
Synthesis and Optimization of Switching Nanoarrays

Muhammed Ceylan MORGUL and Mustafa ALTUN,

Department of Electronics and Communication Engineering,
Istanbul Technical University, Istanbul, TURKEY
Emails: morgul@itu.edu.tr, altunmus@itu.edu.tr

Abstract — In this paper, we study implementation of Boolean

functions with crossbar nanoarrays where each crosspoint
behaves as a switch. This study has two main parts “formulation”
and “optimization”. In the first part of formulation, we
investigate nanoarray based implementation methodologies in the
literature. We classify them as two-terminal or four-terminal
switch based. We generalize these methodologies to be applicable
for any given Boolean function by offering array size
formulations. In the second part of optimization, we focus on
four-terminal switch based implementations; we propose a
synthesis method to implement Boolean functions with optimal
array sizes. Finally, we perform synthesis trials on standard
benchmark circuits to evaluate the proposed optimal method in
comparison with previous nanoarray based implementation
methods. The proposed synthesis method gives by far the
smallest array sizes and offers a new design paradigm for
nanoarray based computing architectures.

Keywords—switching nanoarrays; logic synthesis; optimization

I. INTRODUCTION
CMOS transistor dimensions have been shrinking for

decades in an almost regular manner. Nowadays this trend has
reached a critical point and it is widely accepted that the trend
will end in a decade [1]. Even Gordon Moore, who made the
most influential prediction in 1965 about CMOS size shrinking
(Moore Law), accepted that his prediction will lose it validity
in near future [2]. At this point, research is shifting to novel
forms of nanotechnologies including molecular-scale self-
assembled systems [3-4]. Such technologies have apparent
advantages over conventional CMOS technologies, such as
high density and easy manufacturability. Unlike conventional
CMOS that can be patterned in complex ways with
lithography, self-assembled nanoscale systems generally
consist of regular structures. Logical functions and memory
elements are achieved with arrays of crossbar-type switches. In
this study, we target this type of switching arrays where each
crosspoint behaves as a switch, either two-terminal or four-
terminal. This is illustrated in Figure 1. We implement Boolean
functions by considering array sizes. Table 1 compares
different implementation methodologies for few XOR
functions (Parity functions) regarding the array sizes. The
columns “diode based” and “transistor based” represent two-
terminal switch based implementation methodologies. These
methodologies have been proposed to implement simple logic
functions [5-6]. In this study, we generalize them to be
applicable for any given Boolean function with offering array
size formulations. The last two columns represent four-terminal
switch based implementation methodologies that offer
favorably better results. The results shown in bold from the
last column are taken from our synthesis method proposed in

this study that implements Boolean functions with optimal
array sizes.

Two-terminal switch

Closed Open

Four-terminal switch

Closed Open

Switching nano array

Fig. 1. A switching crossbar nanoarray modeled with two-terminal and four-

terminal switches.
TABLE 1

ARRAY SIZES FOR NANOARRAY COMPUTING MODELS; XOR2 = X1� X2,
XOR3 = X1� X2� X3, AND XOR4 = X1� X2� X3� X4.

Two-terminal switch
based nanoarray models

Four-terminal switch
based nanoarray models

Diode
based [7]

Transistor
based [8]

Four-
terminal [9]

Four-terminal
(Proposed)

XOR2 2×5 array
10 switches

4×4 array
16 switches

2×2 array
4 switches

2×2 array
4 switches

XOR3 4×7 array
28 switches

6×8 array
48 switches

4×4 array
16 switches

3×3 array
9 switches

XOR4 8×9 array
72 switches

8×16 array
128 switches

8×8 array
64 switches

3×5 array
15 switches

 Although this study is at the technology-independent level,
the targeted two-terminal and four-terminal switching arrays
have applications in variety of emerging technologies including
nanowire crossbar arrays [8-10], magnetic switch-based
structures [11], arrays of single -electron transistors [12], and
memristive arrays [13]. Furthermore, switching nanoarrays
have true potential for commercial fabrication [16]. Figure 2
shows a SEM image of a 2x2 nano-crossbar array made by n-
type nanowires and a complete fabricated chip of a
nanocomputer.

 a) b)
Fig 2. SEM image of a) a 2x2 nano-crossbar array [4] and b) a complete
fabricated chip [16].

