
Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of

Fully-Connected Artificial Neural Networks

Using Approximate Arithmetic Blocks

Mohammadreza Esmali Nojehdeh1and Mustafa Altun1

Abstract

In this paper, we explore efficient hardware implementation of feed-
forward Artificial Neural Networks (ANNs) using approximate adders
and multipliers. Due to a large area requirement in a parallel architec-
ture, the ANNs are implemented under the time-multiplexed architecture
where computing resources are re-used in the Multiply-ACcumulate
(MAC) blocks. The efficient hardware implementation of ANNs is real-
ized by replacing the exact adders and multipliers in the MAC blocks
by the approximate ones taking into account the hardware accuracy.
Additionally, an algorithm to determine the approximate level of mul-
tipliers and adders due to the expected accuracy is proposed. As
an application, the MNIST and SVHN database are considered. To
examine the efficiency of the proposed method various architectures
and structures of ANNs are realized. Experimental results show that
the ANNs designed using the proposed approximate multiplier have a
smaller area and consume less energy than those designed using previ-
ously proposed prominent approximate multipliers. It is also observed
that the use of both approximate adders and multipliers yields respec-
tively, up to 50% and 10% reduction in energy consumption and
area of the ANN design with a small deviation or better hardware
accuracy when compared to the exact adders and multipliers.

Keywords: Approximate mutiplier, approximate adder, Multiply accumulate
(MAC), Artificial neural network(ANN)

1Electronics and Communication Engineering, Istanbul Technical University,
Istanbul, Turkey
Mohammadreza Esmali Nojehdeh
nojehdeh@itu.edu.tr
Mustafa Altun
altunmus@itu.edu.tr
This paper is an extension of work originally presented in ISVLSI2020 [18].

1



Springer Nature 2021 LATEX template

2 Energy Efficient Hardware Implementation of Fully-Connected ANNs

1 Introduction

In recent years, Artificial Neural Networks (ANNs) have achieved a remarkable
performance in different research areas, including medical image process-
ing [30], face detection [29], semantic segmentation [38], and control systems[7,
6, 9, 8, 10] .COVID-19 mathematical model by artificial intelligence in [43]
shows the vast applicability of this method. Recent developments in Graphics
Processing Units (GPUs) and Central Processing Units (CPUs) provide gener-
ous memory resources and high computation speeds for training and operation
of ANNs. However, for portable devices, due to their limited memory, the
number of processing units, and the battery capacity, the realization of ANNs
in these devices is impractical. Here, the main concern is to reduce the ANN
hardware complexity taking into account the hardware accuracy. The term
hardware accuracy refers to the accuracy that is calculated by the gate level
simulation results.

An investigation of ANNs complexity reduction within the literature shows
that studies are categorized at the software level and hardware level commonly.
Some valuable studies provide a survey of the topic’s progress [16, 33]. At the
software level, apart from hardware consideration, the determination of ANNs
structure during the training process is intended to obtain a network with
minimum parameters. On the other hand, at the hardware level, distinct from
the software side, different techniques are employed for reducing the hardware
cost of bulky ANNs. Consequently, training based on devoted hardware, and
applicable hardware modeling through the software, provide helpful results to
diminish ANNs complexity.

At the software level, [22] provides a theoretical analysis of quantiza-
tion error. In this study, by focusing on the derivation of finite precession
error analysis techniques, the minimum bit number for forward retrieving
and back-propagation is calculated. Binary weight network and XNOR net-
works are proposed in [42]. These two approximations are exploited to realize
the standard convolution neural networks. Logarithmic computation concept
is presented in [47, 26]. This encoding method enables ANNs to eliminate
bulky digital multipliers. Determining logarithmic values for weights during
the training process, aides to replacing of digital multipliers by shift operations
with acknowledging that the multiplicands are constant in power-two num-
bers. By considering that ANNs consist of multiplication of different matrices,
optimizing the loops is another approach to accelerating network[28], where
optimum sharing of these partial terms in the multiple constant multiplica-
tions, reduces hardware complexity[2, 3]. Beyond synthesis methods, other
approaches like stochastic and approximate neural networks are common in
literature. Applying stochastic computational units in neural networks results
in error maintains within 10 percent of floating-point implementation[14]. The
accuracy of stochastic computation may not be comparable with the conven-
tional method but, low circuit area and power consumption make this method
favorable for hardware implementation.



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 3

At the hardware level, different field-programmable gate array (FPGA) and
application-specific integrated circuit (ASIC) circuits are investigated for accel-
erating network. To overcome the problem of memory access in large ANNs, a
custom multi-chip machine-learning architecture is introduced in [15]. A spe-
cialized chip consists of a microcontroller, accelerator, and on-chip SRAM is
introduced for always-on subsystems of mobile/Internet of Things(IoT)devices
in [27]. Also, apart from customized chips, different hardware architectures
by focusing on arithmetic operations are exploited to hinder the bulky area
problem of ANNs.

ANNs realization under Multiplier ACcumulated (MAC) units reusing is
an approach to reduce hardware occupied area and power consumption by
considering an increase in delay. According to MAC-based implementation,
ANN hardware structure can classify into two models: axonal-based[11] and
dendritic-based[1, 40] models. For axonalbased model, every single input of
layers is multiplied by related weights of all neurons of the layer, and all out-
puts calculate simultaneously, as a result, for axonal-based model obtaining
all inputs at the same time is unnecessary. However, for accumulating differ-
ent multiplication results, extra memory is essential. On the other hand, in
dendritic-based model, the value of the next neuron is calculated by multi-
plying all inputs with related neuron weights and accumulating them. This
method results in the sequential generation of outputs, and every step of cal-
culation needs to obtain all inputs to start. In [41], by combining these two
architecture, parallel computing is enabled in two successive layers to achieve
smaller latency in the computing time of the whole network.

Since the multiplier is the core block of MAC and dominates calculation
time, so designing the multipliers has become an important consideration.
Conventional multipliers consist of an array of Full Adders (FA) to add partial
products and final adders. Exploiting Wallace tree structure with different
compressors leads to delay reduction in multipliers.

Based on the error-tolerant inherency of neural networks, approximate neu-
ral networks or ANNs with approximate blocks are a favorable approach to
realize ANNs, where the tradeoff between hardware complexity and accuracy
is explored through the approximate level. Approximation for both computa-
tion and memory access is investigated in [51]; also, the impact of neurons on
the output quality is determined to approximate the computation and memory
accesses of less critical neurons. This technique leads to achieving maximum
efficiency under a given quality constraint.

The exact adders and multipliers in the MAC blocks are replaced by the
approximate ones in[18]. The exploitation of approximate units yields respec-
tively up to 64% and 43% reduction in energy and area of the ANN design for
PENDIGIT dataset with a slight decrease in the hardware accuracy. An eval-
uation of a large pool of approximate multipliers consisting of 100 deliberately
designed and 500 Cartesian Genetic Programmings (CGP) based multipliers
in ANNs, is accomplished in [5]. Also, to determine the critical features of mul-
tipliers in ANNs, different error parameters’ efficacy is investigated. According



Springer Nature 2021 LATEX template

4 Energy Efficient Hardware Implementation of Fully-Connected ANNs

to this study, the CGP-based multipliers introduced in [34] are better suited
to the investigated ANN.

Beyond the hardware architecture, there are different methods which are
related to ANNs based on the application, such as Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs) and Multilayer Per-
ceptrons (MLPs) based networks. Since our priority is energy efficiency, we
focus on MLPs, which provide better energy scaling [27, 49]. Each layer that
comprises MLP has a computational workload, which is composed of relatively
basic operations, i.e., multiplication, addition, and activation. As the network
is layered, arithmetic operations run in a pipeline (feed-forward) by axonal-
based model, where inputs of one layer wait for the outputs of the previous
layer.

