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TALIPOT: Energy Efficient DNN Booster
Employing Hybrid Bit Parallel-Serial Processing in

MSB-First Fashion
M.Burak Karadeniz and Mustafa Altun

Abstract—We propose a novel hybrid bit parallel-serial pro-
cessing technique called TALIPOT in order to reduce energy con-
sumption of Deep Neural Networks (DNNs). TALIPOT works as
computation booster and has inborn ability of quality adjusting
trade-off between accuracy and energy consumption of DNNs.
The core principal of TALIPOT is keeping the serial number
of bits same in the entire computing process, so the energy
is consumed effectively without extra waiting times between
inputs and outputs of the computing blocks (adders, multipliers
and activation blocks). To achieve this, we implement activation
rounding which scales down the accumulation of parallel bits
at the output of the hidden layers of DNN. TALIPOT utilizes
most significant bit first (MSB-first) fashion, so we obtain the
most valuable bit information first, between the layers of DNN,
which ensures the activation rounding process done accurately
and efficiently. Thanks to this method, we optimize operating
accuracy/energy point by cutting off bits at the output whenever
we obtain the desired accuracy. Simulations using the MNIST and
CIFAR-10 datasets show that TALIPOT outperforms the state-of-
the-art computation techniques in terms of energy consumption.
TALIPOT performs the MNIST classification with the energy
efficiency of 25.3 TOPS/W and the accuracy of 98.2% in ASIC
environment using 40 nm CMOS process.

Index Terms—Deep Neural Network (DNN), Hybrid Number
Representation (HNR), activation rounding, hardware accelera-
tor, ASIC.

I. INTRODUCTION

RECENT improvements in accuracy and functionality
of Deep Neural Networks (DNNs) have gained them

increasing popularity in autonomous systems and diagnosis
tools. However, these improvements come with a price. Energy
consumption of DNNs increases dramatically that requires new
techniques to improve their energy efficiency. For this purpose
a good number of inference accelerators have been proposed.
DaDianNao [1] proposes multi-chip framework where each
chip is tiled and each tile has its own memory and arithmetic
function processor. Stripe [2] suggests bit-serial computa-
tion to improve energy efficiency over [1]. UNPU [3] also
proposes bit-serial computation with a modified computation
architecture based on lookup tables. Bit-serial computation
also motivates the studies [4]–[6] aiming to reduce energy
consumption. However, since the increase in latency is more
than or almost equal to the decrease in power for these studies,
energy consumption is not satisfactorily improved.
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Considering that multiplication operations take an important
part of the computation workload, accelerators with energy-
efficient multipliers are introduced [7]–[9]. Vesti [10] designs
a hardware accelerator without conventional multipliers by
exploiting in-memory computing. However, its usage is very
limited considering that it uses 1-bit (binarized) weight preci-
sion. Along with the hardware modification, different number
representations or mix precision for multiplicands are used to
reduce energy [11]–[14].

Additionally, to reduce energy Eyeriss v2 [15] proposes a
hierarchical mesh network (HM-NoC) consisting of process-
ing elements each of which executes its own computation
task by the use of multiply and accumulate (MAC) blocks.
Thanks to sparse or compact mapping of processing elements,
data movement and energy consumption can be reduced.
This strategy is also followed by [16]–[19]. However these
approaches necessitate complex control blocks that restrict
energy efficiency.

Examining the above studies on energy efficient DNNs
in the literature, we see that they mainly use the conven-
tional computing paradigm with an integration of different
performance optimization techniques. These techniques in-
clude memory partitioning, spatial mapping, energy efficient
multiplication, optimization of weight and input precision,
bit-serial computation, and MAC-based processing element
management. Different from these studies, we use a new
computing paradigm with a new number representation.

We propose TALIPOT: a novel hybrid bit parallel-serial
processing technique to reduce energy consumption of DNNs.
There are different architectures which are related to DNNs
such as convolutional neural networks (CNNs) and multilayer
perceptrons (MLPs) based networks [20], [21]. We develop
TALIPOT applicable to both CNNs and MLPs in feed-forward
process. So, TALIPOT can be embedded in a general purpose
neural processor. Note that although CNNs have more com-
plex processing flows, they commonly use the computation
footprint of the MLPs.

Each layer that comprises MLP has computation workload
which is composed of relatively basic operations, i.e., multi-
plication, addition and activation. As the network is layered,
arithmetic operations run in a pipeline (feed-forward) where
inputs of one layer wait for the outputs of the previous layer.

Our energy optimization strategy has two main principles.
The first one is to optimize latency and the second one is to use
energy efficient and simple computing blocks. Examining the
literature for energy efficient arithmetic blocks, we see that bit-
serial multipliers and adders come forward with their simple
and energy efficient structures [2], [3]. However, in terms of
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latency and time management, bit-serial systems have burdens.
For example, consider a 2-hidden layer MLP architecture

where every layer has 4-bit precision as shown in Fig. 1.
Fig. 1(a) depicts the timing diagram of network inputs and
outputs which are processed by conventional bit-serial com-
puting in the best case scenario. To process next inputs, every
layer needs to wait for the time duration of 4 serial bits which
is a waste of time. The latency which has the factor of 12
clock cycles in this example, is dramatically increased by
the factor of the number of the hidden layers. In order to
relieve this burden, TALIPOT uses activation rounding which
will be detailed in the following sections. Timing diagram of
the implementation of the same network with TALIPOT is
displayed in Fig. 1(b). Whenever the MSBs of the input of the
layer are fetched, they are processed and activated to be used
for the next layer. Thanks to activation rounding technique,
TALIPOT is able to decrease the latency factor from 12 clock
cycles to 7 clock cycles in this specific example. Ignoring the
fact that the every sequential block in a layer has its own
one clock cycle delay, TALIPOT keeps the serial number of
bits same, which is 4 in this example, in the entire computing
process, so the energy is consumed effectively without extra
waiting times between inputs and outputs of computing blocks
(adders, multipliers, and activation blocks).

Additionally, to optimize delay which is the important part
of the latency, we aim to use simple computation blocks espe-
cially for the matrix multiplication and the activation rounding
with MSB-first processing. So, we obtain the most valuable
bit information first to ensure that the activation rounding
process is done accurately and efficiently. As opposed to the
MSB-first processing, in least significant bit first (LSB-first)
processing, activation operation can not be done accurately
until receiving the MSB of the input that results in controlling
and latency overheads as seen in [3]. As a result, in this study,
we contribute to implement energy efficient DNNs. Our main
contributions include:

• We have introduced Hybrid Number Representation over
Conventional Binary Representation that allows to keep
the serial number of bits same for energy efficiency.

• We have implemented new arithmetic blocks as well as a
new activation technique that we call activation rounding
instead of regular activation.

• We have developed energy-efficient hardware implemen-
tation of DNNs with our proposed technique over con-
ventional bit-serial or bit-parallel processing methods.

The rest of the paper is organized as follows. Section
II introduces TALIPOT. Section III evaluates TALIPOT in
comparison with the state-of-the-art architectures. Section IV
gives experimental results and Section V concludes the paper.

