by exploiting
Theorem 1. We only consider literals being member of LS

For f1
g1(P1 = 1) = x3x4

Pt1 = x3, Pt1 = x4, Pt1 = x3x4

g2(P2 = 1) = x2

Pt2 = x2

g3(P3 = 1) = x1

Pt3 : not a member of LS

g4(P4 = 1) = (x1x4 + x2)

Pt4 : no single literal.

For f2
g1(P1 = 1) = x3(x4 + x5)

Pt1 = x3

g2(P2 = 1) = x2x4x5

Pt2 = x2, Pt2 = x4, Pt2 = x2x4

g3(P3 = 1) = (x1 + x3)

Pt3 : no single literal

g4(P4 = 1) = (x1 + x2x3)

Pt4 : no single literal.

TABLE III
PERFORMANCE OF BENCHMARK FUNCTIONS FOR TRANSIENT FAULTS

WITH 5% FAULT RATE

Since P1 and P2 are common products, we should choose
common Pts for these products that are Pt1 = x3 and Pt2 = x2,
so the tolerance condition is met for both functions.

Step 2: We first check whether f1 equals to f1,t{1,2}

Pt1 = x3

Pt2 = x2

f1,t{1,2} = x1x2x3 + x1x2 x3 + x2 x4 + x3x5.

Since f1,t{1,2} 
= f2 and no more products left, we stop.
We check whether f2 equals to f2,t{1,2}

Pt1 = x3

Pt2 = x2

f2,t{1,2} = x1x2x3 + x1x2 x3 + x2 x4 + x4x5.

Since f2,t{1,2} 
= f2 and no more products left, we stop.
For the above example, N = 6, M = 8, and IR = 16/48

that results in Z = 32. Additionally, C1 = 2 and suppose that
psc = 2%. As a result, FTsc is calculated as 54%.

D. Performance Evaluation

Our method finds all probable places of tolerable stuck-open
and stuck-closed transient faults occurring in nano-crossbars.
Using our method transient fault tolerance performances of
the crossbars can be also calculated. As opposed to the meth-
ods using randomly assigned faults on crossbars such as
a Monte Carlo method, our method purely uses algebraic
equations to find fault performances. This allows to achieve
accurate results even for considerably large crossbars.

Table III shows fault tolerance performances FTso and FTsc
for few benchmark functions with a fault probability of 5%.
For stuck-open faults, since it is not possible to tolerate faults
occurring on used switches, the performance is directly cal-
culated using the logic IR and the crossbar size. However, for
stuck-closed faults there are some cases such that faults on
unused switches are tolerated. Table III shows results derived
by neglecting these cases (direct results) and by considering
them via the proposed method (accurate results); there is as
high as 9% difference between the values.

Our method is applicable to both single-output and
multioutput functions as justified in the previous section.
Another important consideration is redundancy. Although in
this paper, we suppose that target functions are implemented in
ISOPs forms to minimize the number of used switches for cost
optimization in fabrication, this is not a necessary condition
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to apply our tolerance method. In case of having redundancy
in literal level with addition of literals to products, by keeping
the number of products same, our method is directly appli-
cable to find all possible positions of tolerable faults in the
crossbar. We only need to have an ISOP form of the given
expression in SOP form. Indeed, adding a literal to a PI is the
base of our method for stuck-closed faults. Here, the differ-
ence comes in the calculation of fault tolerance performances
FTso and FTsc; given formulas in the previous section need to
be updated that would result in an increase and decrease in
FTso and FTsc values, respectively.

In case of having redundancy in product level, having
multiple lines/wires implementing the same product (as a PI),
our method can be directly applicable for stuck-open faults
including the calculation of FTso since removing any literal
from a PI results in a new function. However, for suck-closed
faults we need modifications especially for Theorem 1. Here,
if a product Pi is implemented A times then for each of the
A wires, we need to calculate Ptis by considering negated
forms of products having at most A literals in gi(Pi = 1).
The calculation of FTsc should be also changed accordingly.
One can also consider redundancy both in literal and prod-
uct levels. Let us explain this with an example using different
implementations with different redundancies.

Example 3: Consider a target function in ISOP form f =
x1x2x3 + x2x4x5 + x3x4 + x3x5 that is the same function used
in Example 1. Consider different implementations of f using
different types of redundancies in Fig. 13.

Fig. 13(a) shows an implementation of f with literal level
redundancy by a 4 × 7 crossbar. Assume that we have a
5% stuck-open fault rate. Tolerable cases become no fault
with (1 − 0.05)12 = 54% probability, single fault with
2 × (1 − 0.05)110.051 = 5% probability, and two faults
with (1 − 0.05)100.052 = 0.1% probability. At the end
FTso = 54% + 5% + 0.1% ≈ 60%. For stuck-closed faults,
we already determine the tolerable positions in Example 1 as
Pt1 = x5, Pt3 = x2x5, and their literal combinations. It is
shown in Fig. 13(a) that Pt1 = x5 and Pt3 = x5 are covered by
literal redundancies, so only tolerable fault is Pt3 = x2. In this
case, N = 4 and M = 7 that results in Z = 16. Additionally
C1 = 1, and suppose that psc = 2%. As a result, FTsc is
calculated as 73%.