In this paper, ANNs are implemented under two different architectures
using MAC blocks to explore the area and latency tradeoff. In the first one,
called SMAC NEURON , a single MAC is used to realize each neuron com-
putation in each layer, and in the second one, called SMAC ANN , a single
MAC is used to implement the whole ANN. Moreover, we present efficient
hardware implementation of ANNs under the time-multiplexed architectures
using approximate adders and multipliers taking into account the ANN hard-
ware accuracy. To examine the performance of the proposed method, the exact
adders and multipliers in the MAC blocks and parallel units are replaced by
the approximate ones. Furthermore, we introduce an algorithm to determine
the approximate level of multipliers and adders where the tradeoff between
the hardware complexity and accuracy can be explored by leveraging the
approximation level of blocks. We note that the generation of an approxi-
mate multiplier and adder with different bit-widths of inputs under the given
approximation level can be done in linear time as opposed to the methods of
[13, 34] . As shown in [51] , the ANN hardware complexity can be signifi-
cantly reduced by using approximate multipliers with different approximation
levels for the neuron computations at different layers. Experimental results
indicate that the ANNs including the proposed approximate multiplier occupy
less area and consume less energy than the exact versions with a small degra-
dation in the accuracy. It is also shown that the ANN hardware complexity
can be further reduced by using approximate adders.

The rest of this paper is organized as follows. Background concepts and
related work are given in Section II. Section III presents the MAC-based
design architectures. In Section IV, the implementation of approximate adders
and multipliers is described. Section V presents the experimental results, and
finally, Section VI concludes the paper.

2 Background

2.1 ANN Concept

Arithmetic operations of ANN is illustrated in Fig. 1, also Fig. 2(a) represents
the fundamental block of ANN, i.e., neuron, which sums the multiplication of



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 5

z1

z2

z1

z2

x1

x2

w11

w12

w21

w22

y1

y2
= .w11w12

w21w22

x1

x2

+

+

y1

y2

b1

b2

Fig. 1 ANN mathematical model for layers.

x1

x2

xn

Activation 

Function

(ϕ)w1

wn

z
y

b

Bias

WeightsInputs

+
Outputw2

Ʃwixi

X1

X2

X3

Z1

Z2

ANN

Inputs
Hidden Layers

Output

Layer

(b)(a)

Fig. 2 (a) Artificial neuron; (b) ANN with two hidden layers.

x1

x2

xn

w1 w2 wn

x +

y

Control 

Logic

R + z

MAC

b

Fig. 3 MAC block in the neuron computation.

input variables by weights, adds the bias value to this summation and propa-
gates this result to the activation function. In mathematical terms, the neuron
is described as y =

∑n
i=1 ωixi and z = ϕ(y+ b) where n denotes the num-

ber of inputs and weights. Fig. 2(b) presents an ANN design including hidden
and output layers where each circle denotes a neuron.

Observe from Fig. 2 that adders and multipliers are frequently used in
ANNs and dominate the hardware complexity. To reduce the ANN design
area, taking into account an increase in latency, ANNs can be designed under
the time-multiplexed architecture using MAC blocks. Fig. 3 shows a MAC-
based realization of the neuron computation given in Fig. 2(a), re-using the
multiplication and addition operations. In this figure, clock and reset signals
are omitted for the sake of clarity. Observe that the multiplication of a weight
by an input variable is realized at a time synchronized by the control block
and is added to the accumulated value stored in the register R. We note that
the control logic is actually a counter that counts between 1 and n. Under this
architecture, the neuron computation is obtained after n+ 1 clock cycles.

The design complexity of the MAC block depends on the size of the counter
and multiplexers, determined by the number of weights and input variables, on
the size of the multiplier, determined by the maximum bit-widths of the input



Springer Nature 2021 LATEX template

6 Energy Efficient Hardware Implementation of Fully-Connected ANNs

variables and weights, and on the size of adder and register, determined by
the bit-width of the inner product of inputs and weights, i.e., y =

∑n
i=1 wixi.

2.2 ANN Structure

An ANN is comprised of a network of neurons which are connected to each
other. The weight and bias values of ANN are determined in a training phase
where the error between the desired and actual response is reduced using an
iterative optimization algorithm. During training, inputs are generally normal-
ized between -1 and 1. Such normalization may decrease the training run-time
and yield an ANN with a fewer number of neurons and layers when compared
to the ANN trained with un-normalized inputs, both achieving similar accu-
racy. Furthermore, the test data are used to provide an unbiased evaluation of
the final model after the training process, and the accuracy, or misclassification
rate, is computed as a performance metric [21].

2.3 ANN Implementation

To reduce the ANN hardware complexity, in [44, 17], it is shown that the
weights of ANNs can be determined to include a small number of non-zero
digits in training and hence, their multiplications by input variables can be
realized using a small number of adders and subtractors. The floating-point
weights in each layer are quantized dynamically, and the fixed-point weights
are expressed in binary representation in [46].

To reduce the high latency of the MAC block, a delay-efficient struc-
ture, which uses accumulators and carry-save adders, was introduced in [36].
Efficient implementation of ANN designs using MAC blocks on FPGAs was
introduced in [36]. Recently, MAC blocks have been used in the realization
of neuromorphic cores using two models, namely axonal-based and dendritic-
based [12]. A post-training method and a multiplierless design technique that
can reduce the design complexity of a time-multiplexed ANN are given in [3].

2.4 Approximate Adders and Multipliers

Approximate computing refers to a class of methods that relax the requirement
of exact equivalence between the specification and implementation of a com-
puting system [20]. This relaxation allows trading the accuracy of numerical
outputs for reductions in area, delay, or power dissipation of the design [45, 35].
Due to a high error-tolerance in ANNs, the use of approximate multipli-
ers in ANNs is an alternative way for the reduction of the ANN hardware
complexity [5].

By increasing the number of the erroneous results in 1-bit full adder’s truth
table the complexity of the designs decreases, based on this, 3 different 1-
bit approximate full adders are proposed. [32]. In [50, 19], at the transistor
level, approximate 1-bit adders are derived from the conventional mirror adders
and XOR/XNOR based adders by removing transistors and/or replacing some
parts of the adders with a small circuitry then, a generic approximate adder



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 7

is implemented using approximate 1-bit adders. In [13, 34], at the gate level,
design tools are generated to develop efficient approximate adders. Motivated
by the drawbacks of approximation methods at the transistor and gate level,
a systematic synthesis technique based on a new error calculation method is
introduced in [39].

In [34], the CGP method is used to generate approximate multipliers. The
deliberately designed approximate multiplier of [5] is obtained through simplifi-
cations in the truth table of the multiplication operation. A novel approximate
multiplier based on the input probabilities of 1-bit adders is proposed in [39].
Different approaches based on the shifting and adding operations are investi-
gated to reduce the complexity of the multiplier. For example, the Karatsuba
method based on Indian Vedic mathematics separates the operands into two
sections and then generates the output by employing 4 small bit length mul-
tipliers. This algorithm possesses two accumulators and a shifter to obtain
the final result. A novel algorithm by removing a multiplier and adding an
accumulator in Karatsuba multipliers is proposed in [24]. Also, the approx-
imate version of the proposed multiplier for image processing application is
achieved. The simplification in the compressor for the Dadda structure is
another method to reduce the complexity of the multipliers, whereby approxi-
mating the compressor, the hardware’s complexity in cost of accuracy decreases
and an approximate multiplier is achieved [31].

3 MAC-based ANN Design

Following the determination of the floating-point weight and bias values in the
training phase, they are converted to integers since the floating-point multi-
plication and addition operations occupy more area and consume more energy
than their integer counterparts [23]. This conversion is simply done by mul-
tiplying each floating-point weight and bias value by 2q, where q denotes the
minimum quantization factor.

To determine minimum quantization factor q following steps are obtained.

1. Set the quantization value, q, and the related ANN accuracy in hardware,
ha(q), to 0.

2. Increase q value by 1.
3. Convert each floating-point weight value to an integer by multiplying it by

2q, and find the least integer greater than or equal to this multiplication
result.

4. Compute ha(q) value on the validation data-set using the integer weight
values.

5. If ha(q)− ha(q − 1) is greater than 0.1%, go to Step 2.
6. Otherwise, return q as the minimum quantization value.

The obtained value is the settle point of the accuracy based on the desired
deviation. The floating-point system is employed in the training process, but
the integer number system is preferable in constrained resource deployments.



Springer Nature 2021 LATEX template

8 Energy Efficient Hardware Implementation of Fully-Connected ANNs

Fig. 4 Power dissipation and hardware accuracy value in terms of quantization values.