II. TALIPOT : HYBRID BIT PROCESSOR

A. Hybrid Number Representation

TALIPOT uses Hybrid Number Representation (HNR) as
opposed to Conventional Binary Representation (CBR). Con-
sider a decimal number D represented by a CBR using N
binary digits where the most significant N th bit is reserved
for the sign operation either in signed or in sign-magnitude

Fig. 1. MLP timing diagram: a) with conventional bit-serial computing, b)
with TALIPOT.

fashion. Excluding the sign bit, the first N − 1 binary digits
calculate

N−1∑
k=1

bkWk (1)

where bk and Wk are the kth digit and its weight, respectively,
and Wk = 2k−1.

To represent the same decimal number D, HNR uses a
two dimensional matrix M × N consisting of binary digits,
where M and N are the number of the rows and columns,
respectively. The most significant M th row which has N bits
is reserved for the sign operation either in signed or in sign-
magnitude fashion. Excluding the sign bits, the first M − 1
rows calculate

M−1∑
k=1

N∑
l=1

b(k,l)W(k,l) (2)

where b(k,l) and W(k,l) are the digit in the kth row and lth
column and its weight, respectively, and Wk,l = 2k+l−1.

An example for D = −42 is shown in Fig. 2. While
Fig. 2(a) and (b) show signed CBR(-42) and HNR(-42),
respectively, Fig. 2(c) and (d) show their sign-magnitude
versions. To elucidate, lets analyse Fig. 2(d):

−42 = +(8× 1 + 4× 0 + 2× 1 + 1× 0)

−(16× 1 + 8× 1 + 4× 0 + 2× 0)

+(32× 0 + 16× 0 + 8× 1 + 4× 1)

−(64× 0 + 32× 1 + 16× 0 + 8× 1).
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Fig. 2. HNR versus CBR: a) signed CBR, b) signed HNR, c) sign-magnitude
CBR, d) sign-magnitude HNR.

Here + and − signs before parenthesis represent Pos and Neg,
respectively, determining that the corresponding column is
positive or negative after it is multiplied and summed with its
corresponding weights. In our implementations we use binary
1 for Neg and binary 0 for Pos. One can also calculate D which
is represented by HNR with column by column calculation:

HNR(D) =

N∑
k=1

DN−k × 2N−k (3)

where Dk is the decimal value of the kth column as if the
column has a weight set of the first column. For Fig. 2(d),
starting from the right column, Dk values are -5, 3, -12, and
10, so −42 = −5× 23 + 3× 22 − 12× 21 + 10× 20.

Note that a decimal number can be represented by HNR in
different ways, so HNR is a redundant representation while
CBR is a unique. This allows us to use different M and
N values to represent a decimal number D by satisfying
MHNR(D) +NHNR(D) − 1 ≥ NCBR(D).

B. TALIPOT - Multiplication

TALIPOT uses constant multiplication in the implementa-
tion of a DNN. Inputs are fed in serial bit by bit while weights
(synapses) are fed in parallel as constant numbers. To perform
constant multiplication, either inputs or constant numbers must
be represented by sign-magnitude representations. If the inputs
are represented by sign-magnitude digits and the constant
numbers are represented by signed ones, then the output of
the constant multiplication is in signed HNR.

As an example, consider the constant multiplication of
decimal numbers of 11 and -12 as given in Fig. 3. First input,
in1, is represented by sign-magnitude CBR and is fed in serial
bit by bit. Second input, in2, is represented by signed CBR
and is fed in parallel and stationary until all of the digits of
in1 are processed. If the MSB and a serial digit of in1 are
both binary 1, in2 is inverted and 1 added. These operations
are done by the multiplexer. The output is in signed HNR.
Fig. 4 displays the same example in which both in1 and in2

Fig. 3. Constant multiplication of (11) × (-12) in signed-HNR.

Fig. 4. Constant multiplication of (11) × (-12) in sign-magnitude HNR.

are represented by sign-magnitude CBR. In order to perform
constant multiplication, MSBs of in1 and in2 are bitwise
XOR’ed while bits of in2 and a serial bit of in1 are bitwise
AND’ed. In this case, the output is in sign-magnitude HNR.
Considering both of these examples, output is composed of
Dk’s (-12, 0, -12, -12) in the direction of time which outputs
HNR(-132) according to Equation (3).

C. TALIPOT - Summation

TALIPOT adds two outputs of the multipliers, each of which
is represented in HNR format with an M × N matrix, in
parallel column by column. The column size of the inputs
and the output are same. Summation of two signed HNR
is done with M -bit binary adder. Fig. 5 depicts addition of
signed HNR(100) which is composed of Dk’s (7, 7, 6, 4) and
signed HNR(-30) which is composed of Dk’s (-5, 2, 3, -4).
Summation of them is done with a 4-bit binary adder with its
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Fig. 5. Summation of signed HNR(100) and signed HNR(-30).

output having Dk’s (2, 9, 9, 0) in the direction of time that
results in HNR(70) according to Equation (3).

D. TALIPOT - Activation

The activation operation takes place after multiplication and
summation. Until activation, N is same as the number of
input activation. However, M grows further, having positive
correlation with the number of summations or weights in a
layer. To be able to directly use activation outputs as inputs
for the next layer, M should be 2 (with the sign row) after the
activation operation. This is illustrated in Fig. 6 with weight
sets. HNR(D) with a weight matrix of M × N is rounded
to HNR(Dr) with a weight matrix of 2 ×N after activation.
We call this operation as activation rounding. Each column of
HNR(Dr), denoted by (Drk , k ∈ 0, 1, 2, ..., N − 1), has 2×
bigger weight than the MSB weight of the corresponding col-
umn of the HNR(D), denoted by (Dk, k ∈ 0, 1, 2, ..., N − 1).

It is clear that there is an information lost in activation
rounding. The accuracy loss should be minimized for the acti-
vation block. Additionally, the block should be energy efficient
with relatively small circuit size and latency overhead. By
considering these parameters, we develop two different types
of activation rounding techniques, called unfolded activation
rounding and folded activation rounding. We also categorize
folded activation rounding into 1-bit folded activation and n-
bit folded activation rounding. Unfolded activation rounding
is done column by column, so there is no latency overhead.
1-bit folded activation rounding is done using column pairs
with a latency overhead of 1 clock cycle in order to increase
accuracy. To achieve further accuracy improvement, n-bit
folded activation rounding is used in which n+1 columns are
evaluated at the cost of n clock cycles.

We focus on Tanh and ReLU activation functions specifi-
cally, as models of any nonlinear or linear activation functions
that are existed in the literature. The proposed activation
rounding techniques for these two functions are explained in
the following two subsections.

1) Tanh Activation: Tanh classifies weighted sums (v)
regarding to strengths of their magnitude as

Tanh(v) =
2

1 + e−2v
− 1. (4)

a) Tanh Unfolded Activation Rounding: Consider an
integer number (D) in HNR with M × N matrix. TALIPOT
applies Tanh activation to D column by column (Tanha) as

Fig. 6. Weight sets of the input, HNR(D), before activation and the weight
sets of the output, HNR(Dr), after activation.