Fig. 13(b) shows an implementation of f with product level
redundancy by a 5 × 7 crossbar. Even though a redundant
product is used, we are still working with PIs. So no literal can
be erased from any product. Therefore, with a 5% stuck-open
fault rate, FTso becomes (1−0.05)13 = 51%. For stuck-closed
faults, it is shown in Fig. 13(b) that an extra tolerable fault x5
comes from the product redundancy, so Pt1 = x5, Pt3 = x2x5,
and Pt1 = x5. Calculating all literal combinations with N = 5
and M = 7 results in Z = 22. Additionally, C1 = 4, C2 = 6,
C3 = 4, and C4 = 1. Also suppose that psc = 2%. As a result,
FTsc is calculated as 69%.

Fig. 13(c) shows an implementation of f with literal and
product level redundancies by a 5 × 7 crossbar. Assume that
we have a 5% stuck-open fault rate. Tolerable cases become
no fault with (1 − 0.05)14 = 48% probability and single
fault with (1 − 0.05)130.051 = 2% probability. At the end,

Fig. 13. Tolerance with redundancy-based implementations. (a) Literal
level redundancy. (b) Product level redundancy. (c) Literal and product level
redundancy.

FTso = 48% + 2% = 50%. For stuck-closed faults, Pt3 = x5
is covered by a literal redundancy, so Pt1 = x5, Pt1 = x5,
and Pt3 = x2. In this case, N = 5 and M = 7, that results in
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TABLE IV
SUCCESS RATE (%), RUNTIME (S), AND AVERAGE PERMUTATION VALUES OF THE PROPOSED ALGORITHM

FOR OPTIMAL AND 1.5 LARGER CROSSBAR SIZES WITH 15% STUCK-OPEN FAULT RATE

Z = 21. Additionally, C1 = 3, C2 = 3, and C3 = 1. Also
suppose that psc = 2%. As a result, FTsc is calculated as 69%.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for our
algorithm dealing with permanent faults given in Section II.
We use standard benchmark circuits to measure fault tol-
erance performances of nano-crossbars [28]. We mostly
consider an independent fault probability/rate (Pf) of 15%
for each crosspoint that is an accepted upper limit for
nano-crossbars [27]. We also try higher fault rates to test
our algorithm’s performance limits. Simulations are con-
ducted in MATLAB. Crossbars with random faults are pro-
duced with MATLAB’s predetermined matrix generator; only
stuck-open faults are considered for consistency. All exper-
iments run on a 3.30 GHz Intel Core i5 CPU (only sin-
gle core used) with 4 GB memory. All the benchmark
functions used in the simulations and the source code of
proposed algorithm with supporting material are available
at http://www.ecc.itu.edu.tr/images/f/f2/Fault_Tolerant_Logic_
Mapping_MATLAB.zip.

A. Runtime, Success Rate, and Accuracy

For a given target function with a certain FM size, we con-
sider crossbar matrices both in optimal row-column sizes and
in 1.5 times larger sizes. Although optimal crossbar sizes are
desired for area considerations, it is quite challenging to find
a mapping and that is why using 1.5 larger sizes are preferred
in [16]–[18] and [22]. The larger the crossbar, the easier to
find a valid mapping due to an exponential increase in solution
space regarding the number of probable permutations.

Table IV shows runtime and success rate values of the pro-
posed algorithm for benchmark circuits with 15% stuck-open
fault rate. We select a sample size of 600 around which aver-
age runtime and success rate (probability of success—Psucc)
values become steady. Success rate is calculated as a ratio
of the number of samples with valid mappings/matchings to
the total sample size of 600. As seen from the table, our
algorithm successfully finds mappings for considerably large
benchmark circuits. To our knowledge no other algorithm is
able to find a valid mapping for benchmarks table5 and t481.

Fig. 14. Accuracy of the proposed algorithm for optimal size crossbars using
eight different benchmark circuits.

Examining the numbers in Table IV, we see that our algorithm
does not need a permutation for 1.5 larger crossbars. We also
see that although selecting 1.5 larger crossbars always reduces
the runtime values, it does not necessarily result in better fault
tolerance performances. Optimal size crossbars can also per-
fectly tolerate faults. To elaborate on this, we perform accuracy
analysis as shown in Fig. 14. We compare our optimal size
mapping results with those of an exhaustive search algorithm.
Since it is intractable to implement an exhaustive search for
crossbar sizes larger than 7× 7, only results pertaining to this
limit are presented in Fig. 14 that show an accuracy of atleast
99% for eight different benchmarks BM1–BM8.

In Tables V and VI, runtime comparisons of the memetic
algorithm with fitness approximation [22] and the proposed
heuristic algorithm are given. We use the memetic algorithm
since to our knowledge it is the fastest and the most efficient
algorithm especially for large crossbars. We run the publicly
posted code from [22] and tailor it for our benchmark functions
which is not included in the referenced paper.