Integer-based systems have a superior performance in terms of consumed power
and energy. In contrast, they have a lesser number of representations, which
results in a loss of accuracy when compared to long bit-representation sys-
tems. Fig. 4 illustrates that the network’s accuracy increases as the bit length
increases.

Power dissipation and hardware accuracy of different quantization values
for a trained ANN are shown in Fig. 4. This demonstration is a primitive graph
to show the bit-width’s impact on power consumption. To avoid the complexity
of different structures, we chose Pendigit as an application. The exploited
architecture is parallel, where 16 neurons form a hidden layer. Consider that
this network’s size is negligible compared to the investigated network in section
VI. As expected, the power dissipation soars by incrementing the quantization
value, and the accuracy value settles after some steps. The settling point is
chosen based on the expected performance of the application.

In following, the smac neuron and smac ann design architectures are
described in detail.

3.1 SMAC NEURON Architecture

Fig. 5 presents the neuron computations at the kth layer of an ANN using m
MAC blocks and a common control block where m and n denote the number of
outputs (or neurons) and inputs at this layer, respectively. The control block
synchronizes the multiplication of input variables by the associated weights.
Assuming that an ANN includes ηi neurons at each layer, where 1 ≤ i ≤ λ and

λ denotes the number of layers, the required number of MAC blocks is
∑λ

i ηi,
i.e., the total number of neurons. Note that the complexity of operations and
registers in the MAC blocks are determined by the number of inputs and
outputs at each layer and the weight values related to each neuron of each
layer.

The complexity of the control block is determined by the number of inputs
at each layer. Since the neuron computations are obtained layer by layer, the
neuron computations in the latter layer are started after the ones in the former
layer are finished. This is accomplished by producing an output signal at each
layer indicating that all neuron computations have been obtained. By doing
this, we are able to reduce power dissipation and also stop the hardware from



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 9

xk1 xk2 xkn

wk11

wk12

wk1n

R

x

yk1

+

wk21

wk22

wk2n

R

x

yk2

+

wkm1

wkm2

wkmn

R

x

ykm

+

Control 

Logic
x

+bk1

zk1

+bk2

zk2

+bkm

zkm

MAC MAC MAC

Fig. 5 Neuron computations at the kth layer of ANN using MAC blocks.

performing any further computations that are not necessary. The computation
of whole ANN with λ layers and ιi inputs at each layer, where 1 ≤ i ≤ λ, is

obtained after
∑λ

i (ιi + 1) clock cycles.

3.2 SMAC ANN Architecture

Fig. 6 shows the ANN design using a single MAC block, where the clock and
reset signals are omitted for the sake of clarity. In this figure, the control
block includes three counters to synchronize the multiplication of a weight
by an input variable, the addition of a bias value to each inner product, and
applying of the activation function. These counters are associated with the
number of layers, the number of inputs at each layer, and the number of
outputs (or neurons) at each layer. Note that the variables X1, X2, . . . , Xn

denote the primary inputs of ANN, and these variables are multiplied by the
related weights during the computations at the first hidden layer. While the
maximum number of inputs determines the size of multiplexers for the input
variables at all layers, the size of multiplexers for the weight and bias values
are defined by the total number of weight and bias values, respectively. The
maximum bitwidth among all input variables and weights determines the MAC
block’s multiplier size. The maximum bitwidth of the addition of weights by
input variables throughout the entire ANN determines the size of the adder
and register. Moreover, the number of registers used to store the outputs at
each layer is determined by the maximum number of outputs at each layer. We
note that the computation of whole ANN with λ layers, ιi inputs at each layer,

and ηi neurons at each layer, where 1 ≤ i ≤ λ, is obtained after
∑λ

i (ιi + 2)ηi
clock cycles.



Springer Nature 2021 LATEX template

10 Energy Efficient Hardware Implementation of Fully-Connected ANNs

X1

X2

Xn

w111 w112 wkmn

xx ++

Control 
Logic

R +

z11

b11b12 bkm

R

R

R

z12

zkmMAC

Fig. 6 ANN design using a single MAC block.

Table 1 Truth Tables of Exact and Approximate 1-bit Adders.

Inputs FA APAD1 APAD2 APAD3 APAD4

A B C
in

C
o
u
t

S
u
m

D
e
c
im

a
l

C
o
u
t

S
u
m

E
rr
o
r

D
e
c
im

a
l

C
o
u
t

S
u
m

E
rr
o
r

D
e
c
im

a
l

C
o
u
t

S
u
m

E
rr
o
r

D
e
c
im

a
l

C
o
u
t

S
u
m

E
rr
o
r

D
e
c
im

a
l

0 0 0 0 0 0 0✓ 0✓ 0 0 0✓ 0✓ 0 0 0✓ 0✓ 0 0 0✓ 0✓ 0 0

0 0 1 0 1 1 0✓ 1✓ 0 1 0✓ 1✓ 0 1 0✓ 1✓ 0 1 0✓ 0✗ -1 0

0 1 0 0 1 1 1✗ 0✗ +1 2 0✓ 1✓ 0 1 0✓ 1✓ 0 1 0✓ 1✓ 0 1

0 1 1 1 0 2 1✓ 0✓ 0 2 0✗ 1✗ -1 1 0✗ 1✗ -1 1 0✗ 1✗ -1 1

1 0 0 0 1 1 0✓ 1✓ 0 1 1✗ 0✗ +1 2 1 ✗ 0✗ +1 2 1✗ 0✗ +1 2

1 0 1 1 0 2 1✓ 0✓ 0 2 1✓ 0✓ 0 2 1✓ 0✓ 0 2 1✓ 0✓ 0 2

1 1 0 1 0 2 1✓ 0✓ 0 2 1✓ 0✓ 0 2 1✓ 1✗ +1 3 1✓ 1✗ +1 3

1 1 1 1 1 3 1✓ 1✓ 0 3 1✓ 1✓ 0 3 1✓ 1✓ 0 3 1✓ 1✓ 0 3

A B

Cin

Sum

Cout

A B

Cin

Sum

Cout

A B

Cin

Sum

Cout

Full Adder 1Full Adder 2Full Adder n

0

b0a0b1a1bn-1an-1

sn

sn-1 s1 s0

Fig. 7 Ripple carry adder.

4 Implementation of ANNs Using Approximate
Arithmetic Units

In this section, we present the approximate adder of [39] and multipliers of [39,
34] used in the ANN designs, introduce an approximate multiplier and describe
the implementation of ANNs using approximate adders and multipliers.



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 11

34

1

a1b0

a0b1

2

a0b0

a3b2

a2b3a3b3

a3b3 s1

s1

a0b0

a0b0s6

a1b1

a0b2

a2b0a3b0

a2b1

a1b2

a3b1

a2b2

a1b3

c1

s2

6

c3

s4

8

a3b2

a2b3

c4
9

s7

c6

10

c8

s9

12

a3b3

13

c9

12

a3b2

a2b3a3b3

a3b3

a3b0

a2b1

a1b2

a3b1

a2b2

a1b3

s1

a3b0

3

c1

s2

4

a3b2

a2b3

c2
5

c3

s4

6

c4

s5

7

a3b3

8

c5

a0b0s6 s1s10s11s12s13c13

(a)

s3

a3b0

c2

7

c10
11

c7

s8

c11c12

00 0s3s6s7s8c8

(b)

c6c7

a0b3 a0b3

Fig. 8 (a) Exact 4-bit unsigned multiplier; (b) Approximate 4-bit unsigned multiplier with
the least significant 3 bits are set to logic value 0.

4.1 Approximate Adder

Fig. 7 illustrates an n-bit ripple carry adder which consists of n 1-bit full
adders (FAs). In this figure, A, B, and carry-in (Cin) represent the input bits
of FA and Sum, and carry-out (Cout) denote its output bits. The truth table
of 1-bit FA is given in Table 1. In the related studies on approximate ripple
carry adders [13, 50], it is assumed that simultaneous errors on both Sum and
Cout outputs of FA may generate a larger erroneous result on the adder output
than an error on a single output. However, this assumption neglects the fact
that while an error on one output of an FA block increases the error at the
adder output, another error on the other output may decrease the error. For
example, as given in Table 1, on the entry of ABCin = 010 for the approximate
1-bit adder APAD1, both errors on the outputs of FA generate only an error
with a magnitude of 1. Thus, alternating errors on both the Sum and Cout
outputs can provide an opportunity to simplify the hardware complexity of
an approximate 1-bit adder. Based on this fact, 4 approximate 1-bit adders
(APADs) with different error values and hardware complexity are introduced
in [39]. The truth tables of these APADs are given in Table 1. To obtain an
n-bit approximate ripple carry adder, a synthesis method that replaces the
exact FAs by APADs is presented in [39].