Tanha(Dk) =


1 if Dk ≥ TH

−1 if Dk ≤ −TH
0 if − TH < Dk < TH

(5)

where Dk is the decimal value of the kth column of HNR(D),
and TH stands for threshold. At the output of the activation
rounding, Dr, each column has 3 options +1, −1, and 0 due
to rounding. Thus, 3 quantization levels are applied to each
column while the quantization level (Q) of 15 (Q = 2N−1) is
applied to both sides of HNR(D) (Fig. 7). Here, our main goal
is finding the best choice of TH for minimizing the rounding
error.

Normalized Dr (Drn ) is defined as

Drn =

N∑
k=1

2−kTanha(DN−k). (6)

If Equation (3) is rewritten with Tanh activation of normal-
ized decimal value of HNR(D) (HNR(D)n), it is converted
to

Tanh(HNR(D)n) = Tanh

(∑N
k=1 DN−k2

N−k

22N

)
(7)

where inputs and weights are quantized by N bits. Equation
(7) is approximated by Equation (6) as

Tanh

(
2−1DN−1 + 2−2DN−2 + ...+ D0

2N

2N

)
≈

2−1Tanha(DN−1) + 2−2Tanha(DN−2)

+...+
Tanha(D0)

2N
.

(8)
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Fig. 7. Unfolded activation rounding (Tanh vs Tanha): a) column (Dk)
activation, b) overall HNR(D) activation (N = 4).

The sum of inner products of Tanh is defined as

Tanh(a+ b) =
Tanh(a) + Tanh(b)

1 + Tanh(a)Tanh(b)
. (9)

After implementing Equation (9) into the first and second
terms of Equation (8) we have

Tanh(KDN−1) + Tanh(K2 DN−2)

1 + Tanh(KDN−1)Tanh(
K
2 DN−2)

≈ 2−1Tanha(DN−1)

+2−2Tanha(DN−2)
(10)

where K = 1/2N+1 ' 1/2Q. In this situation, Table I is
used as activation rounding scheme. Here UB and LB stand
for upper bound and lower bound of TH, respectively. In order
to approximate right-hand side (RHS) of Equation (10) to the
left-hand side (LHS), following conditions are considered for
rounding:

If KDN−1 ' 0 and KDN−2 ' 0, then DN−1 . Q/N and
DN−2 . Q/N . LHS of Equation (10) is 0. In order not to
activate both terms of RHS, TH should be set at ≥ Q/N .

If KDN−1 ' 0.5 and KDN−2 ' 0, then DN−1 ' Q and
DN−2 . Q/N . LHS of Equation (10) is 0.46. In order to
activate first term but not the second term of the RHS, TH
should be set at ≥ Q/N .

If KDN−1 ' 1 and KDN−2 ' 0, then DN−1 ' 2Q and
DN−2 . Q/N . LHS of Equation (10) is 0.76. In order to
activate both terms of RHS, TH should be set at ≤ Q/N .

The other conditions are handled in the same as seen in
Table I. TALIPOT’s overall strategy is to minimize mean
square error (MSE) between Tanha and Tanh. To do so, TH is
needed to be calibrated. Calibration process is done right after
training. Deducing from the above-mentioned cases TALIPOT
starts with TH as intersection of UB and LB as Q/N . Once
calibration process is done, TH parameter is fixed in the feed-
forward DNN.

b) Tanh 1-Bit Folded Activation Rounding: Consider a
signed decimal (D) represented by HNR with M ×N matrix.
Revisiting Fig. 6, each column pairs of HNR(D) are rounded
to each column pairs of HNR(Dr). We call this operation as
1-bit folded activation rounding which means that the data

TABLE I
UNFOLDED ACTIVATION ROUNDING SCHEME

KDN−1 KDN−2 DN−1 DN−2
TH LHS RHSUB LB

0 0 <Q/N <Q/N - Q/N 0 0
0 0.5 <Q/N Q - Q/N 0.24 0.25
0 1 <Q/N 2Q - Q/N 0.46 0.25

0.5 0 Q <Q/N - Q/N 0.46 0.5
0.5 0.5 Q Q Q - 0.64 0.75
0.5 1 Q 2Q Q - 0.76 0.75
1 0 2Q <Q/N Q/N - 0.76 0.75
1 0.5 2Q Q Q - 0.85 0.75
1 1 2Q 2Q 2Q - 0.91 0.75

MSE 0.01

Fig. 8. 1-Bit folded activation rounding (Tanh vs Tanha): a) column pairs
(Dk and Dk−1) activation, b) overall HNR(D) activation (N = 4).

of high order column, e.g., DN−1, of HNR(D) are shifted
and summed with low order adjacent column, e.g., DN−2.
So, Equation (3) is rewritten as

HNR(D) = 2N−2(2×DN−1 +DN−2) (11)
+ 2N−4(2×DN−3 +DN−4)

+ ...+D0.

Seven quantization levels (1, 2
3 ,

1
3 , 0, - 13 , - 23 , -1) are applied

to each column pair. Fig. 8 shows that when column-wise
quantization level increases, Tanha gets sharp in Tanh. Truth
table of 1-bit folded activation rounding is detailed in Table II.
When 1-bit folding operation is implemented for each double
columns of HNR(D), two times magnitude of high-order
DN−1 term is summed with low-order DN−2 term of Equation
(11), so does Q. Thus, 3Q is set as UB for TH while 0 is set
as LB.

c) Tanh n-Bit Folded Activation Rounding: HNR(D)
represented by M × N matrix can be folded N − 1 times.
While number of folding bits (n)→ N−1; Tanha→ Tanh.
UB and LB of TH are set to

UB(THk) = kQ (12)
LB(THk) = (k − 1)Q (13)

in an n-bit folded HNR where k ∈ Z+ → 1, 2, 3, ..., 2n+1−1.
TH1 has special LB as Q/N which is detailed before.

2) ReLU Activation: ReLU filters positive weighted sums
while cancelling out negative ones:

Relu(v) =

{
v if v ≥ 0

0 else.
(14)

TALIPOT applies ReLU activation function in two stages.
In the first stage, the weighted sum which is constructed in
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TABLE II
1-BIT FOLDED ACTIVATION ROUNDING TRUTH TABLE

DrN−1 DrN−2 Tanha TH UB LB
1 1 1 TH3 3Q 2Q
1 0 2/3 TH2 2Q 1Q
0 1 1/3 TH1 1Q Q/N
0 0 0 0 Q/N 0
-1 -1 -1 -TH3 -2Q -3Q
-1 0 -2/3 -TH2 -1Q -2Q
0 -1 -1/3 -TH1 -Q/N -1Q
0 0 0 0 0 -Q/N

Fig. 9. TALIPOT ReLU activation rounding: a) input HNR(64), b) input
HNR(-41).

