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Abstract — In this paper, we study implementation of Boolean 

functions with crossbar nanoarrays where each crosspoint 
behaves as a switch. This study has two main parts “formulation” 
and “optimization”. In the first part of formulation, we 
investigate nanoarray based implementation methodologies in the 
literature. We classify them as two-terminal or four-terminal 
switch based. We generalize these methodologies to be applicable 
for any given Boolean function by offering array size 
formulations. In the second part of optimization, we focus on 
four-terminal switch based implementations; we propose a 
synthesis method to implement Boolean functions with optimal 
array sizes. Finally, we perform synthesis trials on standard 
benchmark circuits to evaluate the proposed optimal method in 
comparison with previous nanoarray based implementation 
methods. The proposed synthesis method gives by far the 
smallest array sizes and offers a new design paradigm for 
nanoarray based computing architectures.  

Keywords—switching nanoarrays; logic synthesis; optimization  

I.  INTRODUCTION 
CMOS transistor dimensions have been shrinking for 

decades in an almost regular manner. Nowadays this trend has 
reached a critical point and it is widely accepted that the trend 
will end in a decade [1]. Even Gordon Moore, who made the 
most influential prediction in 1965 about CMOS size shrinking 
(Moore Law), accepted that his prediction will lose it validity 
in near future [2]. At this point, research is shifting to novel 
forms of nanotechnologies including molecular-scale self-
assembled systems [3-4]. Such technologies have apparent 
advantages over conventional CMOS technologies, such as 
high density and easy manufacturability. Unlike conventional 
CMOS that can be patterned in complex ways with 
lithography, self-assembled nanoscale systems generally 
consist of regular structures. Logical functions and memory 
elements are achieved with arrays of crossbar-type switches. In 
this study, we target this type of switching arrays where each 
crosspoint behaves as a switch, either two-terminal or four-
terminal. This is illustrated in Figure 1. We implement Boolean 
functions by considering array sizes. Table 1 compares 
different implementation methodologies for few XOR 
functions (Parity functions) regarding the array sizes. The 
columns “diode based” and “transistor based” represent two-
terminal switch based implementation methodologies. These 
methodologies have been proposed to implement simple logic 
functions [5-6]. In this study, we generalize them to be 
applicable for any given Boolean function with offering array 
size formulations. The last two columns represent four-terminal 
switch based implementation methodologies that offer 
favorably better results.  The results shown in bold from the 
last column are taken from our synthesis method proposed in 

this study that implements Boolean functions with optimal 
array sizes. 
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Fig. 1. A switching crossbar nanoarray modeled with two-terminal and four-

terminal switches. 
TABLE 1 

ARRAY SIZES FOR NANOARRAY COMPUTING MODELS; XOR2 = X1� X2, 
XOR3 = X1� X2� X3, AND XOR4 = X1� X2� X3� X4. 

Two-terminal switch 
based nanoarray models 

Four-terminal switch 
based nanoarray models 

 
 

Diode  
based [7] 

Transistor 
based [8] 

Four-
terminal [9] 

Four-terminal 
(Proposed) 

XOR2 2×5 array 
10 switches 

4×4 array 
16 switches 

2×2 array 
4 switches 

2×2 array 
4 switches 

XOR3 4×7 array 
28 switches 

6×8 array 
48 switches 

4×4 array 
16 switches

3×3 array 
9 switches 

XOR4 8×9 array   
72 switches 

8×16 array 
128 switches 

8×8 array 
64 switches

3×5 array 
15 switches 

 Although this study is at the technology-independent level, 
the targeted two-terminal and four-terminal switching arrays 
have applications in variety of emerging technologies including 
nanowire crossbar arrays [8-10], magnetic switch-based 
structures [11], arrays of single -electron transistors [12], and 
memristive arrays [13]. Furthermore, switching nanoarrays 
have true potential for commercial fabrication [16]. Figure 2 
shows a SEM image of a 2x2 nano-crossbar array made by n-
type nanowires and a complete fabricated chip of a 
nanocomputer.  