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.51

165

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.51

165

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.51

165

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.51

161

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.51

161

The paper is organized as follows. In Section II, we
investigate nanoarray based implementation methodologies and
propose generalized array size formulations. In Section III, we
focus on four-terminal switch based implementation techniques
and propose a synthesis method to implement Boolean
functions with optimal array sizes. In Section IV, we evaluate
our synthesis methods on standard benchmark circuits. In
Section V, we discuss the contributions of this study.
A. Definitions
Consider k independent Boolean variables, x1, x2, …., xk.
Boolean literals are Boolean variables and their complements,
i.e., x1, �����, x2, �����,…., xk, �����. A product (P) is an AND of
literals, e.g., P = x1����� x3. A sum-of-products (SOP) expression
is an OR of products. An irredundant sum-of-products
(ISOP) expression is an SOP expression with minimum
number of products.

f and g are dual Boolean functions iff

f (x1, x2, …., xk) = �	
(�����, �����, …., �����).

Given an expression for a Boolean function in terms of AND,
OR, NOT, 0, and 1, its dual can also be obtained by
interchanging the AND and OR operations as well as
interchanging the constants 0 and 1. For example, if f (x1, x2,
x3)= x1 x2 + x1����� then f D (x1, x2, x3) = (x1 + x2) (x1 + �����). A trivial
example is that for f = 1, the dual is f D = 0.

II. IMPLEMENTATION METHODOLOGIES AND FORMULATIONS
We investigate three major implementation methodologies

developed for switching nanoarrays. We classify them as two-
terminal or four-terminal switch based.

A. Two-terminal switch based methodologies
These methodologies consider each crosspoint of an array

as a two-terminal switch that behaves like a diode or a CMOS
transistor. This is illustrated in Figure 3. Since diodes and
CMOS transistors conduct current through their two terminals
that are anode & cathode for diodes and source & drain for
CMOS transistors, they are fundamentally two-terminal
switches.

Diode basedNano array

Crosspoint

CMOS based

Fig. 3. A switching crossbar nanoarray modeled with diode and CMOS
based two-terminal switches.

Boolean functions are implemented by using conventional
techniques from diode-resistor logic and CMOS logic with an
important constraint regarding nanoarray structures. Boolean
functions should be implemented in their sum-of-products
(SOP) forms; other forms such as factored or BDD can not be
used since these forms require manipulation/wiring of switches
that is not applicable for self-assembled nanoarrays. Figure 4
shows implementation of a Boolean function XOR2 with diode
and CMOS based nanoarrays.

R1

A

B

f

x1R3

f

R2

R1

x2 x2x1

a)

f

x1

x2

x2

PMOS part NMOS part

b)

x1

Fig. 4. a) Diode and b) CMOS based nanoarrays implementing
XOR2 = x1� x2 with 2×5 and 4×4 arrays, respectively

Array size formulations: Given a target Boolean function f,

we derive formulas of the array sizes required to implement f.
This is shown in Table 2. For diode based implementations,
each product of f requires a row (horizontal line), and each
literal of f requires a column (vertical line) in an array.
Additionally, one extra column is needed to obtain the output.
For CMOS based implementations, each product of f and f D
requires a column, and each literal of f requires a row in an
array. As an example shown in Figure 4, f = XOR2 = ������� +
������� has 4 literals and 2 products; f D =
���� + �����
����� has 2
products. This results in array sizes of 2×5 and 4×4 for diode
and CMOS based implementations, respectively. Note that
both formulas, for diode and CMOS, always result in optimal
array sizes; no further reduction is possible.