HNR with M × N format is structured to HNR with 2 × N
format by rounding. In the second stage, TALIPOT applies
ReLU activation bit by bit. Both of the stages take place
simultaneously.

Consider an example of inputs of sign-magnitude HNR(64)
and sign-magnitude HNR(-41) in Fig. 9(a) and (b) respectively.
Both are represented with (M = 5)× (N = 4) matrix where
first row is reserved for sign bits. In the first stage, both of
inputs are rounded such that

Drk =


1 if Dk ≥ TH

−1 if Dk ≤ −TH
0 if − TH < Dk < TH

(15)

where Dk and TH are decimal value of column k and
rounding threshold, respectively. Drk is the rounded-output.
In this example TH is set as the magnitude of MSBs of each
Dk which is 2M−2 = 8. HNR(64) is composed of Dk’s (+14,
-9, -4, -4) and rounded to HNR(64) in the first stage according
to Equation (15). On the other hand, HNR(-41) in Fig. 9(b), is
rounded to HNR(-32) in the same manner. In order to apply
ReLU in the second stage Algorithm I is addressed. Since
TALIPOT uses MSB-first format, the input can be defined
whether it is positive or negative from the first clock cycle
or whenever the positive(pos) or negative(neg) flag is raised.

a) ReLU Unfolded Activation Rounding: Recall from
Equation (8), HNR(D)n is approximated by Drn as

Algorithm 1 TALIPOT ReLU Activation
1: procedure RELU out(in(Drk))
2: for k = N → 1 do
3: if (in(k) = 1)&(pos, neg = 0) then
4: out(k)← 1
5: pos← 1 . positive flag is raised
6: neg ← 0
7: else if (in(k) = −1)&(neg, pos = 0) then
8: out(k)← 0
9: pos← 0

10: neg ← 1 . negative flag is raised
11: else if (pos = 1) then
12: out(k)← in(k)
13: else if (neg = 1) then
14: out(k)← 0
15: else
16: out(k)← 0
17: pos← 0
18: neg ← 0
19: end if
20: end for
21: end procedure

HNR(D)n =

∑N
k=1 DN−k2

N−k

22N
'

N∑
k=1

DrN−k
2−k. (16)

Equation (16) is rewritten as

DN−k

Q
' DrN−k

. (17)

Considering Equation (15) and Equation (17) together,
TALIPOT applies activation rounding in a DNN such that

DrN−k
=


1 if DN−k

Q ≥ mean(abs(Dx))

−1 if DN−k

Q ≤ −mean(abs(Dx))

0 if DN−k

Q > −mean(abs(Dx))

and DN−k

Q < mean(abs(Dx))

(18)

where mean(abs(Dx)) is the mean absolute of Dk’s in the
xth layer of DNN. To find mean absolute, Dx is written as

Dx =

Lx+1∑
m=1

Lx∑
k=1

INxk
Wxk+Lx(m−1)

(19)

where Lx and Lx+1 are the number of neurons in the xth and
the adjacent layer of the DNN respectively. INx is the input
bits of xth layer which are consist of logic [1, 0] while Wx is
the weights of the xth layer. Equation (19) is approximated to

Dx ' mean (INx)×
∑

Wx. (20)

If we implement Equation (20) into Equation (18), we get

DrN−k
=


1 if DN−k ≥ THx

−1 if DN−k ≤ −THx

0 if − THx < DN−k < THx

(21)

where THx = mean(INx)mean(abs(Wx))Q. TALIPOT ap-
plies different TH for different layer of DNN since every
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layer has different first term (mean(INx)). Second term
(mean(abs(Wx))Q) is calculated for each layer of the DNN
right after the training is done. First term (mean(INx))
needs to be adjusted between layers relatively. Firstly, TAL-
IPOT assumes the mean inputs of the first layer of DNN
(mean(IN1)) as 1. Then, it correlates the mean inputs of
xth layer (mean(INx)) to the mean inputs of the first layer
accordingly to their sizes, literally the number of neurons that
they have. TALIPOT states TH of xth layer (THx) of DNN
as

THx =
Lx

L1
mean(abs(Wx))Q (22)

where Lx is the number of neurons in the xth layer.
b) ReLU 1-Bit or n-Bit Folded Activation Rounding:

Aforementioned folding strategy is also considered for ReLU
activation. TALIPOT states TH of the xth layer of the DNN
in folded activation as

THxk
= k

Lx

L1
mean(abs(Wx))Q (23)

where k ∈ Z+ → 1, 2, ..., 2n+1 − 1.

III. DESIGN AND EVALUATION OF TALIPOT

We develop tile-based MLP architectures both for TALIPOT
and other compared techniques as follows. Additionally, in the
last subsection, we discuss how to apply TALIPOT on a CNN
architecture.

A. Driving Example

Consider a DNN chip having tile-based organization in
Fig. 10(a). Fig. 10(b) shows tile structure where input buffer
(IB) and weight buffer (WB) are processed by Arithmetic
Process Unit (APU) in order to evaluate output buffer (OB).
Consider that, IB and WB have 16 neurons and 256 weights,
respectively, each of which has 8-bit precisions. In every
processing cycle, APU is dedicated to multiply input neurons
by corresponding weights, producing 256 (16 group of 16)
products as shown in Fig. 10(c). Each group of products
is summed within the group, producing 16 weighted sum
products. Then, each weighted sum product is activated and
evaluated as output neuron.

B. Baseline DNN Accelerator Tiles

a) DaDianNao Tile: DaDianNao [1] is a custom multi-
chip architecture (supercomputer) which is designed for reduc-
ing energy and accelerating DNN comparing to GPU. Block
diagram of DaDianNao tile APU is given in Fig. 11. Referring
the aforementioned driving example, DaDianNao fetches 16
input neurons in parallel from the IB and multiplies them by
corresponding weights of WB, producing 256 (16 group of
16) 16-bit products. Each group of products is summed within
the group, producing 16 20-bit weighted sum products. Each
weighted sum product is truncated to an 8-bit data followed
by the activation; 16 8-bit output neurons are then buffered to
the OB.

Fig. 10. DNN chip: a) chip architecture, b) tile architecture, c) APU
architecture.

Fig. 11. DaDianNao APU.

b) STRIPE Tile: STRIPE [2] is a bit-serial DNN accel-
erator to enhance performance of DaDianNao. Block diagram
of the tile APU is given in Fig. 12. Inputs are fed in serial in
MSB-first format and weights are fetched in parallel. In each
clock cycle 16 bits from IB and 256 8-bit weights from the WB
perform constant multiplication, producing 256 8-bit partial
products. While constant multiplication takes places, shift-
add operations are performed to accumulate partial products.
After 8 clock cycles, total of 2048 8-bit partial products are
reduced to 16 20-bit weighted sum products. Each weighted
sum product is truncated to an 8-bit data followed by the
activation; 16 8-bit output neurons are then buffered to the
OB.

c) MAC Tile: There are quite a bit DNN accelerators that
use MAC tile [8], [11], [20]. Block diagram of tile APU is
given in Fig. 13. MAC APU is a state machine that orders
arithmetic operations. In the first cycle, an input from the
IB is multiplied by the corresponding weight. The produced
16-bit product is saved to be accumulated. After 16 clock
cycles, 16 16-bit products are summed in a 20-bit accumulator.
The weighted sum is truncated to 8-bit data followed by the
activation. Then, it becomes the first output of the OB. APU
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Fig. 12. STRIPE APU.