Examining the numbers in Tables V and VI, we see that our
runtime values are always better than those of the memetic
algorithm. The memetic algorithm is not able to find a valid
mapping for large functions such as 9sao, table5, and t481
under a reasonable time constraint. Additionally, while runtime
values of the memetic algorithm for large benchmark circuits
produce relatively high standard deviation, our runtimes are
almost stable. Another aspect is that, the memetic algorithm
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TABLE V
SUCCESS RATE (%) AND RUNTIME (s) VALUES OF THE MEMETIC AND THE PROPOSED ALGORITHMS

FOR 1.5 LARGER CROSSBAR SIZES WITH DIFFERENT STUCK-OPEN FAULT RATES

TABLE VI
SUCCESS RATE (%) AND RUNTIME (s) COMPARISON OF THE MEMETIC AND THE PROPOSED ALGORITHMS FOR 16× 16

AND 24× 24 SIZE BENCHMARKS USING 1.5 LARGER CROSSBAR SIZES, STUCK-OPEN FAULT RATE: 15%, IR: 40%

is not as immune to an increase in fault rate as the proposed
algorithm does.

B. Effectiveness and Limitations

In our algorithm if no matching is found initially, column
permutations are changed to find a matching that is repeated at
most PL times. Experimentally we found that PL = 3000 for
our benchmarks. The reason of selecting 3000 as a trial limit is
our goal of maintaining minimum of 95% success rate. Indeed,
for most cases repeating is not necessitated. Especially for 1.5
larger crossbar sizes, no permutation is needed at all; all results
with having nonzero success rates in Tables IV–VI do not
need any a permutation (PL = 0). However, for optimal sizes,
we sometimes need permutations. Fig. 15 illustrates this by
presenting the number of permutations for different benchmark
circuits using 50 samples.

We explore our algorithm’s performance limitations by
increasing fault rates and row/column sizes. The limitations
are directly correlated to the size of the solution space. As
expected, the solution space diminishes if fault rates are get-
ting close to IR and 1-IR in the presence of stuck-closed, and
stuck-open faults, respectively. This is illustrated in Fig. 16
for stuck-open faults using 1.5 times larger crossbars. Here,
success rates drop sharply after certain threshold values that
are positively correlated with 1-IR values of the benchmarks.

Increasing row or column sizes also affect the solution
space. Recall that our algorithm uses a constant permutation
for 1-D (column) and advancing through the other one (row)
that reduces the number of operations for finding a valid map-
ping. Therefore, while increasing row sizes does not directly
affect the solution space for matchings, an increase in col-
umn size dramatically reduces it. To overcome this problem,
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Fig. 15. Number of permutations to find a valid mapping for each sample
using optimal size crossbars.

Fig. 16. Success rate versus fault rate; inc, bw, and 5xp1 have IRs of 40%,
35%, and 28%, respectively.

Fig. 17. Runtime changes with an increase in either row or column size,
IR = 40%.

our algorithm transposes given matrices to satisfy that the
number of columns is always less than or equal to the number
of rows. To see the effects of column and row increases to
our algorithm, we discard transposing operation. The results
are given in Fig. 17 for stuck-open faults using 1.5 times larger
crossbars and IR = 0.4. As it appears from the figure, the run-
time sharply increases from 0.002 to 1.2 s if the crossbar size

increases from 48×30 to 48×42. As a result, for the same size
crossbars, same N·M, our algorithm works more satisfactorily
if the crossbar column and row sizes are more apart from each
other.

Another limitation of our algorithm would be its accu-
racy in case of having a small solution space. Indeed, this
is a general problem for heuristic algorithms. To overcome
this problem, exact algorithms exploiting a subgraph isomor-
phism can be used [29] if runtime is not a main concern. In
addition, a slower algorithm using pruning techniques can be
exploited [30].

V. CONCLUSION

In this paper, we propose a fast heuristic algorithm to tol-
erate permanent faults in nano-crossbar arrays by exploiting
the techniques of index sorting, backtracking, and row match-
ing. The algorithm’s effectiveness is demonstrated on standard
benchmark circuits in comparison with the related studies in
the literature. Also we develop a method to accurately ana-
lyze transient fault tolerance of nano-crossbar arrays. The
method formally and recursively finds tolerable fault positions
represented by Boolean logic expressions. Using the method,
transient fault tolerance performances of the crossbars can be
calculated.

Throughout this paper, we treat stuck-closed and stuck-open
faults separately. Indeed, for permanent faults our algorithm
works properly in case having both fault types in crossbars.
Matrices are sorted according to stuck-closed and stuck-open
faults in case of having a higher stuck-closed and stuck-open
fault rates, respectively. However, the efficiency of the algo-
rithm would not be satisfactory if we have close fault rates.
This is considered as a future work. Another future direction
is to develop circuit design and optimization techniques for
given fault tolerance specifications by simultaneously treat-
ing permanent and transient faults. We also aim to extend
this paper to be applicable for different emerging technologies
including magnetic and memristive switch-based nanoarrays.
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