TABLE 2
ARRAY SIZE FORMULAS FOR DIODE AND CMOS BASED IMPLEMENTATIONS
Type Array Size Formulas
Diode (number of products in f) x (“number of literals in f ”+ 1)

CMOS (number of literals in f) x (“number of products in f ” +
“number of products in f D”)

B. Four-terminal switch based methodology
This methodology considers each crosspoint of an array as

a four-terminal switch. This is illustrated in Figure 5. Boolean
functions are implemented with top-to-bottom paths in an array
by taking the sum (OR) of the product (AND) of literals along
each path. This makes Boolean functions implemented in their
sum-of-products (SOP) forms. Figure 6-a) and Figure 6-b)
show the implementations of a Boolean function XOR2 in an
array and lattice representations, respectively. Figure 6-c)
shows a lattice of four-terminal switches implementing a
Boolean function x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6. The
function is computed by taking the sum of the products of the
literals along each path. These products are x1x2x3, x1x2x5x6,
x2x3x4x5, and x4x5x6.

Nano array

Crosspoint

Four-terminal

Fig. 5. A switching crossbar nanoarray modeled with four-terminal switches.

166166166162162

x1

x2

x2

x1

f
R

x2 x1

x1 x2

TOP

BOTTOM

R

b)a)

x2 x5

x1 x4

TOP

x3 x6

BOTTOM

c)
Fig. 6. a) Four-terminal switch based nanoarray and b) its lattice
representation implementing XOR2 = x1� x2 with a size of 2×2 c) Four-
terminal switch based lattice implementing x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

Array size formulation: Given a target Boolean function f,
the array size formula was proposed by Altun and Riedel [9]
that is shown in Table 2. In their implementation, each product
of f and f.D require a column and a row, respectively, in an
array. As an example shown in Figure 6-a), f = XOR2 = ������� +
������� and f.D=
���� + �����
����� have both 2 products. This results
in an array size of 2×2.

TABLE 3
ARRAY SIZE FORMULA FOR FOUR-TERMINAL SWITCH BASED IMPLEMENTATION

Type Array Size Formula
Four-

terminal (number of products in f) x (number of products in f D)

Examining the array size formulas in Table 2 and Table 3,
we see that while the formulas in Table 2 always result in
optimal sizes, but the sizes derived from the formula in Table 3
that is for four-terminal switch based arrays, are not necessarily
optimal. In the following section we propose an algorithm that
finds an optimal size implementation of any given target
Boolean function.

III. OPTIMIZATION
Finding whether a certain array with assigned literals to its

switches implements a target function is the main problem in
finding optimal sizes. This problem requires to check if each
assignment of 0’s and 1’s to the switches, corresponding to a
row of the target function’s truth table, results in logic 1 (a top-
to-bottom path of 1’s exists). To check this we have to
enumerate all top-to-bottom paths that is exponentially
growing with the array size. Therefore any algorithm that finds
optimal sizes should have exponential time complexity with
respect to the array size so is our algorithm.

Our algorithm finds optimal array sizes to implement given
target Boolean functions with arrays of four-terminal switches
in four steps:

1) Obtain irredundant sum-of-products (ISOP) expressions of
a given-target function fT and its dual fT

D. Determine the
upper bound on the array size using the formula in Table 3:
Upper Bound (UB): (number of products in fT) x (number
of products in fT

D).
The implementable lower bound (LB) values are taken
from the lower bound table proposed in [9].

2) List the array shapes (RxC) (which are in between LB and
UB) into the ‘List of Implementable Nanoarray Shapes’ and
sort them regarding of array sizes, in ascending order.
While ordering, first take the array shape which has lower

number of rows (e.g. if the kth shape is “3x4”, then the (k+1)th
shape can be “4x3”.). Suppose that there are total of N
different shapes in the list. For step-3, start with n=1
(1�n�N).