Fig. 13. MAC APU.

resets operations after each output neuron is evaluated until
all of the outputs are produced.

C. TALIPOT Tile

TALIPOT system architecture is shown in Fig. 14. Fig. 14(a)
shows its data and time flow. Fig. 14(b) shows the tile APU in
the unfolded activation rounding mode. Referring the driving
example, APU is dedicated to perform constant multiplication
of the MSB buffer with the corresponding weights in WB, pro-
ducing in total of 256 8-bit terms. Right after the summation,
all of the terms are reduced to 16 12-bit products. TALIPOT
implements activation rounding in real-time which means that
whenever the inputs from the input MSB buffer are fetched
at time tk, it immediately activates and buffers them to the
output MSB buffer in the next clock cycle at time tk+1. After
the activation rounding, 16 12-bit products are reduced to their
rounded versions of 16 1-bit form and buffered directly to the
next layer to be processed.

Fig. 14(c) shows the tile APU in the 1-bit folded activation
rounding mode. In this mode, the MSB and the second MSB
(MSB-1) buffers are processed sequentially. Whenever the
inputs from the MSB buffer are fetched at time tk, it activates
and buffers them to the output MSB buffer after the next clock
cycle at time tk+2. If we reiterate the same example, after the

MSB buffer is processed which produces 16 12-bit products,
TALIPOT APU waits one clock cycle to process the second
MSB buffer. Outputs of these two operations are combined
by a 1-bit shift adder which produces 16 13-bit products. By
doing so, TALIPOT performs 1-bit folded activation rounding.
At the end, 16 13-bit products are reduced to their rounded
versions of 16 2-bit form (MSB and MSB-1) and buffered to
next layer to be processed. After 8 clock cycles, all of the
output bits are produced and buffered.

D. MLP Architecture and Design Evaluation

Consider a fully connected feed-forward MLP having k
layers, each of which has L neurons with P trainable parame-
ters as illustrated in Fig. 14(a). Neuron inputs and weights in
each layer have different precision of N and M, respectively.
TALIPOT starts with buffering input data to the input buffer.
Here the data is registered in CBR. The blocks are colored
according to whether they operate in CBR or HNR format.

After buffering MSBs of the input layer, TALIPOT performs
tile operations (constant multiplication, summation, and ac-
tivation) in HNR format. The data, stored in MSB buffers
and main memory block, is in CBR format. Here there are
two strategies available for TALIPOT. The first strategy is to
maximize the tile size (size of batching) so that the MSBs
can be fetched and processed in one clock cycle and get
activated in the next clock cycle, or after next clock cycle if
TALIPOT operates in 1-bit folded mode. This strategy brings
about the maximum energy efficiency since the latency is
minimized and also there are no partial products need to be
saved in the memory, thus cutting down the memory power
budget. This strategy is also reasonable as a result of relaxed
computation bandwidth, thanks to TALIPOT ’s activation
rounding method, by 1

N where N is defined as the input
precision in each layer. Referring the aforementioned driving
example, Table III summarizes tile operations of designs until
the output buffer is evaluated. The operations are counted re-
garding to parallel multiplications, parallel summations, accu-
mulation(acc) and activation(act). TALIPOT-U and TALIPOT-
F1 stand for TALIPOT’s unfolded mode and 1-bit folded mode,
respectively. While state-of-the-art designs need to fetch 128
(16 × 8) bits to be done with the operation, TALIPOT needs to
fetch 16 bits or 32 bits accordingly to operating in unfolding or
1-bit folding mode, respectively, in order to begin processing
next layer. In this strategy, TALIPOT fully supports single
instruction for multiple data (SIMD) flow until the output bits
are generated at full precision. However, since the output bits
are produced in real-time in MSB format, they can be cut-off
to satisfy a desired accuracy.

The second strategy is to batch input MSBs as much as
the tile structure allows. So, a number of MSBs are fetched
and processed. The produced partial products are saved to
memory buffer until all of the MSBs are fetched. Once the
MSB-fetching process is done, TALIPOT applies rounded
activation in the next clock cycle. Consider a two hidden layer
MLP where every layer has 32 neurons (32-32-32-32). Using
the aforementioned tile structure (16×16 with 8-bit precision
) in every layer, TALIPOT spends 4 clock cycles ( 32×32

16×16 ) to
be done with the layer and starts to process next layer, whereas
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Fig. 14. TALIPOT system architecture: a) TALIPOT MLP data flow and time diagram, b) TALIPOT APU in unfolded activation rounding mode, c) TALIPOT
APU in 1-bit folded activation rounding mode.

TABLE III
NUMBER OF TILE OPERATIONS UNTIL THE OUTPUT IS GENERATED

TILE
16 × 16

N=8, M=8

Parallel
Mult.

Parallel
Summ. Acc. Act.

MAC 256 8-bit None 16 20-bit 16 8-bit
DaDianNao 256 8-bit 256 16-bit None 16 8-bit

STRIPE None 2048 8-bit 16 20-bit 16 8-bit
TALIPOT-U None 256 8-bit None 16 1-bit
TALIPOT-F1 None 512 8-bit 16 13-bit 16 2-bit

conventional bit-serial methods spend 32 (4×8) clock cycles in
each layer. In this topology, TALIPOT has a latency factor of
40 (4×8+4+4) clock cycles. On the other hand, conventional
bit-serial methods have a latency factor of 96 (32 × 3) clock
cycles. So, about 2.4× ( 9640 ) energy efficiency likely to be
achieved over conventional methods.

E. CNN Architecture and Design Evaluation

TALIPOT’s booster option is valid for the single or multi-
cascaded convolutional layers of the CNNs. Since the size of
the inputs and the filters is massive, the acceleration hardware
needs to scale down the matrix multiplication. Consider a
single cascaded convolutional layers (CONV1 and CONV2)
of the CNN architecture in Fig. 15. The inputs of CONV1
have the dimension of the Ix and Iy in the direction of x and
y, respectively, with the number of Iz channels. The kernel

of Fx and Fy is applied to extract Oz output features each of
which has the dimension of Ox and Oy . The output of CONV1
is followed by a pooling layer to be processed as inputs for
CONV2. The kernel of FFx and FFy is applied to extract
OOz output features each of which has the dimension of OOx

and OOy . For CONV1, the input vector with Fx × Fy × Iz
nodes is used to generate the output vector with Ox×Oy×Oz

nodes. There are total number of Fx×Fy×Iz×Ox×Oy×Oz

matrix multiplications in CONV1. The number of matrix mul-
tiplications of CONV2 is calculated in the same way. In order
to meet the maximum applicable bandwidth requirement of the
hardware (BWmax), input and output vectors of CONV1 are
scaled down by TA and TB , respectively, such that BW1 ≥
Fx × Fy × Iz ×Ox ×Oy ×Oz

TA × TB
× N where TA and TB are

scale factors and BW1 is the memory bandwidth of CONV1
meaning that number of BW1 bits are cached per cycle in
layer CONV1 of which weights have N -bit precision. Input
and output vectors of CONV2 are scaled down by TAA and
TBB , respectively. TALIPOT’s boosting strategy on cascaded
convolutional layers of the CNN is to find the best scaling
factors of TA, TB , TAA and TBB where TA×TB

∼= TAA×TBB

to ensure BWmax ≥ BW1+BW2. For example, if TA×TB �
TAA × TBB or TA × TB � TAA × TBB there is small
boosting option for TALIPOT since the overall computation
latency will be dominated by the greater side of the equation
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Fig. 15. TALIPOT’s boosting strategy for cascaded convolutional layers of
the CNN.