4.2 Approximate Multipliers

The implementation of an exact multiplier consists of two stages, i.e, partial
product generation using and gates and accumulation of these partial products
using half adders (HAs)1 and FAs. An exact 4-bit unsigned multiplier structure
is shown in Fig. 8(a), where rectangular blocks with 2 and 3 entries denote an
HA and FA, respectively.

1Half adder is obtained when one of the inputs of FA is set to 0.



Springer Nature 2021 LATEX template

12 Energy Efficient Hardware Implementation of Fully-Connected ANNs

In the design of an approximate multiplier, based on the probability of
occurrences of logic 0 and 1 at the outputs of each HA and FA, the synthesis
tool of [39] replaces exact HA and FA blocks in the by their approximate
versions that are called probability based approximate multipliers (PBAM).
Also, the CGP method of [34] generates approximate multipliers derived from
the exact multipliers.

In addition to these approximate multipliers, we propose another one,
called LEBZAM, which is implemented by setting r least significant outputs
of an exact multiplier to zero, where r denotes its approximation level. The
synthesis method is described as follows: i) set r least significant outputs of
the exact multiplier to 0; ii) eliminate all the FA and HA blocks required to
realize r least significant outputs of the exact multiplier. Fig. 8(b) illustrates
the realization of 4-bit approximate multiplier when r is 3.

We note that given the approximation level and the bitwidths of the inputs,
an approximate multiplier LEBZAM can be easily obtained as opposed to
the approximate multipliers of [34, 13]. Thus, by using approximate multipli-
ers with different sizes and approximation levels in the MAC blocks of ANN
designs under the architectures presented in Section 3, a significant reduction
in the ANN hardware complexity can be achieved by taking into account the
hardware accuracy. Similarly, by using approximate adders of [39] , the ANN
hardware complexity can be further reduced.

4.3 Approximate Level

4.3.1 SMAC NEURON

The number of least significant bits assessed under approximation blocks in
layer n is referred to as the approximate level (ALn) in this study. We called
it adders’ approximate level (AAL) for adders and multipliers’ approximate
level (MAL) for multipliers.

To determine the approximate level of the multipliers and adders based on
the misclassification rate (MR) for SMAC NEURON architecture following
steps are obtained.

1. Set the hidden layer number n to 1.
2. Set the approximate level ALn to 0.
3. Increase ALn value by 1.
4. Calculate Approximation Misclassification rate AMR.
5. If AMR−MR < tolerable error go to Step 3, otherwise increase n value

by 1.
6. If n < nmax + 1 save ALn − 1 as the approximate level of nth layer and and

return to step2.
7. save ALn − 1 as the approximate level of output.

These steps are taken separately for adders and multipliers. We must
acknowledge that starting with multipliers or adders will result in the same
approximate level values. In this study, initially, we apply the proposed method



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 13

for approximate multipliers to shrink the search space of (AAL), the mini-
mum level value of AAL is set to the determined (MAL) value incremented by
one. Additionally, the error distance values of LEBZAM are negative or zero
for all cases; based on this error pattern, the approximate level of multipli-
ers and adders for all neurons in each layer are chosen identically. Contrarily
selecting a higher approximate level for any neuron compared to other neu-
rons at the same layer leads to a negative bias of that neuron i.e. the neuron
with the higher approximate level posses a scanty output regarding other
neurons, where this biasing results a disturb in accuracy. An arithmetic unit
with m-bitwidth output, posses a number between 0 and m as a approxi-
mate level((m+ 1)options). By considering n-bit × n-bit multiplier for MAC
unit, the adder output bitwidth value will be (2n+ 1), and the total possible
combination number of approximate level for adder and multiplier for each
neuron will be (2n+ 1)× (2n+ 2). Also by considering that there are η neu-
rons in λ layers, the total possible combination for a ANN is formulated as

(4n2 + 6n+ 2)
∑λ

i ηi.
By exploiting the proposed method, the approximate level values of the

multipliers are identical for all of the neurons. According to the method, we
increment the MAL value by 1 until the error deviation becomes greater than
the given error limit value. MAL value of n-bit multiplier is a number between
0 and 2n; hence by exploiting the proposed method, the total investigated case
is MAL for all neurons in each layer. In line with the proposed method, the
minimum number of AAL values is equivalent to the determined MAL value
increment by one. Similarly, the same steps are obtained to find the AAL
value; consequently, the total investigated cases is MAL+ (AAL−MAL) for
all neurons of each layer. The total number of examined cases for the whole
network is

∑λ
i (MALi + 1) + (AALi +MALi).

As an example, consider the Pendigit handwritten digit recognition prob-
lem [4], where the trained network architecture consists of 16 inputs, 50
neurons in the hidden layer, and 10 outputs. Assume the input and weights
bit-width is 8, consequently the all possible combination of MAL and AAL is
(4(82) + (6× 8) + 2)× (50 + 10) = 18360 whereas, by exploiting the proposed
method, the significant reduction in the explored cases occurs.

The MR deviation percentage for different MALs and AALs values are
shown in Fig.9. Based on the proposed method, after seven iterations, the
MAL1 value is set to 6. To find this value all the other arithmetic units are
set to their exact versions, and their approximate level is 0. Note that setting
MAL1 value to 7 causes MR value to become greater than the given value,
which is considered 1% of MR for this example. The same steps are employed
to obtain theMAL2 value. According to the proposed algorithm, to investigate
AAL1 and AAL2 values, the starting points are set to their corresponding
MAL value in each layer. As shown in Fig.9, the AAL value for layer1 and
layer2 is 10. Note that the total examined case number for this example is
(7 + (10− 7)) + (10 + (10− 10)) = 20, which is negligible in comparison to all
possible 18360 cases.



Springer Nature 2021 LATEX template

14 Energy Efficient Hardware Implementation of Fully-Connected ANNs

Fig. 9 Misclassification Rate for SMAC NEURON architecture by the different approxi-
mate levels of multipliers and adders.

Fig. 10 Misclassification Rate for SMAC ANN architecture by the different approximate
levels of multipliers and adders.

4.3.2 SMAC ANN

To determine the approximate level of multipliers and adders in SMAC ANN
architecture following 7 steps are obtained.

1. Set the MAL and AAL to 0.
2. Increase MAL value by 1.
3. Calculate Approximation Misclassification rate AMR.
4. If AMR−MR < tolerable error go to Step 2, otherwise save MAL− 1 as

the approximate level of multiplier.
5. Increase AAL value by 1.
6. Calculate Approximation Misclassification rate AMR.
7. If AMR−MR < tolerable error go to Step 4, otherwise save AAL− 1 as

the approximate level of adder.

The SMAC ANN architecture comprises a singular MAC unit as the
arithmetic unit; consequently, determining the approximate level of multiplier
and adder is more straightforward compared to the SMAC ANN architec-
ture. Distinct from the ANN structure, the total possible combination of MAL
and AAL values is correlated with the output bit-width of arithmetic units.
By assuming that the multipliers and adders output bit-widths are j and k,
respectively, the number of all possible combinations of MAL and AAL will



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 15

be j × k. On the other hand, by exploiting the proposed method, the number
of investigated cases shrinks to MAL+ (AAL−MAL) cases.

As an example, Pen-digit handwritten digit recognition problem is
employed by the same parameters but under SMAC ANN architecture. The
applied method results are shown in Fig .10. Starting by the multiplier, after
8 iterations the MAL value is set to 7, and the tolerable error value is con-
sidered as 1.1 of MR. According to the proposed method, AAL initial value
is set to MAL+ 1, and after 4 iterations, the AAL value is set to 10 corre-
spondingly. Take consider the total examined cases is 12, whereas all possible
combination is (16× 20) by considering that, the output bit-width is 16 and
20 for multiplier and adder respectively.