3) Compute the value of the following statement for the nth
shape.
The Statement: An array which has the shape in the nth line
of the list is implementable for fT.
If the statement is TRUE
 Change UB to the RxC (save the design);
 Go to the step-4;
If the statement is FALSE
 Increase the number “n” by 1 (n=n+1);
 Repeat step-3

4) Declare that UB is optimal size for given-target function fT
can be realized in.
Our algorithm is mainly based on finding a design in a

certain sized array such that the design implements fT. Our
algorithm does not check every possible design. If it did then
the algorithm would be intractable even for small sized arrays.
For example, if a target function fT having 6 variables, 8
literals, is tested on a 3x4 array then there are 1210 possible
designs and 26 truth table rows. Note that for each of the 12
switches in the array there are 10 different options; it might be
one of the 8 literals, 0, or 1. In this scenario, the algorithm
would have to check 1210x26 truth table rows. To overcome
this problem, we discard a significant portion of designs to be
checked. For this purpose, we offer 3 major improvements:

 I) We create a library of reduced number of Rx2 sized sub-
designs. We use them to achieve RxC sized designs. While
creating sub-designs we exploit the following simple lemmas.
First lemma allows us to discard designs implementing a
product (s) that does not imply fT. The second lemma allows
us to discard designs with “0” assignments to the switches if fT
has a product having a single literal.

Lemma 1: If a design has a path realizing a product p for
which fT � fT+p, then the design can not implement fT.

Proof: Since p is not an implicant of fT, then a design
including p implements a different function.

Lemma 2: If a function fT has a single variable product
term p=x then the algorithm does not need to assign “0” to the
switches.

Proof: All the “0” assignments can be replaced with x’s
without a loss of generality.

II) If there is a product of fT such that the number of
literals of the product equals to the number of switches in the
longest top-to-bottom path in the array, then we settle that
particular product onto that particular path.

III) We discard designs having fewer number of total
literals than the total number literals of fT.

These improvements make our algorithm much faster. As
an example, suppose that XOR3 is given as a target function for
which the improved algorithm runs roughly 400 times faster.
For 3x2 sized sub-designs, there are 86=262,144 designs. With
applying the proposed improvements, this number is reduced
to 12,114, roughly 20 times smaller than the unimproved one.
Since we use two sub-arrays for XOR3, for the optimal array
size of 3x4, the improved algorithm works 400 times faster.

167167167163163

IV. EXPERIMENTAL RESULTS
TABLE 4

EXPERIMENTAL RESULTS FOR STANDARD BENCHMARK CIRCUITS

Benchmark CMOS Diode 4-Terminal Optimal 4-
Terminal Benchmark CMOS Diode 4-Terminal Optimal 4-

Terminal
Alu 0 30 18 6 6 Dc1 2 72 36 16 12
Alu 1 30 18 6 6 Dc1 5 35 15 12 6
Alu 2 30 18 6 6 Dc1 6 36 18 9 6
Alu 3 30 18 6 6 Ex5 31 156 104 32 24
B12 0 80 32 24 12 Ex5 33 110 77 21 21
B12 1 120 70 35 16 Ex5 46 81 54 18 18
B12 3 30 20 8 8 Ex5 49 72 54 12 12
B12 4 42 28 8 8 Ex5 50 81 63 14 14
B12 6 132 77 35 18 Ex5 61 64 48 12 12
B12 7 110 66 24 18 Ex5 62 49 35 10 10
B12 8 90 70 14 14 Misex1 1 48 16 8 8
C17 0 36 18 9 6 Misex1 2 132 55 35 15
C17 1 30 20 8 8 Misex1 3 156 60 40 24
Clpl 0 64 32 16 12 Misex1 4 121 44 28 16
Clpl 1 36 18 9 9 Misex1 5 90 45 25 15
Clpl 2 16 8 4 4 Misex1 6 143 66 42 18
Clpl 3 144 72 36 18 Misex1 7 81 36 20 15
Clpl 4 100 50 25 15 Mp2d 4 345 75 90 24
Dc1 1 25 10 6 6 Newtag 108 72 32 18

 In Table 4 we report synthesis results for standard
benchmark circuits [14]. We treat each output of a
benchmark circuit as a separate target function. The number
of products for each target function fT and its dual fT

D are
obtained through sum-of-products minimization using the
program Espresso [15]. The array size values for “Diode”,
“CMOS”, and “4-terminal” are calculated by using the
formulas in Table 2 and Table 3. The array size values for
“Optimal 4-terminal” are obtained using the proposed
optimization algorithm in Section III: Optimization.