(layer). Consider that each of CONV1 and CONV2 has N -bit
precision. The latency of the CONV1 and CONV2 has the
factor of (N ×TA×TB)+(N ×TAA×TBB) in conventional
bit-serial design. On the other hand, if the aforementioned
condition can be met, TALIPOT processes the same cascaded
network with a latency factor of (N×TA×TB)+(TAA×TBB),
thus boosting the cascaded network by 2N/(N + 1).

TALIPOT employs MSB-first computing, so boosting strat-
egy is valid through the cascaded convolutional layers of CNN
as individually or conjointly such that TALIPOT can handle the
CONV1 and CONV2 at once and then, CONV3 and CONV4
at once, or CONV1, CONV2, CONV3 and CONV4 at once.
So, as long as the predefined boosting condition is met, the
overall boosting factor of TALIPOT in CNN design can be

defined as
N × k

N + k − 1
where k is defined as the number of

convolutional layers into which TALIPOT is applied.

IV. EXPERIMENTAL RESULTS

TALIPOT and the state-of-the-arts are compared using
MNIST [22] and CIFAR-10 [27] datasets. In our imple-
mentations, we consider both constant and variable weights.
When the weights are constant, they are embedded into the
network as wires. When they are variable, they are fed into the
network as inputs from memory which allows future weight
updates. We consider six different performance metrics for
evaluations: Area (A), Latency (L), Power Consumption (P),
Maximum Frequency (F), Misclassification Rate (MR), and
Energy Consumption (E) per inference.

A. Methodology

1) Training and Topology: For training, we use Tensor-
Flow. For MNIST, 6 different MLP topologies including
784-50-10, 784-16-16-16-10, 784-32-32-32-10, 784-64-64-64-
10, 784-128-128-128-10, 784-256-256-256-10 and LeNet [22]
architecture are implemented.For CIFAR-10, we use VGG
model of 6 convolutional layers.

2) Quantization: 4-bit and 8-bit precisions are applied for
weights and inputs. 4-bit quantization generally meets the
need, but 8-bit quantization is done for better accuracy.

3) Source Code and Memory: System Verilog is used
for implementations. Circuits are complied and simulated in
Vivado Design Suite. SRAM on chip is used for designs to
store weights.

4) Synthesis and Performance Measurements: Cadence
GENUS low-power design flow is used for performance esti-
mation. For accurate power estimation, backward annotated
switching activity file is included. TSMC 40nm library is
used for gate-level analysis. GENUS optimizes the power
estimation in each iteration of design flow loop with newly
synthesized file until the power constraint is met. Therefore,
the power is estimated from the first iteration for not violating
the estimations from the post-layout optimization.

5) TALIPOT Modes: TALIPOT produces output bits in
serial. It means that output bits can be cut-off for better latency
and relatively for better energy consumption at the cost of
accuracy. Some of TALIPOT’s operating modes are stated
below:

a) TALIPOT-U: unfolded activation rounding w/o cut-
off,

b) TALIPOT-UC: unfolded activation rounding w/ cut-
off,

c) TALIPOT-F1: 1-bit folded activation rounding w/o
cut-off,

d) TALIPOT-F2: 2-bit folded activation rounding w/o
cut-off.

B. Implementation and Results

We compare the performance of the state-of-the-arts which
we mentioned in Section III with our proposed method,
TALIPOT. We use a scaled network of MNIST (784-50-10) for
comparison. By doing so, we aim to test and compare optimal
performance of methods in the same league. As discussed in
section III-D, TALIPOT’s first strategy is using the largest size
of batching, specially for inputs of MLP, to utilize data reuse
and to avoid energy consuming memory read/write operations.
To keep up with TALIPOT, state-of-the-arts will need to use
same size of batching, otherwise energy consumption of them
becomes even worse comparing with TALIPOT. However,
operating on relatively larger networks, this strategy is hardly
available for the state-of-the-arts as computation bandwidth
needed to process layers can go beyond practical limits of the
hardware.

Tables IV and V show detailed performance analysis of
the DNN accelerators for aforementioned networks; Fig. 16
summarizes them according to the energy efficiency.

We consider the same largest batch size for all designs
with different tile structures as detailed in Section III-B in our
comparison. This is done to maximize the energy efficiency,
so the reported maximum frequencies of the methods are
decreased according to the increased delay as a result of
increased bandwidth. TALIPOT increases energy efficiency up
to 62× over MAC, and 3× over DaDianNao and STRIPE at
best. While TALIPOT has better energy efficiency in all cases
over STRIPE and better energy efficiency over DaDianNao
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TABLE IV
PERFORMANCE OF DNN ACCELERATORS FOR MNIST WITH 4-BIT PRECISION

MNIST
784-50-10

(N=4)

DNN
Accelerator

Constant Weight Variable Weight
A

(mm2)
L

(ns)
P

(mW)
F

(Mhz)
MR
(%)

E
(nJ)

A
(mm2)

L
(ns)

P
(mW)

F
(Mhz)

MR
(%)

E
(nJ)

DaDianNao 2.18 50 214.7 57 4.1 10.7 5.7 50 377.1 44 4.1 18.9
MAC N/A N/A N/A N/A N/A N/A 0.03 1985000 0.113 275 4.1 224

STRIPE 0.75 500 21.4 122 4.1 10.7 1.52 500 61 53 4.1 30.5
TALIPOT-F1 0.75 350 14.8 139 4.3 5.2 1.51 350 35 55 4.3 12.5
TALIPOT-U 0.74 300 12 139 4.6 3.6 1.5 300 31.6 55 4.6 9.5

TABLE V
PERFORMANCE OF DNN ACCELERATORS FOR MNIST WITH 8-BIT PRECISION

MNIST
784-50-10

(N=8)

DNN
Accelerator

Constant Weight Variable Weight
A

(mm2)
L

(ns)
P

(mW)
F

(Mhz)
MR
(%)

E
(nJ)

A
(mm2)

L
(ns)

P
(mW)

F
(Mhz)

MR
(%)

E
(nJ)