  
      a)   b) 
Fig 2. SEM image of a) a 2x2 nano-crossbar array [4] and b) a complete 
fabricated chip [16].  
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The paper is organized as follows. In Section II, we 
investigate nanoarray based implementation methodologies and 
propose generalized array size formulations. In Section III, we 
focus on four-terminal switch based implementation techniques 
and propose a synthesis method to implement Boolean 
functions with optimal array sizes. In Section IV, we evaluate 
our synthesis methods on standard benchmark circuits. In 
Section V, we discuss the contributions of this study. 
A. Definitions 
Consider k independent Boolean variables, x1, x2, …., xk. 
Boolean literals are Boolean variables and their complements, 
i.e., x1, �����, x2, �����,…., xk, �����. A product (P) is an AND of 
literals, e.g., P = x1����� x3. A sum-of-products (SOP) expression 
is an OR of products. An irredundant sum-of-products 
(ISOP) expression is an SOP expression with minimum 
number of products.  

f and g are dual Boolean functions iff 

f (x1, x2, …., xk) = �	
(�����, �����, …., ����� ). 

Given an expression for a Boolean function in terms of AND, 
OR, NOT, 0, and 1, its dual can also be obtained by 
interchanging the AND and OR operations as well as 
interchanging the constants 0 and 1. For example, if f (x1, x2, 
x3)= x1 x2 + x1����� then f D (x1, x2, x3) = (x1 + x2) (x1 + �����). A trivial 
example is that for f = 1, the dual is f D = 0.  

II. IMPLEMENTATION METHODOLOGIES AND FORMULATIONS  
We investigate three major implementation methodologies 

developed for switching nanoarrays. We classify them as two-
terminal or four-terminal switch based.   

A. Two-terminal switch based methodologies 
These methodologies consider each crosspoint of an array 

as a two-terminal switch that behaves like a diode or a CMOS 
transistor.  This is illustrated in Figure 3. Since diodes and 
CMOS transistors conduct current through their two terminals 
that are anode & cathode for diodes and source & drain for 
CMOS transistors, they are fundamentally two-terminal 
switches.   

Diode basedNano array 
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Fig. 3. A switching crossbar nanoarray modeled with diode and CMOS 
based two-terminal switches. 

Boolean functions are implemented by using conventional 
techniques from diode-resistor logic and CMOS logic with an 
important constraint regarding nanoarray structures. Boolean 
functions should be implemented in their sum-of-products 
(SOP) forms; other forms such as factored or BDD can not be 
used since these forms require manipulation/wiring of switches 
that is not applicable for self-assembled nanoarrays. Figure 4 
shows implementation of a Boolean function XOR2 with diode 
and CMOS based nanoarrays.  
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Fig. 4. a) Diode and b) CMOS based nanoarrays implementing                  
XOR2 = x1� x2 with 2×5 and 4×4 arrays, respectively 

Array size formulations: Given a target Boolean function f, 

we derive formulas of the array sizes required to implement f. 
This is shown in Table 2. For diode based implementations, 
each product of f requires a row (horizontal line), and each 
literal of f requires a column (vertical line) in an array. 
Additionally, one extra column is needed to obtain the output. 
For CMOS based implementations, each product of f and f D 
requires a column, and each literal of f requires a row in an 
array. As an example shown in Figure 4, f = XOR2 = ������� + 
�������  has 4 literals and 2 products; f D =
���� + �����
����� has 2 
products. This results in array sizes of 2×5 and 4×4 for diode 
and CMOS based implementations, respectively. Note that 
both formulas, for diode and CMOS, always result in optimal 
array sizes; no further reduction is possible. 

TABLE 2 
ARRAY SIZE FORMULAS FOR DIODE AND CMOS BASED IMPLEMENTATIONS 
Type Array Size Formulas 
Diode (number of products in f ) x (“number of literals in f ”+ 1) 

CMOS (number of literals in f ) x (“number of products in f ” + 
“number of products in f D”) 

B. Four-terminal switch based methodology 
This methodology considers each crosspoint of an array as 

a four-terminal switch.  This is illustrated in Figure 5. Boolean 
functions are implemented with top-to-bottom paths in an array 
by taking the sum (OR) of the product (AND) of literals along 
each path. This makes Boolean functions implemented in their 
sum-of-products (SOP) forms. Figure 6-a) and Figure 6-b) 
show the implementations of a Boolean function XOR2 in an 
array and lattice representations, respectively. Figure 6-c) 
shows a lattice of four-terminal switches implementing a 
Boolean function x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.  The 
function is computed by taking the sum of the products of the 
literals along each path. These products are x1x2x3, x1x2x5x6, 
x2x3x4x5, and x4x5x6. 
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Fig. 5. A switching crossbar nanoarray modeled with four-terminal switches. 