 Examining the numbers in Table 4, we always see the
same sequence from the worst to the best result as
“CMOS”, “Diode”, “4-terminal”, and “Optimal 4-
terminal”. This demonstrates that nanoarray models based
on four-terminal switches overwhelm those based on two-
terminal switches regarding the array size. Further, the
numbers obtained by our optimal synthesis method
compares very favorably to the numbers obtained by
previous methods.

V. CONCLUSION
 In this paper, we extensively investigate computing
models developed for switching nanoarrays. We classify
them as two-terminal or four-terminal switch based. We
derive array size formulations in terms of the properties of
given Boolean functions. We synthesize arrays of four-
terminal switches to implement Boolean functions with
optimal array sizes. We perform synthesis trials on standard
benchmark circuits to evaluate the proposed optimal method
in comparison with previous methods by using their derived
formulas. The proposed synthesis method gives by far the
smallest array sizes and offers a new design paradigm for
nanoarray based computing architectures. With this
promising motivation, we seek to develop our algorithm to
make it useful for complex benchmark functions.

ACKNOWLEDGMENT
This work is supported by TUBITAK (The Scientific and

Technological Council of Turkey) Career Program
#113E760.

REFERENCES
[1] "Overall Technology Roadmap Characteristics". International

Technology Roadmap for Semiconductors. 2010. Retrieved 2013.
[2] Dubash, M. Moore’s Law is dead, says Gordon Moore. Techworld.

com, 13 (2005).
[3] Ariga, Katsuhiko, et al. "Two-dimensional nanoarchitectonics based

on self-assembly." Adv. in colloid & interface science 154 (2010)
[4] Whitesides G. M. and Grzybowski B.. Self-assembly at all scales.

Science, 295(5564):2418-2421, (2002).
[5] Chen, Zhihong, et al. "An integrated logic circuit assembled on a

single carbon nanotube." Science 311.5768 (2006): 1735-1735.
[6] Yan, Hao, et al. "Programmable nanowire circuits for

nanoprocessors." Nature 470.7333 (2011): 240-244.
[7] Huang, Yu, et al. "Logic gates and computation from assembled

nanowire building blocks." Science 294.5545 (2001): 1313-1317.
[8] Snider, Greg. "Molecular-junction-nanowire-crossbar-based inverter,

latch, and flip-flop circuits, and more complex circuits composed, in
part, from molecular-junction-nanowire-crossbar-based inverter,
latch, and flip-flop circuits." U.S. Patent No. 6,919,740. 19 Jul. 2005.

[9] Altun, Mustafa, and Marc D. Riedel. "Logic synthesis for switching
lattices." Computers, IEEE Transactions on 61.11 (2012): 1588-1600.

[10] Dehon, André. "Nanowire-based programmable architectures." ACM
J. on Emerging Tech. in Computing Sys. (JETC) 1.2 (2005): 109-162.

[11] Khitun, Alexander, Mingqiang Bao, and Kang L. Wang. "Spin wave
magnetic nanofabric: A new approach to spin-based logic circuitry."
Magnetics, IEEE Transactions on 44.9 (2008): 2141-2152.

[12] Chen, Yung-Chih, et al. "Automated mapping for reconfigurable
single-electron transistor arrays." Proceedings of the 48th Design
Automation Conference. ACM, 2011.

[13] Levy, Yifat, et al. "Logic operations in memory using a memristive
Akers array." Microelectronics Journal (2014).

[14] K. McElvain, “IWLS93 benchmark set: Version 4.0, distributed as
part of the IWLS93 benchmark distribution,
http://www.cbl.ncsu.edu:16080/benchmarks/lgsynth93/,” 1993.

[15] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984.

[16] Yao. J.; Yan, H.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C.
M. Nanowire nanocomputer as a finite-state machine. Proc. Natl.
Acad. Sci. U.S.A. (2014), 111, 2431– 2435.

168168168164164