DaDianNao 6.4 50 768 37 3.7 38.4 16 50 1152 25 3.7 58
MAC N/A N/A N/A N/A N/A N/A 0.056 1985000 0.206 263 3.7 408

STRIPE 1.53 900 31.6 104 3.7 28.4 2.92 900 131 45 3.7 118
TALIPOT-F1 1.51 550 40.5 112 3.7 22.3 2.91 550 150 49 3.7 83
TALIPOT-U 1.5 500 35.6 112 4.1 17.8 2.9 500 131 49 4.1 66

Fig. 16. Energy improvement of TALIPOT and the state-of-the-arts over
baseline MAC.

on average, there are few cases that DaDianNao performs
better with up to 1.4× larger energy efficiency. Note that
DaDianNao has 4× area overhead on average to keep up with
TALIPOT’s energy efficiency. This overhead is due to the batch
size of inputs that is used same for all of the networks. While
TALIPOT and STRIPE process inputs in serial, DaDianNao
processes them all in parallel. However, TALIPOT-U and
TALIPOT-F1 have reduced-latency superiority over STRIPE
which brings energy efficiency. On the other hand, MAC based
MLP design falls behind others in terms of energy due to
control and latency overhead that it has.

In order to test performance of TALIPOT in a more com-
pelling workload, we considered DNN with 3-hidden layers
with doubled neuron size in each layer from 16 to 256. We aim
to reveal minimum energy point versus accuracy of TALIPOT
in Table VI. Two different activation functions of Tanh and
ReLU, and three different activation techniques of U, UC, and
F1 are used. We use 784-bit input MSB buffer and 3 256-
bit MSB buffers for the hidden layers of the network which
has topology of 784-256-256-256-10. TALIPOT’s computation
bandwidth is roughly 1.5 Mb/cycle for one time batching of
MSB buffers (the largest batch size available in this topology)
when inputs and weights have 4-bit precision. This is doubled

when TALIPOT uses 1-bit folded rounding activation.
We see that in general, Tanh performs better than ReLU

in terms of accuracy in relatively small networks. However,
with the increased size of neurons and heavy workload,
TALIPOT’s unfolded activation rounding achieves the optimal
accuracy/energy performance which eliminates the use of 1-
bit folded activation rounding mode (TALIPOT-F1) and thus,
avoids the latency overhead which limits the energy efficiency.

Fig. 17 collects reported MNIST ASIC implementations in
the literature in terms of energy consumption and accuracy.
Here, among digital MLPs that use similar training techniques
and architectures, TALIPOT is superior in terms of energy
consumption, e.g., 3× better than the nearest one. If we apply
technology scaling as 16nm : 28nm : 40nm to 1 : 2.43 : 3.66,
TALIPOT’s energy efficiency becomes more distinct. Also,
TALIPOT operates in similar energy points with MLP IMC
(In-Memory Computing) [10] with slight accuracy loss for the
worst case scenario.

More detailed comparisons among digital MLPs are given
in Table VII. Here, TALIPOT performs a single inference
with 4 clock cycles at a maximum frequency of 0.111 GHz
within the 784-256-256-256-10 topology, so 27.8M inferences
per second is achieved. When inputs/weights are quantized
in 4-bits, TALIPOT achieves energy and area efficiencies of
25.3 TOPS/W and 2.87 TOPS/mm2, respectively. Considering
technology scaling, TALIPOT achieves 9× and 15× better
energy consumption compared to [20] and [25], respectively,
3× better acceleration compared to [10].

We tested our proposed method, TALIPOT, in CNN of
LeNet. LeNet has the architecture of two stacked convolutional
layers (CONV) which have 6 and 16 features, respectively, fil-
tered by 5×5 kernels. Each convolutional layer is followed by
average pooling (AP) layer of 2×2. Finally, 2 fully-connected
(FC) layers with the size of 120 and 84 neurons and output
layer of 10 neurons are set as classifier of the architecture.
So, LeNet has the topology of 6C5-AP2-16C5-AP2-120FC-
84FC-10FC. We will consider Lenet with CONV1(6C5-AP2),
CONV2(16C5-AP2), FC1(120), FC2(84) and FC3(10) in the
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TABLE VI
TALIPOT MNIST PERFORMANCE

Network Activation
Function

TALIPOT
Mode

Train
Acc.

Test
Acc.

4-bit
Acc.

TALIPOT
Acc.

A
(mm2)

L
(ns)

P
(mW)

F
(Mhz)

E
(nJ)

784-16-16-16-10 ReLU U 96 94.5 94 86 0.17 400 3.9 143 1.6
784-16-16-16-10 ReLU F1 96 94.5 94 93 0.18 550 4.5 143 2.5
784-16-16-16-10 Tanh U 97.5 95.3 95 93.5 0.2 400 5 143 2
784-16-16-16-10 Tanh F1 97.5 95.3 95 94.5 0.21 550 5.8 143 3.2
784-32-32-32-10 ReLU U 99 97 96.8 92 0.42 400 9.4 133 3.8
784-32-32-32-10 ReLU F1 99 97 96.8 96 0.43 550 11 133 6.1
784-32-32-32-10 Tanh U 99 96.9 96.8 96.5 0.45 400 10 133 4
784-32-32-32-10 Tanh F1 99 96.9 96.8 96.7 0.47 550 12.3 133 6.8
784-64-64-64-10 ReLU U 99.5 97.9 97.8 95.5 1 400 20 125 8
784-64-64-64-10 ReLU F1 99.5 97.9 97.8 97.5 1.03 550 24.5 125 13
784-64-64-64-10 Tanh U 99.6 97.8 97.7 97.5 1.07 400 21 125 8.4
784-64-64-64-10 Tanh F1 99.6 97.8 97.7 97.7 1.1 550 26 125 14

784-128-128-128-10 ReLU U 99.7 98.3 98.2 97.5 2.1 400 42 118 17
784-128-128-128-10 ReLU UC 99.7 98.3 98.2 97 2.1 300 42 118 12.6
784-128-128-128-10 ReLU F1 99.7 98.3 98.2 98.2 2.11 550 45 118 25
784-128-128-128-10 Tanh U 99.8 98.3 98.2 98.2 2.14 400 43 118 17
784-128-128-128-10 Tanh UC 99.8 98.3 98.2 98 2.14 300 43 118 13
784-128-128-128-10 Tanh F1 99.8 98.3 98.2 98.2 2.17 550 47 118 26
784-256-256-256-10 ReLU U 99.9 98.6 98.5 98.3 4.3 400 86 111 34
784-256-256-256-10 ReLU UC 99.9 98.6 98.5 98 4.3 300 86 111 26
784-256-256-256-10 ReLU F1 99.9 98.6 98.5 98.5 4.32 550 90 111 50
784-256-256-256-10 Tanh U 100 98.5 98.4 98.4 4.35 400 88 111 35
784-256-256-256-10 Tanh UC 100 98.5 98.4 98.2 4.35 300 88 111 26
784-256-256-256-10 Tanh F1 100 98.5 98.4 98.4 4.41 550 95 111 52

Fig. 17. Energy versus accuracy comparison for published MNIST results.
Data are collected from: Yin et al. (VLSI’20) [10], Kyu Lee et al. (JSSC’19)
[20], Kang et al. (JETCAS’18) [23], Buhler et al. (VLSI’17) [24], Whatmough
et al. (ISSCC’17) [25], and Kim et al. (VLSI’15) [26].

following paragraphs.
Table VIII details implementation of LeNet according to

bandwidth (BW) requirement of the hardware. For example,
there are total of 150×784 nodes needed to be calculated
to be done with CONV1. Considering that each node has
8-bit precision, the total bandwidth of the layer is about 1
Mb. The overall architecture has a total bandwidth of 3.33
Mb. We assumed that the maximum allowed bandwidth of
the hardware is below 1 Mb/cycle. In order to ensure this,
we have reasonably scaled nodes of each layer such that the
total bandwidth of the tile configurations doesn’t exceed the
hardware capacity.