166166166162162



x1

x2

x2

x1

f
R

x2 x1

x1 x2

TOP

BOTTOM

R

b)a)

x2 x5

x1 x4

TOP

x3 x6

BOTTOM

c)  
Fig. 6. a) Four-terminal switch based nanoarray and b) its lattice 
representation implementing XOR2 = x1� x2 with a size of 2×2 c) Four-
terminal switch based lattice implementing x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.  

Array size formulation: Given a target Boolean function f, 
the array size formula was proposed by Altun and Riedel [9] 
that is shown in Table 2. In their implementation, each product 
of f and f.D require a column and a row, respectively, in an 
array. As an example shown in Figure 6-a), f = XOR2 = ������� + 
�������  and f.D=
���� + �����
����� have both 2 products. This results 
in an array size of 2×2. 

TABLE 3 
ARRAY SIZE FORMULA FOR FOUR-TERMINAL SWITCH BASED IMPLEMENTATION 

Type Array Size Formula  
Four-

terminal (number of products in f ) x (number of products in f D) 
 

Examining the array size formulas in Table 2 and Table 3, 
we see that while the formulas in Table 2 always result in 
optimal sizes, but the sizes derived from the formula in Table 3 
that is for four-terminal switch based arrays, are not necessarily 
optimal. In the following section we propose an algorithm that 
finds an optimal size implementation of any given target 
Boolean function.  

III. OPTIMIZATION 
Finding whether a certain array with assigned literals to its 

switches implements a target function is the main problem in 
finding optimal sizes. This problem requires to check if each 
assignment of 0’s and 1’s to the switches, corresponding to a 
row of the target function’s truth table, results in logic 1 (a top-
to-bottom path of 1’s exists). To check this we have to 
enumerate all top-to-bottom paths that is exponentially 
growing with the array size. Therefore any algorithm that finds 
optimal sizes should have exponential time complexity with 
respect to the array size so is our algorithm. 

Our algorithm finds optimal array sizes to implement given 
target Boolean functions with arrays of four-terminal switches 
in four steps: 

1) Obtain irredundant sum-of-products (ISOP) expressions of 
a given-target function fT and its dual fT

D. Determine the 
upper bound on the array size using the formula in Table 3: 
Upper Bound (UB): (number of products in fT) x (number 
of products in fT

D).  
The implementable lower bound (LB) values are taken 
from the lower bound table proposed in [9]. 

2) List the array shapes (RxC) (which are in between LB and 
UB) into the ‘List of Implementable Nanoarray Shapes’ and 
sort them regarding of array sizes, in ascending order. 
While ordering, first take the array shape which has lower 

number of rows (e.g. if the kth shape is “3x4”, then the (k+1)th 
shape can be “4x3”.). Suppose that there are total of N 
different shapes in the list. For step-3, start with n=1 
(1�n�N). 

3) Compute the value of the following statement for the nth 
shape. 
The Statement: An array which has the shape in the nth line 
of the list is implementable for fT. 
If the statement is TRUE 
 Change UB to the RxC (save the design); 
 Go to the step-4; 
If the statement is FALSE 
 Increase the number “n” by 1 (n=n+1); 
 Repeat step-3 

4) Declare that UB is optimal size for given-target function fT  
can be realized in. 
Our algorithm is mainly based on finding a design in a 

certain sized array such that the design implements fT. Our 
algorithm does not check every possible design. If it did then 
the algorithm would be intractable even for small sized arrays. 
For example, if a target function fT having 6 variables, 8 
literals, is tested on a 3x4 array then there are 1210 possible 
designs and 26 truth table rows. Note that for each of the 12 
switches in the array there are 10 different options; it might be 
one of the 8 literals, 0, or 1. In this scenario, the algorithm 
would have to check 1210x26 truth table rows. To overcome 
this problem, we discard a significant portion of designs to be 
checked. For this purpose, we offer 3 major improvements: 

      I) We create a library of reduced number of Rx2 sized sub-
designs. We use them to achieve RxC sized designs. While 
creating sub-designs we exploit the following simple lemmas. 
First lemma allows us to discard designs implementing a 
product (s) that does not imply fT. The second lemma allows 
us to discard designs with “0” assignments to the switches if fT 
has a product having a single literal. 

Lemma 1: If a design has a path realizing a product p for 
which fT � fT+p, then the design can not implement fT. 