According to the Section 3.2 the proposed method obtains the results
after 12 steps whereas the number of the total possible case is (3200 ) for
SMAC ANN . On the other hand, this technique achieves the result after 20
steps as mentioned in Section 3.1 for SMAC NEURONamong 18360 possible
cases.

5 Experimental Results

As an application, we considered the MNIST handwritten digit recognition
problem [25]. The dataset consists of gray-scale images from NIST, which are
normalized to fit into (28× 28) pixel boxes. The ANN is employed to predict
the digit among 10 integers(0-9) based on the input pixels. To examine the
performance of the proposed method on a different structure, we implemented
the feedforward ANN with two different structures; 3 hidden layers by 256
neurons for the first case and a hidden layer by 128 neurons for the second
case. The ANN was trained using the deep learning toolbox of matlab [48],
where the training and test inputs were normalized in between -1 and 1, the
weights were initialized randomly, and they were adjusted to minimize the
error in between the actual and desired response using a backpropagation-
based learning method. The activation functions in the hidden and output
layer were symmetric saturating linear and softmax, respectively. The ANN
was trained using 50000 data and tested using 10000 data. To consider the
overfitting problem 10000 data sets are considered as the validation data during
the training process. Also, the quantization factor q was set to 12 for employed
ANN by exploiting the proposed steps in section3. By converting input data
to 12 bits integer, 116 of 784 input pixels remained unchanged for the train
and test data, as eliminating these fixed values will not affect the performance
of ANN.

By training ANN through MNIST database at the software level, the
computed MRs for test data were calculated as 2.60 and 2.24 for 668-256-256-
256-10 and 668-128-10 structure, respectively.

After the floating-point weight and bias values were converted to integers
when the quantization value q was set to 12, the ANN design using exact
adders and multipliers was described in a behavioral fashion, and the hardware



Springer Nature 2021 LATEX template

16 Energy Efficient Hardware Implementation of Fully-Connected ANNs

T
a
b
le

2
R
es
u
lt
s
o
f
S
M
A
C

N
E
U
R
O
N

a
rc
h
it
ec
tu

re
fo
r
6
6
8
-1
2
8
-1
0
st
ru

ct
u
re

u
si
n
g
a
p
p
ro
x
im

a
te

m
u
lt
ip
li
er
s
a
n
d
a
d
d
er
s.

M
u
lt
ip
li
e
r
T
y
p
e

A
p
p
ro

x
im

a
ti
o
n

L
e
v
e
l

H
id
d
e
n

O
u
tp

u
t

M
u
l

A
d
d

M
u
l

A
d
d

a
re

a
d
e
la
y

la
te
n
c
y
p
o
w
e
r
e
n
e
rg

y
H
M

R
a
re

a
e
n
e
rg

y
g
a
in

g
a
in

B
e
h
a
v
io
ra

l
0

0
0

0
20
08
31

9
.5
6

7
.6
3

2
1
.5
2

1
6
4
.1
0

2
.6
3

0
%

0
%

P
B
A
M

[3
9
]

7
0

16
0

20
65
06

9
.2
9

7
.4
1

1
8
.7
0

1
3
8
.6
2

2
.5
4

-3
%

1
6
%

L
E
B
Z
A
M

7
0

16
0

18
97
96

7
.7
5

6
.1
8

1
7
.8
8

1
1
0
.5
2

2
.6
5

5
%

3
3
%

E
v
o
A
P
P
[3
4
]

H
D
G
/K

Q
0

H
D
G
/K

Q
0

22
46
21

8
.7
1

6
.9
5

1
7
.6
7

1
2
2
.7
3

2
.6
4

-1
2
%

2
5
%

E
v
o
A
P
P
[3
4
]

H
F
Z
/K

5
0

H
F
Z
/K

5
0

21
47
57

8
.3
0

6
.6
2

1
7
.6
4

1
1
6
.8
2

2
.6
6

-7
%

2
9
%

E
v
o
A
P
P
[3
4
]

G
A
T
/N

M
0

G
A
T
/N

M
0

15
72
75

5
.8
5

4
.6
6

1
7
.2
8

8
0
.6
1

2
.7
8

2
2
%

5
1
%

E
v
o
A
P
P
[3
4
]

2K
M

0
0

0
22
90
00

8
.3
9

6
.7
0

1
8
.7
8

1
2
5
.8
3

2
.6
3

-1
4
%

2
3
%

E
v
o
A
P
P
[3
4
]

0
0

H
D
G
/K

Q
0

20
26
15

8
.9
4

7
.1
3

2
2
.3
8

1
5
9
.5
4

2.
6
2

-1
%

3
%

E
v
o
A
P
P
[3
4
]

0
0

12
N
/G

A
T

0
20
33
42

9
.1
4

7
.2
9

2
1
.6
8

1
5
8
.0
7

2
.6
4

-1
%

4
%

E
v
o
A
P
P
[3
4
]

0
0

K
5/
H
F
Z

0
20
03
49

9
.5
6

7
.6
3

2
1
.8
7

1
6
6
.8
9

2
.6
4

0
%

-2
%

P
B
A
M

[3
9
]

7
8

14
15

19
14
31

8
.9
8

7
.1
7

1
2
.6
3

9
0
.4
8

2.
6
4

5
%

4
5
%

P
B
A
M

[3
9
]

8
8

15
17

18
52
00

9
.1
8

7
.3
3

1
3
.6
7

1
0
0
.1
8

2
.6
1

8
%

3
9
%

P
B
A
M

[3
9
]

7
7

16
16

19
19
25

1
0
.4
7

8
.3
5

1
1
.8
7

9
9
.1
3

2.
5
4

4
%

4
0
%

L
E
B
Z
A
M

7
7

15
17

19
12
86

9
.0
9

7
.2
5

1
2
.8
8

9
3
.4
2

2.
5
6

5
%

4
3
%

L
E
B
Z
A
M

7
8

15
15

18
93
43

8
.7
6

6
.9
9

1
2
.1
1

8
4
.6
6

2.
6
1

6
%

4
8
%

L
E
B
Z
A
M

7
8

16
17

18
73
96

9
.0
3

7
.2
1

1
2
.8
5

9
2
.6
2

2.
6
3

7
%

4
4
%

L
E
B
Z
A
M

7
7

16
16

19
04
66

9
.5
5

7
.6
2

1
3
.1
9

1
0
0
.5
3

2
.6
5

5
%

3
9
%

L
E
B
Z
A
M

8
8

14
14

18
81
12

6
.7
0

5
.3
5

1
4
.3
1

7
6
.4
9

2.
7
6

6
%

5
3
%



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 17

T
a
b
le

3
R
es
u
lt
s
fo
r
fu
ll
y
co

n
n
ec
te
d
la
y
er

o
f
co

n
v
o
lu
ti
o
n
a
l
n
eu

ra
l
n
et
w
o
rk

b
y
S
M
A
C

N
E
U
R
O
N

a
rc
h
it
ec
tu

re
fo
r
4
6
8
-1
2
8
-1
0
st
ru

ct
u
re

u
si
n
g

a
p
p
ro
x
im

a
te

m
u
lt
ip
li
er
s
a
n
d
a
d
d
er
s.

M
u
lt
ip
li
e
r
T
y
p
e

A
p
p
ro

x
im

a
ti
o
n

L
e
v
e
l

H
id
d
e
n

O
u
tp

u
t

M
u
l

A
d
d

M
u
l
A
d
d

a
re

a
d
e
la
y

la
te
n
c
y

p
o
w
e
r

e
n
e
rg

y
H
M

R
a
re

a
e
n
e
rg

y
g
a
in

g
a
in

E
x
a
c
t

0
0

0
0

13
46
51

5.
77

0
.0
0
3
4

1
4
.5
3

0
.0
5
0

8
.8
1

0
%

0
%

L
E
B
Z
A
M

3
0

0
0

12
53
50

6.
22

0
.0
0
3
7

1
1
.7
0

0
.0
4
3

1
0

7
%

1
3
%

L
E
B
Z
A
M

4
0

0
0

12
23
49

5.
93

0
.0
0
3
5

1
1
.8
8

0
.0
4
2

1
2
.2
1

9
%

1
8
%

L
E
B
Z
A
M

3
5

3
5

12
14
82

5.
80

0
.0
0
3
5

9
.2
5

0
.0
3
2

9
.1
0

1
0
%

3
6
%

L
E
B
Z
A
M

4
6

4
6

11
72
78

6.
06

0
.0
0
3
6

8
.0
7

0
.0
2
9

1
0
.2
4

1
3
%

4
2
%

T
a
b
le

4
R
es
u
lt
s
o
f
S
M
A
C

N
E
U
R
O
N

a
rc
h
it
ec
tu

re
fo
r
6
6
8
-2
5
6
-2
5
6
-2
5
6
-1
0
st
ru

ct
u
re

u
si
n
g
a
p
p
ro
x
im

a
te

m
u
lt
ip
li
er
s
a
n
d
a
d
d
er
s.