Fig. 18 displays the timeline of TALIPOT in configured

TABLE VII
PERFORMANCE COMPARISON OF HARDWARE ACCELERATORS IN MNIST

(W/O NORMALIZATION)

Reference [10] [25] [20] This Work
Tech.(nm) 65 28 16 40
Domain IMC Digital Digital Digital

Supported Applications MLP/CNN MLP MLP MLP/CNN
Weight Precision

(Bits) 1 8 8 4

Area
(mm2) 15 5.76 6.25 4.3

Maximum Frequency
(GHz) 0.55 0.67 1 0.111

Accuracy 98.5 98.4 98.5 98.5 98.4 98.2
Througput

(MFPS) 8.6 0.015 - 27.8 27.8 27.8

Energy (nJ) 12 360 151 50 35 26
1-Bit

Energy (nJ) 12 45 18.9 12.5 8.8 6.5

Energy Efficiency
(TOPS/W) - - 2.44 13.5 19 25.3

Energy Efficiency
(TOPS/W*Bit) - - 19.5 53 78 101.2

Area Efficiency
(TOPS/mm2) - - - 1.57 2.15 2.87

hardware of LeNet implementation. The model details are
given in Table IX. In Hybrid-2 mode, TALIPOT using unfolded
activation mode (U) is applied on every layer of LeNet
architecture. The MSB of the output is generated at 16th clock
cycle. As soon as the MSB is generated at the output of FC3,
3 MSBs of the CONV1, 2 MSBs of the CONV2 and 1 MSB
of FC1 and FC2 are generated (highlighted in red). Then, in
every 5 clock cycles, the following MSBs of the output are
generated until full precision is achieved. TALIPOT has latency
of 51 clock cycles in this model with accuracy drop of 0.9%.
This can be trimmed by well calibrating or using folded mode
of TALIPOT. In order to provide same throughput, baseline
conventional bit-serial model needs 128 clock cycles. So, the
Estimated Energy Efficiency (EEE) of TALIPOT over baseline
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TABLE VIII
LENET ARCHITECTURE AND HARDWARE CONFIGURATION WITH 8-BIT

PRECISION

CONV1 CONV2 FC1 FC2 FC3 BW
(Mb)

Matrix
Mult. 5*5*28*28*6 5*5*6*10*10*16 400*120 120*84 84*10

Nodes 150×784 150×1600 400×120 120×84 84×10 3.33
Scaling
Factor 5 5 4 1 1

Tile
Config. 150x160 150×320 100×120 120×84 84×10 0.76

Fig. 18. LeNet timeline with hybrid processing.

TABLE IX
PERFORMANCE COMPARISION OF HYBRID MODELS WITH BASELINE

CONVENTIONAL BIT-SERIAL METHOD IN LENET WITH 8-BIT PRECISION

Models CONV1-CONV2 FC1 FC2-FC3 Latency
(#Clk)

Accuracy
(%)

EEE
(×)

Baseline X X X 128 99.01 1
Hybrid-1 U U X 65 98.45 1.97
Hybrid-2 U U U 51 98.14 2.51

in this architecture is about 2.5×.
We compared TALIPOT’s hybrid models with the state-of-

the-art design using modified VGG model [28] on CIFAR-10
dataset. The architecture starts with an input layer of 32×32
image with 3 channels. 32, 32, 64, 64, 128, 128 kernels
with size of (3×3) are used for 6 convolutional layers with
following MLP of 128-10. The size of features are halved
by 2×2 max pooling (MP) layers after each double convolu-
tional layers. So, the architecture is CONV1 (32C3), CONV2
(32C3-MP2), CONV3 (64C3), CONV4 (64C3-MP2), CONV5
(128C3), CONV6 (128C3-MP2), FC1 (128), FC2 (10). The
model details are given in Table X. The total bandwidth of
the architecture is about 331 Mb when 8-bit precision is used
for inputs and weights. 64×64 and 128×64 tile structures are
used for relatively smaller and bigger layers, respectively, for
both of the designs. After tiling, total bandwidth is reduced to
0.36 Mb per cycle according to hardware capacity, consuming
the same power, having the same throughput. So, the energy
efficiency estimation is predicted from the latency factors.

STRIPE [2] has normalized latency factor of 42 clock cycles
in this architecture. On the other hand, TALIPOT employing
unfolded activation mode (U) in Hybrid-1 model has latency
factor of 14 clock cycles which brings about 3× EEE over
with 14.6% accuracy drop. Note that TALIPOT doesn’t apply
boosting on CONV1 and MLP because the processing time
is dominated by CONV2 to CONV6 layers. 1-bit folded
activation mode (F1) is applied from CONV2 to CONV6 in
Hybrid-2 model. 2.3× EEE is achieved over 4.8% accuracy

overhead. We see that the accuracy gap is mostly closed by
using Hybrid-3 model in which 2-bit activation folded mode
(F2) is applied on CONV2. TALIPOT has normalized latency
factor of 17 clock cycles which results in 2.5× EEE over
STRIPE. Finally, if we further increase folding bits on CONV3
as well as CONV2 as depicted in Hybrid-4 model, TALIPOT
achieves prime accuracy with EEE of 2.3× over STRIPE.

V. DISCUSSION AND CONCLUSION

We propose TALIPOT as an energy efficient hardware
implementation technique of DNNs. TALIPOT uses hybrid
bit parallel-serial processing which boosts the computation
and reduces the energy. Energy efficiency of DNNs suffer
from limited bandwidth and data reuse [1], [15]. For example,
in order to untangle this problem, [1] utilizes multi-chip
support. However, TALIPOT relaxes computation bandwidth
significantly by 1

N where N -bit activation is used for inputs,
with the help of hybrid processing. On the other hand,
TALIPOT operates in real-time, generates output in serial,
which is different from other type of accelerators that we have
seen in literature to the best of our knowledge. This should
give superiority to TALIPOT over accelerators that utilize
conventional bit-serial processing for real-time applications
such as object recognition and face identification. So, we see
that TALIPOT has great potential to replace conventional bit-
serial processing of DNN accelerators which are widely used
in literature.
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