Proof: Since p is not an implicant of fT, then a design 
including p implements a different function. 

Lemma 2:  If a function fT has a single variable product 
term p=x then the algorithm does not need to assign “0” to the 
switches.  

Proof: All the “0” assignments can be replaced with x’s 
without a loss of generality. 

II) If there is a product of fT such that the number of 
literals of the product equals to the number of switches in the 
longest top-to-bottom path in the array, then we settle that 
particular product onto that particular path. 

III) We discard designs having fewer number of total 
literals than the total number literals of fT. 

These improvements make our algorithm much faster. As 
an example, suppose that XOR3 is given as a target function for 
which the improved algorithm runs roughly 400 times faster. 
For 3x2 sized sub-designs, there are 86=262,144 designs. With 
applying the proposed improvements, this number is reduced 
to 12,114, roughly 20 times smaller than the unimproved one. 
Since we use two sub-arrays for XOR3, for the optimal array 
size of 3x4, the improved algorithm works 400 times faster. 
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IV. EXPERIMENTAL RESULTS 
TABLE 4 

EXPERIMENTAL RESULTS FOR STANDARD BENCHMARK CIRCUITS        

Benchmark CMOS Diode 4-Terminal Optimal 4-
Terminal Benchmark CMOS Diode 4-Terminal Optimal 4-

Terminal 
Alu 0 30 18 6 6 Dc1 2 72 36 16 12 
Alu 1 30 18 6 6 Dc1 5 35 15 12 6 
Alu 2 30 18 6 6 Dc1 6 36 18 9 6 
Alu 3 30 18 6 6 Ex5 31 156 104 32 24 
B12 0 80 32 24 12 Ex5 33 110 77 21 21 
B12 1 120 70 35 16 Ex5 46 81 54 18 18 
B12 3 30 20 8 8 Ex5 49 72 54 12 12 
B12 4 42 28 8 8 Ex5 50 81 63 14 14 
B12 6 132 77 35 18 Ex5 61 64 48 12 12 
B12 7 110 66 24 18 Ex5 62 49 35 10 10 
B12 8 90 70 14 14 Misex1 1 48 16 8 8 
C17 0 36 18 9 6 Misex1 2 132 55 35 15 
C17 1 30 20 8 8 Misex1 3 156 60 40 24 
Clpl 0 64 32 16 12 Misex1 4 121 44 28 16 
Clpl 1 36 18 9 9 Misex1 5 90 45 25 15 
Clpl 2 16 8 4 4 Misex1 6 143 66 42 18 
Clpl 3 144 72 36 18 Misex1 7 81 36 20 15 
Clpl 4 100 50 25 15 Mp2d 4 345 75 90 24 
Dc1 1 25 10 6 6 Newtag 108 72 32 18 

     

      In Table 4 we report synthesis results for standard 
benchmark circuits [14]. We treat each output of a 
benchmark circuit as a separate target function. The number 
of products for each target function fT and its dual fT

D are 
obtained through sum-of-products minimization using the 
program Espresso [15]. The array size values for “Diode”, 
“CMOS”, and “4-terminal” are calculated by using the 
formulas in Table 2 and Table 3. The array size values for 
“Optimal 4-terminal” are obtained using the proposed 
optimization algorithm in Section III: Optimization.  
 

       Examining the numbers in Table 4, we always see the 
same sequence from the worst to the best result as 
“CMOS”, “Diode”, “4-terminal”, and “Optimal 4-
terminal”. This demonstrates that nanoarray models based 
on four-terminal switches overwhelm those based on two-
terminal switches regarding the array size. Further, the 
numbers obtained by our optimal synthesis method 
compares very favorably to the numbers obtained by 
previous methods. 

V. CONCLUSION 
 In this paper, we extensively investigate computing 
models developed for switching nanoarrays. We classify 
them as two-terminal or four-terminal switch based. We 
derive array size formulations in terms of the properties of 
given Boolean functions. We synthesize arrays of four-
terminal switches to implement Boolean functions with 
optimal array sizes. We perform synthesis trials on standard 
benchmark circuits to evaluate the proposed optimal method 
in comparison with previous methods by using their derived 
formulas. The proposed synthesis method gives by far the 
smallest array sizes and offers a new design paradigm for 
nanoarray based computing architectures. With this 
promising motivation, we seek to develop our algorithm to 
make it useful for complex benchmark functions. 
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