M
u
lt
ip
li
e
r
T
y
p
e

A
p
p
ro

x
im

a
ti
o
n

L
e
v
e
l

H
id
d
e
n
1

H
id
d
e
n
2

H
id
d
e
n
3

O
u
tp

u
t

M
u
l

A
d
d

M
u
l

A
d
d

M
u
l

A
d
d

M
u
l
A
d
d

a
re

a
d
e
la
y

la
te
n
c
y

p
o
w
e
r
e
n
e
rg

y
H
M

R
a
re

a
e
n
e
rg

y
g
a
in

g
a
in

B
e
h
a
v
io
ra

l
0

0
0

0
0

0
0

0
9
3
9
0
7
6

8
.0
5

1
1
.6
0

1
4
1
.3
7

1
6
3
9
.6
2

3
.9
6

0
%

0
%

P
B
A
M

[3
9
]

7
0

7
0

7
0

1
4

0
9
7
1
9
4
8

7
.3
1

1
0
.5
3

1
3
1
.5
3

1
3
8
4
.5
8

4
.2
2

-4
%

1
6
%

P
B
A
M

[3
9
]

7
7

7
7

7
7

1
4

1
4

8
9
2
9
7
9

9
.0
3

1
3
.0
0

7
7
.1
0

1
0
0
2
.2
9

4
.2
2

5
%

3
9
%

L
E
B
Z
A
M

6
0

6
0

6
0

1
4

0
9
2
9
3
3
0

9
.0
0

1
2
.9
6

1
0
7
.9
4

1
3
9
8
.7
3

4
.2
5

1
%

6
%

L
E
B
Z
A
M

6
6

6
6

6
6

1
4

1
4

9
1
9
6
6
4

9
.1
7

1
3
.2
0

8
4
.8
5

1
1
2
0
.1
9

4
.2
5

2
%

3
2
%

E
v
o
A
P
P
[3
4
]

D
G
/K

Q
0

D
G
/K

Q
0

D
G
/
K
Q

0
D
G
/K

Q
0

1
0
5
1
0
0
4

9
.2
2

1
3
.2
8

1
1
1
.9
1

1
4
8
6
.2
6

3
.9
9

-1
2
%

9
%

E
v
o
A
P
P
[3
4
]

F
Z
/K

5
0

F
Z
/
K
5

0
F
Z
/K

5
0

F
Z
/
K
5

0
1
0
0
0
4
7
8

9
.5
7

1
3
.7
9

1
0
5
.1
5

1
4
4
9
.5
3

4
.0
5

-7
%

1
2
%



Springer Nature 2021 LATEX template

18 Energy Efficient Hardware Implementation of Fully-Connected ANNs

Fig. 11 Energy save percentage of ANN for different approximate methods in terms of
Hardware Misclassification Rate.

Fig. 12 Area save percentage of ANN for different approximate methods in terms of
Hardware Misclassification Rate.

misclassification rate (HMR) was found as 2.63% for 668-128-10 structure, and
3.69% for 668-256-256-256-10 structure. In this study, the ANN designs were
implemented using approximate adders and multipliers without exceeding the
HMR limit, which was set to 10% deviation in HMR.

The proposed multipliers are compared to CGP-based multipliers that are
introduced in [34] in order to assess the effectiveness of the multipliers and
the algorithm in comparison to other literature. According to [5] study, CGP-
based multipliers holds better result among all the deliberately approximate
multipliers.

The ANNs were implemented under the smac neuron and smac ann
architectures using the approximate adders of [39], the approximate multipli-
ers of [34], and our proposed multiplier LEBZAM. The signed approximate
multipliers of [34], have constant 12-bit×12-bit and 16-bit×16-bit inputs. Also,
according to SMAC synthesis method, inputs bit-widths of multipliers are
non-identical for this architecture. To adopt the [34] multipliers with the
employed structure, the multipliers from the library of [34] by maximum bit-
width were selected, and then we removed the gates and in-outs of extra bits.
Note that for [39] and LEBZAM multipliers, we systematically determined
the approximation levels of adders and multipliers on the hidden and output
layers taking into account the HMR value. The ANN designs were described in
Verilog and synthesized using the Cadence Genus tool with the TSMC 40nm
design library.



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 19

Also, the SVHN[37] database is considered to examine the performance of
the proposed approximate blocks in the fully connected layer of convolutional
neural networks. SVHN is a real-world image dataset for developing machine
learning and object recognition algorithms with minimal data preprocessing
and formatting requirements. SVHN is obtained from house numbers in Google
Street View images.

TensorFlow is exploited in the convolutional neural network training for
the SVHN dataset. The trained network architecture is 5 layers deep, with 3
pooling layers included. The convolution layer by 52 filters extracts the input
features. Flatten layers transform the 3D inputs to feed a 1D fully connected
layer after three sequential convolutions and pooling layers. The fully con-
nected layers consist of 128 neurons in the hidden layer and 10 neurons in the
output layer. Also, the TensorFlow post-training strategy is exploited to con-
vert the 32-bit floating-point numbers (such as weights and activation outputs)
to the nearest 8-bit fixed-point numbers.

The energy and area save of an ANN by 668-128-10 structure and under
SMAC NEURON architecture for 63 cases by 5 different approximation
methods are shown in Fig. 11 and Fig. 12 respectively. Consider that in Figs.
11 and 12, the approximate adders and multipliers for LEBZAM and PBAM
are applied separately, but in the proposed technique, the approximate multi-
pliers and adders are used concurrently. As shown in these figures, exploiting
simultaneously approximate multipliers and adders according to the proposed
method always hold more savings in energy and area with the same HMR
values compared to the other methods.

Tables 2-5 present the gate-level results, where area, delay, and power stand
respectively for total area in µm2, the delay in the critical path which is deter-
mined to be the clock period in ns, and total power dissipation in mW . Also,
latency denotes the time in ms required for the ANN output to be obtained
after an input is applied, determined as the multiplication of clock period
by the number of clock cycles to obtain the ANN output. The number of
clock cycles required to obtain the ANN output under the smac neuron and
smac ann is respectively computed as 798 and 87060 for 668-128-10 struc-
ture and, 1440 and 306196 for 668-256-256-256-10 structure. Moreover, energy
presents the energy consumption in µJ computed as the multiplication of
latency by power dissipation. We note that the clock period was improved
using the retiming technique in the synthesis tool iteratively. The switching
activity data required for the computation of power dissipation was generated
using the test data in simulation. The test dataset was also used to verify the
ANN design.

Table 2 and 4 present the gate-level results of ANN designs under the
smac neuron architecture where the exact multipliers and adders in the MAC
blocks are replaced by the approximate ones. Observe that since the approx-
imate multipliers of [34] are optimized for energy consumption, the ANN
designs including these multipliers may have worse area values than those of



Springer Nature 2021 LATEX template

20 Energy Efficient Hardware Implementation of Fully-Connected ANNs

Table 5 Results of SMAC ANN architecture for 668-128-10 structure using approximate
multipliers and adders.

Multiplier Type
Approximation Level

Mul Add
latency power energy HMR

energy
gain

Behavioral 0 0 688.04 9.33 6418.81 2.63 0.00%
LEBZAM 6 7 666.18 8.01 5333.17 2.63 17%
PBAM [39] 7 7 720.94 7.73 5570.29 2.7 13%
EvoAPP[34] HDG 0 695.78 8.30 5773.67 2.04 10%
EvoAPP[34] GAT 0 659.57 8.59 5667.82 2.78 12%

ANN using exact multipliers. This is also due to the fact that the logic syn-
thesis tool uses optimized exact multipliers and adders. On the other hand,
the use of approximate multipliers of [39] can reduce the ANN hardware com-
plexity by finding the appropriate approximation levels of multipliers at the
hidden and output layers. Furthermore, the proposed approximate multiplier
LEBZAM leads to the largest reduction in area, latency, and energy consump-
tion. Observe that the tradeoff between hardware complexity and accuracy
can be explored by simply changing the approximation level of multipliers and
adders.

