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ABSTRACT 
In this study, we apply a novel synthesis technique for 
implementing robust digital computation in nanoscale lattices 
with random interconnects: percolation theory on random graphs. 
We exploit the non-linearity that occurs through percolation to 
produce Boolean functionality. We show that the error margins, 
defined in terms of the steepness of the non-linearity, translate 
into the degree of defect tolerance. We study the problem of 
mapping Boolean functions onto lattices with good error margins. 
Categories and Subject Descriptors 
B.7.1 [integrated circuits]: Types and Design Styles – advanced 
technologies. 
General Terms: Design, Reliability. 
Keywords: Percolation, Nanoscale Digital Computation, 
Logic Synthesis. 

1. PERCOLATION THEORY 
     Percolation theory is a rich mathematical topic that forms the 
basis of explanations of physical phenomena such as diffusion 
and phase changes in materials. It tells us that in media with 
random local connectivity, there is a critical threshold for global 
connectivity: below the threshold, the probability of global 
connectivity quickly drops to zero; above it, the probability 
quickly rises to one [1]. This is illustrated in Figure 1.  
     Consider the lattice shown in Figure 2(a). Suppose that each 
square in the lattice is colored black with independent probability 
p1. Let p2 be the probability that a connected path exists between 
the top and bottom plates. Figure 2(b) shows the relationship 
between p1 and p2 for different square lattice sizes. 
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Figure 1. Non-linearity through percolation in random media. 

     Percolation theory tells us that with increasing lattice size, the 
curve steepness increases. (In the limit, an infinite lattice produces 
a perfect step function.) Here pc is defined as a critical probability 
below which p2 is approximately 0 and above which p2 is 
approximately 1. We define the one margin and the zero margin 
as the corresponding ranges of p1, i.e., values of p1 that produce 
values of p2 that we interpret as logical one and zero, respectively. 
We exploit the theory in a novel way: we use the nonlinearity 
produced by percolation to implement digital computation. 
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                      (a)                                                       (b) 
Figure 2. (a) Percolation lattice; (b) p2 versus p1 for 1×1, 2×2, 
6×6, 24×24, 120×120 and infinite size lattices. 

2. NANOWIRE CROSSBAR ARRAYS 
     Although not tied to any specific technology, we frame our 
discussion in terms of a conceptual model of nanowire arrays. 
Figure 3 illustrates a nanowire crossbar array with four plates: 
left, right, top, and bottom. Figure 4 illustrates connectivity in 
terms of squares: black squares represent crosspoints that are ON 
and white squares crosspoints that are OFF. Suppose that in this 
technology crosspoints between the horizontal and vertical 
nanowires are FET-like junctions [2]. When a high or low voltage 
is applied, these develop low or high impedances, respectively.  
Ideally, if the applied voltage is 0 (corresponding to logic zero), 
then all the crosspoints are OFF and so there is no connection 
between any of the plates.  If the applied voltage is VDD 
(corresponding to logic one), then all the crosspoints are ON and 
so the plates are connected. However, with defects in the lattice, 
not all crosspoints will respond this way [3]. This is illustrated in 
Figure 5. 
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Figure 4.  Nanowire crossbar array with random connections. 

 

 
Figure 5.  Schematic of a nanowire crossbar based switch. 

3. IMPLEMENTING BOOLEAN 
FUNCTIONS THROUGH PERCOLATION 
     Our approach for implementing Boolean functions is 
illustrated in Figure 6. The input values, X11,…, Xrc, are applied to 
distinct regions in the array. In each region, the probability of 
local connectivity p1 is ideally only dependent on the 
corresponding Boolean input value. Connectivity through the 
entire array is now a Boolean function of the input values via the 
relationship between the input values and the probability of local 
connectivity. Call the Boolean functions that are implemented 
according to the top-to-bottom and left-to-right plate 
connectivities f and g, respectively. As shown in Figure 7, each 
Boolean function evaluates to one if there exists a path between 
corresponding plates, and evaluates to zero otherwise. In this 
way, digital computation is achieved without switches or logic 
elements; it occurs due to the random connectivity of the fabric.  

 
Figure 6.  Boolean computation in a random network.  

 

 
A path exists between top and bottom, f = 1        A path exists between top and bottom, f = 1 
No path exists between left and right, g = 0        A path exists between left and right, g = 1 
Figure 7. Relation between Boolean functionality and paths. 

 

     An important consideration in the synthesis methodology is the 
quality of the margins. Suppose that the zero and one margins are 
the range of values for p1 for which p2 is always below ε and 
above 1- ε, respectively, where ε is a very small number. We 
selected ε = 0.001 in this study. Accordingly, these margins 
correlate with the degree of defect tolerance. For instance a 10% 

one margin means that even though we expect that one out of ten 
crosspoints will not operate correctly – because these are 
defective, or because of transient errors, or because of noise – the 
circuit still evaluates to one with high probability (p2 > 0.999). 
The higher the margins, the higher the defect tolerance that we 
achieve. 
     Different assignments of input variables to the regions of the 
network affect the margins. A 4-input 2×2 lattice is analyzed in 
Figure 8. As can be seen, the row highlighted in grey has very 
low margins – indeed, these are nearly zero –so the circuit is 
likely to produce erroneous values for this input computation. 

et’s examine why.  L
  

 

   

  c  f =X11X21+X12X22      

cg =X11X12+X21X22 

Figure 8. Four-input lattice and possible 0/1 assignments to 
the inputs (up to symmetries) and the corresponding margins. 
     Assignments that evaluate to zero but have diagonally adjacent 
assignments of blocks of one's result in poor zero margins because 
there is a good chance that a weak connection from top to bottom 
will form through stray, random connections across the diagonal. 
This is illustrated in Figure 9. Note that each 4-connected path 
corresponds to the AND of the inputs; the paths taken together 
correspond to the OR of these AND terms, so implement a sum-
of-products expression. This interpretation gives rise to an 
interesting problem in logic optimization: given a Boolean sum-
of-products expression as the target function, how should one 
assign the variables to the regions of the fabric such that there are 
no diagonally adjacent variables that are one in any assignment 
that evaluates to zero? This question takes us to the concept of 
lattice duality. A necessary and sufficient condition for good 
error margins is that the Boolean functions corresponding to the 
top-to-bottom and left-to-right plate connectivities f and g are dual 
functions.  
 

 
Figure 9. An input assignment with a low zero margin.  
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X11 X21 X12 X22 f Margin g Margin 

0 0 0 0 0 40% 0 40% 
0 0 0 1 0 25% 0 25% 
0 0 1 1 1 14% 0 23% 
0 1  0 1 0 23% 1 14% 
0 1 1 0 0 0% 0 0% 
0 1 1 1 1 14% 1 14% 
1 1 1 1 1 25% 1 25% 