By exploiting the proposed algorithm, the deviation limit is set to 2.5% of
HMR, and regarding that, the HMR value is 2.63, and the maximum tolerable
HMR is 2.69 for 668-128-10 structure. The MAL value of LEBZAM multipliers
are obtained as 7 and 16 for the hidden and output layers. Also, AAL values
are calculated as 8 and 17, respectively, for the hidden layer and output layer.
Furthermore, to obtain the performance of the proposed approximate level
algorithm, different cases beyond this algorithm are given in Table 2. It must be
noted that, due to the large search space of MAL and AAL values, the proposed
algorithm only finds near-optimal values by acceptable variance. By investi-
gation of Table 2 results, observe that the simultaneous use of approximate
multipliers with the introduced approximate adders in [39], reduces the ANN
hardware complexity significantly. The maximum gain on area and energy con-
sumption reaches up to 6% and 48% using the approximate multipliers and
adders with improving in the accuracy.

Table 3 indicate the efficiency of the LEBZAM in Multiplier ad adder
for the network which is trained for SVHN database. According to the gate-
level results, the LEBZAM multipliers and adders save up to 36% in energy
consumption and 10% in occupied are, by only 0.29 deviation in HMR
percentage.

Table 4 presents the gate-level results of ANN designs under the
smac neuron architecture for 668-256-256-256-10 architecture. According to
the table result, exploiting approximate multipliers and adders yields up to
39%, and 5% save in energy and area, respectively, with a small degradation
in the accuracy.

Table 5 presents the gate-level results of ANN designs under the smac ann
architecture where the single exact multiplier and adder in the MAC block is
replaced by the approximate one. Although there exists only one multiplier



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 21

and adder to be replaced, the proposed approximate units lead to the largest
gains in energy consumption.

It is worth noting that the complexity of control units overwhelms the
complexity of the whole design in SMAC ANN , whereas the ratio of compu-
tation parts to control parts is negligible. As a result, the area is an unreliable
metric for comparing the effectiveness of various approximate approaches. As
a result, the area results are not included in Table 5 to avoid confusion. Con-
versely, the energy parameter shows the efficiency of computation units in
SMAC ANN architecture. To obtain a better performance, the investigated
blocks must possess a better function in terms of delay and consumed power
simultaneously.

According to Table 2 and Table 5 results, SMAC ANN takes a much
longer latency compared to the SMAC NEURON as we expected. Also, the
energy consumption increase due to the increased control complexity; addition-
ally, the single multiplier and adder bit lengths are the maximum possible bit
length of the network for SMAC ANN . Contrarily, for SMAC NEURON ,
multipliers and adders bit lengths are based on the corresponding neuron
weight values.

6 Conclusion

In this paper, we presented hardware efficient implementation of ANN designs
under the time-multiplexed architecture using approximate adders and mul-
tipliers. We also introduced an approximate multiplier, which leads to a
significant reduction in area and energy consumption in the ANN design when
compared to the previously proposed approximate multipliers. Also, we showed
that exploiting proper approximate adders based on the employed multipli-
ers can reduce the complexity of the structure without changing the accuracy.
To exploit the proposed multipliers and adders in ANNs structure based on
the desired accuracy, we offered the approximate level as a novel error metric.
The generation of the approximate arithmetic units based on this error metric
can be done in linear times for different bit-width inputs as opposed to the
other methods. According to the experimental results, the introduced metric
has a linear relationship with ANN accuracy. Furthermore, we proposed an
algorithm to determine the approximate level of multipliers and adders by con-
sidering the desired accuracy. Experimental results clearly show that the use
of approximate adders and multipliers in the ANN designs reduces the design
complexity significantly with the same hardware accuracy compared to the
ANN designs using exact adders and multipliers.

References

[1] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba,
M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jack-
son, and D. S. Modha. Truenorth: Design and tool flow of a 65 mw



Springer Nature 2021 LATEX template

22 Energy Efficient Hardware Implementation of Fully-Connected ANNs

1 million neuron programmable neurosynaptic chip. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 34(10):
1537–1557, 2015.

[2] L. Aksoy, E. da Costa, P. Flores, and J. Monteiro. Exact and approximate
algorithms for the optimization of area and delay in multiple constant mul-
tiplications. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(6):1013–1026, June 2008. ISSN 0278-0070. doi:
10.1109/TCAD.2008.923242.

[3] Levent Aksoy, Sajjad Parvin, Mohammadreza Esmali Nojehdeh, and
Mustafa Altun. Efficient time-multiplexed realization of feedforward arti-
ficial neural networks. In 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1–5, 2020. doi: 10.1109/ISCAS45731.2020.
9181002.

[4] F. Alimoglu and E. Alpaydin. Combining multiple representations and
classifiers for pen-based handwritten digit recognition. In International
Conference on Document Analysis and Recognition, pages 637–640, 1997.

[5] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek, and
J. Han. Improving the accuracy and hardware efficiency of neural net-
works using approximate multipliers. IEEE Transactions on Very Large
Scale Integration Systems, 28(2):317–328, 2020.

[6] Adnène Arbi. Novel traveling waves solutions for nonlinear delayed
dynamical neural networks with leakage term. Chaos, Solitons & Fractals,
152:111436, 2021.

[7] Adnène Arbi and Najeh Tahri. Almost anti-periodic solution of inertial
neural networks model on time scales. In MATEC Web of Conferences,
volume 355. EDP Sciences, 2022.

[8] Adnène Arbi and Najeh Tahri. Almost anti-periodic solution of inertial
neural networks model on time scales. In MATEC Web of Conferences,
volume 355. EDP Sciences, 2022.

[9] Adnene Arbi, Chaouki Aouiti, and Abderrahmane Touati. Uniform
asymptotic stability and global asymptotic stability for time-delay hop-
field neural networks. In IFIP International Conference on Artificial
Intelligence Applications and Innovations, pages 483–492. Springer, 2012.

[10] Adnene Arbi, Jinde Cao, and Ahmed Alsaedi. Improved synchroniza-
tion analysis of competitive neural networks with time-varying delays.
Nonlinear Analysis: Modelling and Control, 23(1):82–107, 2018.

[11] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S. Chan-
dra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar, and
D. S. Modha. Building block of a programmable neuromorphic substrate:
A digital neurosynaptic core. In The 2012 International Joint Conference
on Neural Networks (IJCNN), pages 1–8, 2012.

[12] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S. Chan-
dra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar, and
D. S. Modha. Building block of a programmable neuromorphic substrate:
A digital neurosynaptic core. In International Joint Conference on Neural



Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 23

Networks (IJCNN), pages 1–8, 2012. doi: 10.1109/IJCNN.2012.6252637.
[13] A. Bernasconi and V. Ciriani. 2-spp approximate synthesis for error tol-

erant applications. In Euromicro Conference on Digital System Design,
pages 411–418, 2014.

[14] B. D. Brown and H. C. Card. Stochastic neural computation. i. compu-
tational elements. IEEE Transactions on Computers, 50(9):891–905, Sep.
2001. ISSN 0018-9340. doi: 10.1109/12.954505.

[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam. Dadiannao: A machine-learning super-
computer. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 609–622, 2014.

[16] Jian Cheng, Pei-song Wang, Gang Li, Qing-hao Hu, and Han-qing Lu.
Recent advances in efficient computation of deep convolutional neural
networks. Frontiers of Information Technology & Electronic Engineering,
19(1):64–77, Jan 2018.

[17] R. Ding, Z. Liu, R. D. Blanton, and D. Marculescu. Quantized deep neural
networks for energy efficient hardware-based inference. In Asia and South
Pacific Design Automation Conference, pages 1–8, 2018.

[18] M. Esmali Nojehdeh, L. Aksoy, and M. Altun. Efficient hardware
implementation of artificial neural networks using approximate multiply-
accumulate blocks. In 2020 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 96–101, 2020.

[19] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy.
Impact: Imprecise adders for low-power approximate computing. In
IEEE/ACM International Symposium on Low Power Electronics and
Design, pages 409–414, 2011.

[20] J. Han and M. Orshansky. Approximate computing: An emerging
paradigm for energy-efficient design. In European Test Symposium, pages
1–6, 2013.

[21] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
Upper Saddle River, NJ, 1999.

[22] J. L. Holi and J. . Hwang. Finite precision error analysis of neural network
hardware implementations. IEEE Transactions on Computers, 42(3):281–
290, March 1993. ISSN 0018-9340. doi: 10.1109/12.210171.

[23] M. Horowitz. Computing’s energy problem (and what we can do about
it). In IEEE International Solid-State Circuits Conference, 2014.

[24] Riya Jain and Neeta Pandey. Approximate karatsuba multiplier for
error-resilient applications. AEU - International Journal of Electronics
and Communications, 130:153579, 2021. ISSN 1434-8411. doi: https:
//doi.org/10.1016/j.aeue.2020.153579. URL https://www.sciencedirect.
com/science/article/pii/S1434841120327837.

[25] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit
database. at&t labs, 2010.

[26] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong. Lognet:
Energy-efficient neural networks using logarithmic compleutation. In 2017

https://www.sciencedirect.com/science/article/pii/S1434841120327837
https://www.sciencedirect.com/science/article/pii/S1434841120327837


Springer Nature 2021 LATEX template

24 Energy Efficient Hardware Implementation of Fully-Connected ANNs

IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5900–5904, March 2017. doi: 10.1109/ICASSP.2017.
7953288.

[27] S. K. Lee, P. N. Whatmough, D. Brooks, and G. Wei. A 16-nm always-
on dnn processor with adaptive clocking and multi-cycle banked srams.
IEEE Journal of Solid-State Circuits, 54(7):1982–1992, 2019.

[28] G. Li, F. Li, T. Zhao, and J. Cheng. Block convolution: Towards memory-
efficient inference of large-scale cnns on fpga. In 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1163–1166, March
2018. doi: 10.23919/DATE.2018.8342188.

[29] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua.
A convolutional neural network cascade for face detection. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 5325–5334,
2015.

[30] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen. Medical
image classification with convolutional neural network. In International
Conference on Control Automation Robotics Vision, pages 844–848, 2014.

[31] Karri Manikantta Reddy, M.H. Vasantha, Y.B. Nithin Kumar, and
Devesh Dwivedi. Design and analysis of multiplier using approximate 4-2
compressor. AEU - International Journal of Electronics and Communi-
cations, 107:89–97, 2019. ISSN 1434-8411. doi: https://doi.org/10.1016/
j.aeue.2019.05.021. URL https://www.sciencedirect.com/science/article/
pii/S1434841118330085.

[32] Mohammad Mirzaei and Siamak Mohammadi. Low-power and variation-
aware approximate arithmetic units for image processing applications.
AEU - International Journal of Electronics and Communications, 138:
153825, 2021. ISSN 1434-8411. doi: https://doi.org/10.1016/j.aeue.
2021.153825. URL https://www.sciencedirect.com/science/article/pii/
S1434841121002223.

[33] Janardan Misra and Indranil Saha. Artificial neural networks in hardware:
A survey of two decades of progress. Neurocomputing, 74(1):239 – 255,
2010.

[34] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina. Evoapproxsb:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods. In Design, Automation and
Test in Europe Conference and Exhibition (DATE), pages 258–261, 2017.

[35] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,
and J. T. Ludwig. Approximate Signal Processing. Journal of VLSI signal
processing systems for signal, image and video technology, 75:177 – 200,
1997.

[36] N. Nedjah, R. M. da Silva, L. M. Mourelle, and M. V. C. da Silva. Dynamic
MAC-based architecture of artificial neural networks suitable for hardware
implementation on FPGAs. Neurocomputing, 72(10):2171 – 2179, 2009.

[37] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y Ng. Reading digits in natural images with unsupervised

https://www.sciencedirect.com/science/article/pii/S1434841118330085
https://www.sciencedirect.com/science/article/pii/S1434841118330085
https://www.sciencedirect.com/science/article/pii/S1434841121002223
https://www.sciencedirect.com/science/article/pii/S1434841121002223


Springer Nature 2021 LATEX template

Energy Efficient Hardware Implementation of Fully-Connected ANNs 25

feature learning. 2011.
[38] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning decon-

volution network for semantic segmentation. In IEEE International
Conference on Computer Vision, pages 1520–1528, December 2015.

[39] Mohammadreza Esmali Nojehdeh and Mustafa Altun. Systematic synthe-
sis of approximate adders and multipliers with accurate error calculations.
Integration, 70:99 – 107, 2020. ISSN 0167-9260. doi: https://doi.org/10.
1016/j.vlsi.2019.10.001.

[40] Mohammadreza Esmali Nojehdeh, Sajjad Parvin, and Mustafa Altun.
In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 402–405. IEEE, 2021.

[41] H. Park and T. Kim. Structure optimizations of neuromorphic computing
architectures for deep neural network. In 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 183–188, 2018.

[42] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional neu-
ral networks. In Computer Vision - ECCV 2016, pages 525–542, Cham,
Switzerland, 2016. Springer. doi: 10.1007/978-3-319-46448-0 32. URL
https://doi.org/10.1007/978-3-319-46448-0 32.

[43] Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Sharifah E Alhazmi,
Manoj Gupta, Adnène Arbi, and Isa Abdullahi Baba. Applications of
artificial neural network to solve the nonlinear covid-19 mathematical
model based on the dynamics of siq. Journal of Taibah University for
Science, 16(1):874–884, 2022.

[44] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy. Multiplier-
less artificial neurons exploiting error resiliency for energy-efficient neural
computing. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), pages 145–150, 2016.

[45] M. Schaffner, F. Gurkaynak, A. Smolic, H. Kaeslin, and L. Benini. An
approximate computing technique for reducing the complexity of a direct-
solver for sparse linear systems in real-time video processing. In Design
Automation Conference (DAC), pages 1–6, 2014.

[46] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda. Hardware-software
codesign of accurate, multiplier-free deep neural networks. In Design
Automation Conference (DAC), pages 28:1–28:6, 2017.

[47] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda. Hardware-software
codesign of accurate, multiplier-free deep neural networks. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
June 2017. doi: 10.1145/3061639.3062259.

[48] The MathWorks Inc. Deep Learning Toolbox. Natick, Mas-
sachusetts, United States, 2020. URL https://www.mathworks.com/help/
deeplearning/.

[49] Y. Yamada, T. Sano, Y. Tanabe, Y. Ishigaki, S. Hosoda, F. Hyuga,
A. Moriya, R. Hada, A. Masuda, M. Uchiyama, M. Jobashi, T. Koizumi,
T. Tamai, N. Sato, J. Tanabe, K. Kimura, Y. Ojima, R. Murakami, and

https://doi.org/10.1007/978-3-319-46448-0_32
https://www.mathworks.com/help/deeplearning/
https://www.mathworks.com/help/deeplearning/


Springer Nature 2021 LATEX template

26 Energy Efficient Hardware Implementation of Fully-Connected ANNs

T. Yoshikawa. A 20.5 tops multicore soc with dnn accelerator and image
signal processor for automotive applications. IEEE Journal of Solid-State
Circuits, 55(1):120–132, 2020. doi: 10.1109/JSSC.2019.2951391.

[50] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi. Approximate
xor/xnor-based adders for inexact computing. In IEEE International
Conference on Nanotechnology, pages 690–693, 2013.

[51] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. Approxann:
An approximate computing framework for artificial neural network. In
Design, Automation and Test in Europe Conference and Exhibition, pages
701–706, 2015.


	Introduction
	Background
	ANN Concept
	ANN Structure
	ANN Implementation
	Approximate Adders and Multipliers

	MAC-based ANN Design
	SMAC_NEURON Architecture
	SMAC_ANN Architecture

	Implementation of ANNs Using Approximate Arithmetic Units
	Approximate Adder
	Approximate Multipliers
	Approximate Level
	SMAC_NEURON
	SMAC_ANN


	Experimental Results
	Conclusion

